建筑力学15压杆稳定详解
压杆稳定解析课件

查表13-1,得 0.276, 与 0.289 相差不大
故可选28a工字钢,校核其稳定性
F 45.1MPa [ ] 46.92MPa
A
例6: 图示梁杆结构,材料均为Q235钢。AB梁为14号
工字钢,BC杆为 d=20mm的圆杆。已知: F=25kN,
l1=1.25m,l2=0.55m,E=206GPa,p=200MPa, s=235MPa,n=1.4,nst=1.8。求校核该结构是否安全。
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有 关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实 际情况选择适当的μ 。
(3)当压杆在两个形心主惯性平面内 的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
y z x
轴销
y z
x
轴销
解:xy面内,两端视作铰支,μ = 1,iz = 4.14 cm
z
l
iz
1 2 4.14 102
48.3
y z
x
轴销
xz面内,两端视作固定端,μ = 0.5,查表iy= 1.52cm
y
l
iy
0.5 2 1.52 102
65.8
显然 z y
压杆将在xz平面内失稳 而 p 100,u s 60
lw
x
O
y
M(x) Fcr=F
w
w = Asinkx +Bcoskx (d)
Fcr
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx
材料力学:Ch15压杆稳定

4
1041.8kN
n PcrAC 1041 .8 5
P≤240.6kN PAC 0.866 P
例题7:已知压杆为如球果铰两,根由槽两钢根只等在边两角端钢连铆接成λ1=100,λ2=62, ,nslt==12..44cr8m,3,0[上4σ-A]述==11.2稳16×20定M28计P.9a算c,m和试2,强校铆度核钉计压孔算杆直会。不径会为发23生m变m,化P? =800kN
解:
FA
F
B
t Et cr
l 0.5 600 141.5
i 2.12
细长杆
Et π 2E 2
t
π 2E
E 2
π2
2
π2 12.5106 141.52
39.43
C
临界压力小结:
每一个压杆均有与之相应的临界应力 临界应力取决于压杆的材料、柔度
= l i
1
1
2E p
判别弹性平衡稳定性的静力学准则 (statical criterion for elastic stability)
FFPP FP
FP<FPcr :在扰动作用下,
直线平衡构形转变为弯曲 平衡构形,扰动除去后, 能够恢复到直线平衡构形, 则称原来的直线平衡构形 是稳定的。
FP FP
FP>FPcr :在扰动作用下,
55.1(< s)短粗杆
A 235106 2.3103
b a d d 752KN
i1 11.55mm
Pcr11
129.9
375KN
i2 2
16.3mm 92
Pcr 2 644KN
P i3 15.95mm 3 94
Pcr3 635KN
压杆稳定小结

压杆稳定小结1、 压杆稳定的概念稳定平衡是指干扰撤去后可恢复的原有平衡;反之则为不稳定平衡。
压杆稳定性是指压杆保持或恢复原有平衡状态的能力。
压杆的临界压力是指压杆由稳定平衡转变为不稳定平衡时所受轴向压力的界限值,用cr F 来表示。
2、 细长中心受压直杆的临界力在线弹性和小变形条件下,根据压杆的挠曲线近似微分方程,结合压杆的边界条件,可推导得到使压杆处于微弯状态平衡的最小压力值,即压杆的临界压力欧拉公式可写成统一的形式:22)(l EIF crμπ=式中μ为长度因数。
几种常见细长压杆的临界力可见,杆端约束越强,杆的长度因数越小。
l μ为相当长度,可理解为压杆的挠曲线两个拐点之间的直线距离。
(d)(d)(d)3、 压杆的临界应力总图(1) 压杆的临界应力压杆在临界力作用下,其横截面上的平均应力称为压杆的临界应力, crcr F Aσ=(2) 欧拉公式的适用范围线弹性范围,()22cr cr p 22F EI E A l A ππσσλμ===≤ 即p λλ≥= 时,欧拉公式才能适用。
通常称p λλ≥的压杆为大柔度压杆或细长压杆。
(3) 压杆的柔度(或长细比)i l μλ=是一无量纲的量。
一般情况下,由于杆端约束(μ)或惯性半径(i )的不同,压杆在不同的纵向平面内具有不同的柔度值,压杆失稳首先发生在柔度最大的纵向平面内。
(4) 临界应力总图压杆的临界应力随柔度λ变化的λσ-cr 图称为临界应力总图。
大柔度杆p λλ≥,临界应力低于比例极限,可按欧拉公式计算,22λπσEcr= ;中柔度杆p s λλλ≤≤,临界应力超过比例极限,可按经验公式计算,如直线公式: λσb a cr -=,其中a 、b 为与材料有关的常数。
或钢结构设计中采用的抛物线公式,以及折减弹性模量理论进行计算;图13-12小柔度杆s λλ≤(或b λ),临界应力达极限应力:塑性材料s cr σσ=,脆性材料cr b σσ=,属于强度问题。
压杆稳定—提高压杆稳定性的措施(建筑力学)

提高压杆稳定性的措施
1.合理选择材料 细长压杆:
ห้องสมุดไป่ตู้ cr
2E 2
采用E值较大的材料可提高压杆的稳定性 由于各种钢材的E值大致相同,所以对大柔度钢压杆不宜选用优质钢材,以避 免造成浪费。
中粗压杆
cr a b
短粗压杆
cr u
采用强度较高的材料能够提高其临界应力,即能提高其稳定性。
提高压杆稳定性的措施
压杆稳定(10年)解析PPT课件

(3)当增大P至某一值 Pcr 时: 小的横向干扰 就会使杆失稳;
Pcr: 临界载荷(critical load)
扰动的种类:小的横向力;杆件表面凹坑; 杆件初始曲率等。
扰动是失稳的外因,杆件在外载作用下处于临界状态是内因。
2020年9月28日
14
P
P
压杆的实验观察
横向扰动
横向扰动
测试二
(1)将杆加粗或变短, 杆不容易失稳。
P Pcr 理想压杆曲线 B
实际压杆实验曲线
O
2020年9月28日
ymax
24
讨论
4. 精确微分方程
y
M
(1
y2
3
)2
EI
P
P Pcr
P Pcr
精确微分方程
P1.01P5cr
B
近似微分方程
实际压杆实验曲线
③稳定性 外力—?—稳定性条件
失去稳定性 后果更严重!
2020年9月28日
12
稳定性: 指平衡状态的稳定性 1.稳定平衡与不稳定平衡
不稳定平衡
2020年9月28日
稳定平衡
13
压杆的实验观察
测试一
P
(1) P=0或为拉时: 小的横向干扰不会使杆
离开起初始平衡位置(或失稳);
横向扰动 (2)增大P: 小的横向干扰仍不会使杆失稳;
2020年9月28日
1
第15章 压杆稳定
15.1 压杆稳定的概念 15.2 两端铰支细长压杆的临界力 15.3 两端约束不同时的临界力 15.4 临界力、经验公式、临界力总图 15.5 压杆的稳定校核 15.6 压杆稳定计算的折减系数法 15.7 提高压杆稳定性的措施
工程力学压杆稳定

MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
工程力学上册15压杆稳定

压杆的稳定性直接关系到这些结构物的安全性和可靠性,一旦发生失稳,可能会导致结构物的破坏和倒塌,造成严重的人员伤亡和财产损失。
因此,对压杆稳定性的研究和分析是工程力学中非常重要的一个方面,也是工程设计和安全评估的重要依据。
压杆稳定的重要性
02
压杆的分类与特性
总结词
长细比是描述压杆细长程度的重要参数,对临界力的影响显著。
工程力学上册15压杆稳定
目录
压杆稳定概述 压杆的分类与特性 压杆稳定的影响因素 压杆稳定的计算方法 压杆稳定的实验研究 工程实例分析
01
压杆稳定概述
01
02
压杆稳定的定义
当压杆受到的力小于其临界力时,压杆保持稳定平衡;当压杆受到的力大于其临界力时,压杆将发生屈曲失稳。
压杆稳定是指压杆在受到外力作用时,能够保持其原有平衡状态的能力。
03
压杆稳定的影响因素
压杆在制造过程中可能会产生弯曲,这种弯曲在受力时会进一步发展,导致压杆失稳。
为了提高压杆的稳定性,应尽量减小初始弯曲,可以通过提高制造精度和选用合适的材料来实现。
初始弯曲的影响
减小初始弯曲
初始弯曲
材料在加工过程中会形成残余应力,这些应力会在受力时对压杆的稳定性产生影响。
残余应力
结论应用
将实验结论应用于实际工程中,指导压杆结构的合理设计和应用。
实验结果与分析
06
工程实例分析
桥梁结构的压杆稳定分析
总结词:桥梁结构的压杆稳定分析是确保桥梁安全的重要环节,需要考虑多种因素,如材料特性、载荷分布和支撑条件等。
高层建筑的压杆稳定分析
总结词:高层建筑的压杆稳定分析是确保高层建筑安全的重要环节,需要考虑多种因素,如建筑高度、材料特性、风载荷和地震载荷等。
15压杆稳定

Fcr 269kN
图示结构ABC为矩形截面杆,b=60mm,h=100mm,l=4m, BD为圆截面杆,d=60mm,两杆材料均为A3钢,E=200GPa, σp =200MPa,均布载荷 q=1kN/m,稳定安全系nst=3。校核BD杆 的稳定性。 解:通过外力分析可知BD杆件为受 压杆件,根据静力学计算FBD:
M
A
0
FBD l si n45o 2ql 2 0 FBD 11.3kN
计算最大柔度
BD
l
i
2 4
d 4 6 4 d 2 4
3 7 7.1
p
2E 101 p
l
A3钢:a=304MPa,b=1.12MPa;E=206GPa, p=200MPa, s =235MPa
p
2E p
2 206 109
200 10
6
100
a s 304 235 0 61.6 b 1.12 0 max p 所以,应由经验公式求临界应力。
i
L2
(1)
(2)
(3)
3
L3
i
1 125 p
2 E d 2 ( Fcr )1 cr A 2 2540KN 1 4
L2 L3
0 2 62.5 p
( Fcr )2 cr A (a b2 ) 4705KN
2E 即: cr 2
l
i
I min i A
惯性半径。
3.柔度:
— —杆的柔度(或长细比 )
4.大柔度杆的分界:
cr
2E 2 P
2E P P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、其它支承情况下,压杆临界力的欧拉公式
Pcr
2 EImin (L)2
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)(coefficicent of length)。 l----有效长度(effective length)
表10–1 各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
例4 一压杆长L=1.5m,由两根 56568 等边角钢组成,两端铰
2EI
(0.7l)
2
Pcr
2EI
(0.5l ) 2
Pcr (22lE) 2I
长度系数μ =1 0.7 =0.5 =2
Pcr
2
l
EI
2
=1
例1 试由挠曲线近似微分方程,导出下述两种细长压杆的临界力
公式。
解:变形如图,其挠曲线近似微分方程为:
P
P
EIyM (x)PyM
M0
令:k 2 P
EI
76
.8kN
§15–3 超过比例极限时压杆临界应力
一、 基本概念 1.临界应力:压杆处于临界状态时横截面上的平均应力。
c
r
Pcr A
2.细长压杆的临界应力:
cr
Pcr A
2EI (L)2 A
(
2E L/i)
2
22E
即: cr
2E 2
i I ——惯性半径。 A
3.柔度: L — —杆的柔度(slenderness() 或长细比)
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2E L22
I
y
=0.7,
I
z
bh3 12
,
Pcrz
2EIz
(0.7L1)
2
③压杆的临界力 Pcr min( Pcry , Pcrz )
例3 求下列细长压杆的临界力。
解:图(a)
构件的承载能力:
①强度(strength) ②刚度(stiffness) ③稳定性(stability)
工程中有些构
件具有足够的强度、
刚度,却不一定能
安全可靠地工作。
P
一、稳定平衡(stable equilibrium)与不稳定平衡(unstable equilibrium) 1. 不稳定平衡(unstable equilibrium)
x
Px
EIyk 2 yk 2 M
M0
P
yccoskxdsinkx
L
M0 P
M0 P
边界条件为:
x0,yy0;xL,yy0
c M , d 0, kL 2n
P
kL2n
为求最小临界力,“k”应取除零以外的最小值,即取:
所以,临界力为:
kL2
Pcr
4 2EI
L2
2EI
(L/2)2
= 0.5
例2 求下列细长压杆的临界力。
P P
y
x M
P x
P ①弯矩: M (x,y)Py
②挠曲线近似微分方程:
y M P y EI EI
y P yyk 2 y0 EI
其中:k 2 P EI
③微分方程的解: y Asin kx B coskx A—屈曲模态幅值(amplitude of bucking models)
④确定积分常数: y(0)y(L)0
P
P
I
m
in
5010 12
3
10
12
4.1710
9
m
4
10 50
z
y
Pcr (2I1ml )in2E
24.17200 (0.70.5)2
67
.14
kN
图(b)
L L
图(a)
(4545 6) 等边角钢
图(b)
IminI z 3.8910 8 m4
Pcr (2I2mli)n2E
20.389200 (20.5)2
2.压杆的稳定平衡与不稳定平衡:
稳 定 平 衡
不 稳 定 平 衡
3.压杆失稳:
4.压杆的临界压力
临界状态
稳
定 平
过
衡
对应的 压力
临界压力:
不 稳 度定 平 衡 Pcr
§15–2 细长压杆临界力的欧拉公式 一、两端铰支压杆的临界力(critical load):
假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。
2. 稳定平衡(stable equilibrium)
3. 稳定平衡和不稳定平衡(stable equilibrium & unstable equilibrium)
二、压杆失稳(lost stability)与临界压力(criterion compressio
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。
②S< 时: cr s
cr
S 的杆为小柔度杆,其临 界应力为屈服极限。
S
cr ab
③临界应力总图
P
2E
cr
2
s s a
b
P 2E
P
L
i
2.抛物线型经验公式
①P<<s 时:
cr a1b12
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr
失
l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
2
Pcr
即:
A0B0 As ink LBc osk
L0
0
1
0
sinkL coskL
sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EI L2
m
in
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
Architetural Mechanics
Chapter 15. Stability of Compress Bar
压杆稳定
§15–1 压杆稳定性的概念 §15–2 细长压杆临界力的欧拉公式 §15–3 超过比例极限时压杆临界应力 §15-4 压杆的稳定校核及其合理截面
§15–1 压杆稳定性的概念 Conception of stability of Compress bar
i
4.大柔度杆的分界:
cr
2E 2
P
2E P
P
满足 P 的杆称为大柔度杆(或 长细杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
二、中小柔度杆的临界应力计算
1.直线型经验公式
①P<<S 时:
cr ab
crab s
s a b
s
sP 的杆为中柔度杆,其临 界应力用经验公式求。