二、光纤传输基本理论..
光纤传输_实验报告

一、实验目的1. 了解光纤传输的基本原理和结构。
2. 掌握光纤传输系统的基本组成和功能。
3. 学习光纤传输的实验方法和测试技术。
4. 熟悉光纤传输中常见问题的解决方法。
二、实验原理光纤传输是一种利用光导纤维传输光信号的技术。
光导纤维由纤芯、包层和涂覆层组成,纤芯具有较高的折射率,包层折射率较低,通过全内反射原理实现光信号的传输。
光纤传输具有以下特点:1. 传输速率高:光纤传输速率可达数十吉比特/秒。
2. 传输距离远:光纤传输距离可达数公里至数十公里。
3. 抗干扰性强:光纤传输不受电磁干扰。
4. 保密性好:光纤传输不易被窃听。
三、实验仪器与设备1. 光纤传输实验装置2. 光源3. 光纤连接器4. 光功率计5. 光频谱分析仪6. 光时域反射计(OTDR)四、实验内容1. 光纤连接器测试2. 光纤传输系统测试3. 光功率测试4. 光频谱分析5. OTDR测试五、实验步骤1. 光纤连接器测试(1)将光纤连接器插入光源,调整光源输出功率。
(2)将光纤连接器插入光功率计,测量输出功率。
(3)比较实际输出功率与理论输出功率,分析误差原因。
2. 光纤传输系统测试(1)搭建光纤传输系统,包括光源、光纤、光功率计等。
(2)测量系统传输速率,记录测试数据。
(3)分析测试数据,评估系统性能。
3. 光功率测试(1)将光功率计插入光纤传输系统,测量系统输出功率。
(2)记录实际输出功率与理论输出功率,分析误差原因。
4. 光频谱分析(1)将光频谱分析仪连接到光纤传输系统。
(2)测量系统输出信号的频谱,记录测试数据。
(3)分析测试数据,了解系统频谱特性。
5. OTDR测试(1)将OTDR连接到光纤传输系统。
(2)测量系统传输损耗,记录测试数据。
(3)分析测试数据,评估系统传输损耗。
六、实验结果与分析1. 光纤连接器测试结果显示,实际输出功率与理论输出功率基本一致,误差在允许范围内。
2. 光纤传输系统测试结果显示,系统传输速率达到预期目标,系统性能良好。
光纤的基本理论

第一章 光纤的基本理论1、光纤的结构:光纤是截面很小的可绕透明长丝,它在长距离内具有束缚和传输光的作用。
光纤由纤芯、包层和涂覆层构成,折射率从里到外依次减小(n 纤芯>n 包层>n 涂覆层)2、光纤的分类:(1)按光纤横截面上折射率分布的不同,可以将光纤分为阶跃折射率分布光纤 (简称阶跃光纤,适用于短距离传输 )和渐变折射率分布光纤 (简称渐变光纤,适用于长距离传输 )。
(2)根据传导模式数量的不同,光纤可以分为单模光纤和多模光纤两类。
单模光纤的纤芯直径很小,为4μm~10μm ,包层直径为125μm 。
多模光纤的纤芯一般为50μm,包层的外径为125μm 。
(3)按光纤构成的原材料分为石英系光纤、多组分玻璃光纤、塑料包层光纤、全塑光纤。
(4)按光纤的套塑层可分为紧套光纤和松套光纤。
3、光纤的相对折射率差:其中n1为纤芯的折射率, n2为包层折射率。
4、光纤的数值孔径为:NA5、假若在长为L 的光纤中,走得最快的模式所用的时间为τmin ,走得最慢的模式所用的时间为τmax ,则最大时延差Δτmax 为6、在多模渐变折射率光纤中,相对折射率差定义为 其中n(0)、n2分别是r = 0处的和包层的折射率。
7、渐变光纤的本地数值孔径公式:其中n (r )为渐变光纤纤芯折射率。
8、亥姆霍兹方程 方程求解方法主要有两种:标量近似解和矢量解。
9、光纤的归一化频率10、归一化截止频率Vc 可求出截止波长λc(课本P15)当λ<λc 时,该模式可传输;而当λ>λc 时,该模式就截止。
11、图1—9(P16),注意横、纵坐标所表示的含义。
12、阶跃光纤中的模数量以M 表示,则M=V^2/2(详见课本P18)13、衡量光纤损耗特性的参数为衰减系数(损耗系数) ,定义为单位长度光纤引起的光功率衰减,其表达式为 其中Pi 为输入光纤的光功率,Po 为光纤输出的光功率。
14、造成光纤损耗的因素:引起光纤损耗的因素有吸收损耗、散射损耗和其它损耗,这些损耗又可以归纳为本征损耗、制造损耗和附加损耗等。
光纤通信原理和基础知识.

光纤通信是用光做信息的载体,以光 纤作为传输介质的一种通信方式。 特点:光电转换 优点:带宽大 中继距离长 缺点:成本高 连接复杂
汉维光纤通信
光纤通信的基本单元
光纤通信系统是由光发射器、光 纤和光接收器三个基本单元构成的。
汉维光纤通信
光纤通信的基本单元--光纤
光纤是传输介质,由两种不同折射率 的石英玻璃(SiO2)在高温下拉制而成 的,内层为纤芯,传输光信号;外层为 包层,作用是将光信号封闭在纤芯中传 输。
汉维光纤通信
单模光纤
9微米
单模光纤外径125微米,内
径9微米(用B来表示)。用
于长距离干路传输。具体带
宽和传输长度视设备而定。
通常使用波长为1310nm或
125微米 1550nm的光进行传输
汉维光纤通信
多模光纤
50或62.5微米
125微米
目前使用的多模光纤共 有两种。一种外径125微米, 内径62.5微米(用A1b来 表示)。一种外径125微米, 内径50微米(用A1a来表 示) 。一般有效传输距离 在2公里以内。通常使用波 长为850nm或1300nm的 光进行传输。
汉维光纤通信
光纤通信的基本单元--光纤
纤芯中掺入GeO2以 加大纤芯的折射率, 使得光在纤芯和包层 的界面实现全内反射, 将损耗降低到最小。
汉维光纤通信
光纤传输原理—全反射
汉维光纤通信
光纤分类:单模光纤和多模光纤 单模光纤:光在光纤内传输时只有一种模式。
多模光纤:光在光纤内传输时有一种以上模式。Leabharlann 汉维光纤通信光纤的生产制造工艺
夹具
预制棒 拉丝加热炉
直径监测仪 涂敷设备 硬化设备
第2章光纤通信的基本原理

16、我总是站在顾客的角度看待即将推出的产品或服务,因为我就是顾客。2021年10月21日星期四12时3分57秒00:03:5721 October 2021
17、当有机会获利时,千万不要畏缩不前。当你对一笔交易有把握时,给对方致命一击,即做对还不够,要尽可能多地获取。上午12时3分57秒上午12时3分00:03:5721.10.21
2.1光纤的结构与分类
2.按传输模式的数量分类 按光纤中传输的模式数量,可以将光纤分为多模
光纤(Multi-Mode Fiber,MMF)和单模光纤(Single Mode Fiber,SMF)。
多模光纤和单模光纤是由光纤中传输的模式数目 决定的,判断一根光纤是不是单模传输,除了光纤自身的 结构参数外,还与光纤中传输的光波长有关。
2.1光纤的结构与分类
3.按光纤截面上折射率分布分类 按照截面上折射率分
布的不同可以将光纤分为阶跃 型光纤(Step-Index Fiber, SIF)和渐变型光纤(GradedIndex Fiber,GIF),其折射 率分布如右图所示。
光纤的折射率分布
2.1光纤的结构与分类
阶跃型光纤是由半径为a、折 射率为常数n1的纤芯和折射率 为常数n2的包层组成,并且 n1>n2, n1=1.463~1.467, n2=1.45~1.46。
2n12
n1
2.2光纤传光原理
数值孔径NA是表达光纤接受和传输光的能力的参数,它与 光纤的纤芯、包层折射率有关,而与光纤尺寸无关。
NA或θc越大,光纤接收光的能力越强,从光源到光纤的 耦合效率越高。对于无损耗光纤,在2θc内的入射光都能 在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤 抗弯曲性能越好。但NA越大,经光纤传输后产生的信号崎 变越大,色散带宽变差,限制了信息传输容量。
光纤通信的基本原理

光纤通信的基本原理光纤通信是一种通过光信号传输信息的通信技术,其基本原理是利用光的衍射和反射特性在光纤中传输信号。
相对于传统的电信号传输方式,光纤通信具有更大的带宽和更高的传输速度,成为现代通信领域的重要技术。
一、光的传播特性光的传播特性是光纤通信的基石。
光可以沿直线传播,遵循光的衍射和反射原理。
当光遇到边界时,会发生折射和反射,使光能在光纤中传输。
二、光纤的结构与工作原理光纤由纤芯和包层组成,其中纤芯是光信号的传输介质,包层则起到光的泄漏和保护作用。
当光信号进入光纤时,会在纤芯中传播,并通过光的衍射和反射在光纤中不断传输,直到到达目的地。
三、光的调制与解调为了在光纤中传输信息,需要将电信号转换成光信号进行调制。
光的调制有直接调制和间接调制两种方式。
直接调制是通过改变光源的电流或电压来改变光的强度,间接调制则是通过改变光的相位或频率来调制光信号。
解调则是将光信号转换回电信号,以便接收方进行处理和解析。
解调可以通过光探测器,如光电二极管、光电转换器等实现,将光信号转换为电信号。
四、光的放大与传输在光纤通信中,需要保证光信号能够在长距离传输而不损失太多信号强度。
为了解决光信号的衰减问题,光纤通信系统采用光纤放大器对光信号进行放大。
光纤放大器通过掺入掺杂物改变光纤中的折射率,使光信号在光纤中传输时得到补偿。
常见的光纤放大器有光纤放大器、光纤激光器等。
通过光的放大,光信号可以在光纤中传输较长距离。
五、光纤通信的优点与应用相对于传统的电信号传输方式,光纤通信具有很多优点。
首先,光纤通信具有更大的传输带宽和更高的传输速度,能够满足大容量、高速率的通信需求。
其次,光纤通信不受电磁干扰,信号传输稳定可靠。
另外,光纤通信具有小尺寸、轻量化的特点,便于安装和维护。
光纤通信广泛应用于各个领域,如电信、互联网、有线电视等。
特别是在互联网普及和数据传输需求增长的背景下,光纤通信在数据中心、企业网络、移动通信等领域发挥着重要作用。
光纤通信 知识点总结

光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。
光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。
本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。
一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。
光波的主要特性包括波长、频率、相速度、群速度等。
2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。
它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。
二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。
2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。
3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。
三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。
2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。
3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。
4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。
5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。
四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。
2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。
《光纤传输技术》教案【】

《光纤传输技术》教案【】光纤传输技术教案【完整版】介绍本教案旨在介绍光纤传输技术的基础知识和应用,以帮助学生了解光纤传输技术的原理、优势和应用领域。
通过本教案的研究,学生将能够理解光纤传输技术在网络通信、数据传输和信号传递中的重要作用。
教学目标1. 了解光纤传输技术的原理和基本组成;2. 熟悉光纤传输技术的优点和应用领域;3. 掌握光纤传输技术在网络通信和数据传输中的应用;4. 培养学生的分析和解决问题的能力;5. 激发学生对光纤传输技术的兴趣和探索精神。
教学内容第一节:光纤传输技术简介1. 光纤传输技术的定义和基本原理;2. 光纤传输技术的优点和特点;3. 光纤传输技术的应用领域和发展前景。
第二节:光纤传输设备和组成1. 光纤的基本结构和材料;2. 光纤传输设备的基本组成和分类;3. 光纤传输设备的工作原理和功能。
第三节:光纤传输技术在网络通信中的应用1. 光纤通信系统的结构和组成;2. 光纤通信系统的传输特点和性能指标;3. 光纤传输技术在光纤通信中的应用案例。
第四节:光纤传输技术在数据传输中的应用1. 光纤传输技术在数据中心的应用;2. 光纤传输技术在高速数据传输中的应用;3. 光纤传输技术在互联网和云计算中的应用。
第五节:光纤传输技术的未来发展趋势1. 光纤传输技术的发展历程和趋势;2. 光纤传输技术在新兴领域的应用;3. 光纤传输技术的挑战和发展前景。
教学方法1. 讲授法:通过讲解光纤传输技术的基础知识和应用案例,帮助学生理解和掌握相关概念和原理。
2. 实践法:组织学生进行实际操作,让他们亲自体验光纤传输设备的使用过程,提高他们的实践能力。
3. 讨论法:组织小组讨论和问题解答,鼓励学生积极参与,激发他们的思维能力和研究兴趣。
教学评价1. 课堂参与度:通过观察学生的课堂参与情况,评价他们的研究兴趣和积极性。
2. 作业评价:通过批改学生的作业,评估他们对光纤传输技术的理解和应用能力。
3. 实践评估:通过学生的实际操作和实验结果,评估他们的实践能力和问题解决能力。
光传输知识点总结

光传输知识点总结一、光传输的基本原理光传输是利用光作为信息传输的一种通信技术。
光传输的基本原理是利用光电器件将电信号转换成光信号,经过光纤进行传输,然后再利用光电器件将光信号转换成电信号。
光传输的基本原理主要包括以下几个方面:1. 光电转换光电转换是通过光电器件将电信号转换成光信号或将光信号转换成电信号。
常见的光电器件有光电二极管(PD)、光电探测器(photodetector)等。
当电信号接入光电二极管时,光电二极管会将电信号转换成光信号输出;当光信号照射到光电探测器上时,光电探测器会将光信号转换成电信号输出。
2. 光纤传输光纤传输是利用光纤对光信号进行传输。
光纤是一种非常细长的光导纤维,可以将光信号进行传输。
光纤通常由芯、包层和包覆层组成。
其中,芯的折射率高于包层,可以使光信号在光纤内部发生全反射而不发生漏光。
光纤传输可以实现长距离传输和高速传输,是光传输技术的重要组成部分。
3. 光电转换光电转换是通过光电器件将电信号转换成光信号或将光信号转换成电信号。
常见的光电器件有光电二极管(PD)、光电探测器(photodetector)等。
当电信号接入光电二极管时,光电二极管会将电信号转换成光信号输出;当光信号照射到光电探测器上时,光电探测器会将光信号转换成电信号输出。
二、光纤通信系统光纤通信系统是利用光纤进行信号传输的通信系统。
光纤通信系统主要包括光发射器、光接收器、光纤传输线路等组成部分。
光发射器是将电信号转换成光信号的设备,光接收器是将光信号转换成电信号的设备。
光纤传输线路则是用来实现光信号传输的通信介质。
光纤通信系统的主要特点包括传输速度快、传输损耗小、传输距离远、抗干扰能力强等优点。
因此,光纤通信系统已经广泛应用于长距离电话通信、光纤网络通信、钻井平台通信等领域。
三、光模式光模式是指光信号在光纤中的传输模式。
光信号可以按照其在光纤中的传输方式分为多种光模式。
光纤通信系统中,常见的光模式包括单模光和多模光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)几何光学射线法 当光线芯径远大于光波波长 0 时,可近似认为 0 0 , 从而将光波近似看成由一根光线所构成。因此,可以用几何 光学的方法来分析光线的入射、传播(轨迹),以及时延(色散) 和光强分布等特性。 优点:简单直观,在分析芯径较粗的多模光纤时可以得到较 精确的结果; 缺点:不能解释诸如模式分布、包层模、模式耦合,以及光 场分布等现象。而且当工作波长于芯径可比较(单模光纤),误 差较大。
霍兹方程进行空间坐标纵、横分离,令 x, y, z x, y eiz
•上式代入亥姆霍兹方程(2-4)式,得
2 2 2 2 2 2 x , y x , y x , y x, y 0 t 2 z
2 6
上式就是光纤波导中光传播时遵从的波导场方程。这是波动 理论方法的最基本方程。显然,它也是一个典型的本征方程。 当给定波导的边界条件时,求解波导场方程可得本征解及相应
的本征值。通常将本征解定义为“模式”.
• 模式和基本特征
a) 每一个模式对应于沿光波导轴向传播的一种电磁波; b) 每一个模式对应于某一本征值并满足全部边界条件; c) 模式具有确定的相速群速和横场分布. d) 模式是波导结构的固有电磁共振属性的表征。给定 的波导中能够存在的模式及其性质是已确定了的,外界 激励源只能激励起光波导中允许存在的模式而不会改 变模式的固有性质。
• 当导模的本征值 n1k0 时,导模场紧紧束缚于纤芯中
传输,称之为导模“远离截止”。每一个导模都对应于 一合适的V值使其远离截止,称之为导模的“远离截止条
件”。
• 直观的理解:光纤包层中出现辐射模,则导波“截
止”,不出现辐射模,则导模“远离截止”。
• 程函方程与射线方程
从亥姆霍兹还可以导出几何光学理论的基本方程-程函方程和射
二、光纤传输基本理论
我们知道光有波粒二重性,就是说即可以 将其看成光波,也可以将其看成是由光子组成 的粒子流。 因此,在描述光的传输特性时相应的也有 两种理论,即波动理论和射线理论(几何光学 方法)。前者描述起来比较复杂,需要麦克斯 韦方程求解,但它可以精确的描述光的传播特 性;后者描述起来比较简单直观,易于理解。
由纵向分量 Ez和 H 来表示 . z (通过将麦克斯韦方程在相应坐标系中按分量形 式展开比较后就可以得到模式各分量间的关系)
模式命名
• 根据场的纵向分量Ez和Hz的存在与否,可将模式命
名为: (1)横电磁模(TEM): Ez=Hz=0; (2)横电模(TE): (3)横磁模(TM): • Ez=0, Hz≠0; Ez≠0,Hz=0;
光纤中的一般问题均可用标量波动方程解决。
• 时、空坐标分离:亥姆霍兹方程
如果在光纤中传播的是单色波,即电磁波具有确定的 振荡频率f,角频ω=2πf,则可时、空坐标分离,令
x, y, z, t x, y, z eit
式中, 可代表 E 和 H 的任一分量。
再将上式代入标量波动方程(2-3)式,可得
基本理论涉及内容
• 光纤模式的激励(或光的入射)
• 光纤中的模式分布(或光纤传播轨迹)
• 模式的传播速度(或光线的时延)
• 模式沿光纤横截面场分布;
• 光信号的传输损耗; • 光信号的畸变; • 模式的偏振特性; • 模式的耦合;
麦克斯韦方程与亥姆霍兹方程
• 光纤是一种介质光波导,这种波导有如下特点:
• 电矢量与磁矢量分离:波动方程
H D / t E B / t D 0 B 0
D E B H
对麦克斯韦方程第2式取旋度,并利用矢量关系,可得
2 E E E 1 D 1 E E D D
• U和W是场的横向传播常数;
• U反映了导模在芯区中的驻波场的横向振荡频率; • W值则反映了导模在包层中的消逝场的衰减速度,其 值越大衰减越快。 • 还可以看到U,W和V满足如下关系
V 2 U 2 W 2
• 归一化频率
模式分析时的一个重要参量:光纤的归一化频率
V 2
2 a n12 n2 k0 an1 2
可得到只与电场强度 E 有关的方程式
2 E 2 E E t 2
2 1
• 同样的过程对麦克斯韦方程的1式进行处理,可以得到只与磁场强
度 H 有关的方程式
2 H 2 H H 2 t
模式场分量与纵横关系式
模式的场矢量 Ex, y, z 和 H x, y, z 具有六个场分量:
Ex , Ey , Ez 和 H x , H y , H z (或 Er , E , Ez 和 Hr , H , H z )。只
有当这六个场分量全部求出方可认为模式的场分布唯
一确定。 但实际上这并不必要。因为场的横向分量可
a). 无传导电流;b). 无自由电荷;c). 线性各向同性;
则其中传播的电磁波遵从下列麦克斯韦方程: H D / t E B / t D 0 B 0 同时各量满足物质方程: D E B H
• 光纤中电磁场传播的另一个重要特性是:两种介质交 界处(光纤纤壁)处电磁场满足边界条件,即 E 与 H 的 切向分量以及 D与 B 的法向分量均连续,其数学表达 E1t E 2 t 式为 H H 1t 2t B1t B 2 t D1t D 2 t 电磁场的规律是电场和磁场的交替变化,可以发现麦 克斯韦方程中,一方面,既有电场的量,也有磁场的量; 另一方面,既有空间坐标,又有时间坐标,两者相互影 响。求解的基本思路,利用分离变量法进行电、磁矢量
• 几何光学中,光线定义为等相面的法线。一般情况下, 麦克斯韦的试探解可以写成振幅与相位的形式
2 5
式中, t2是横向拉普拉斯算符, 与 分别是横向与纵向传 播常数。 (2-5)式中的 x, y 可以分别代表 E 和 H 的横向场分布,即 有 2 E x, y 2 E x, y
t 0 H x, y H x, y
波动理论法 ~d 模式 波导场方程
研究方法
主要特点
折射/反射定理
约束光线
边值问题
模式
分析思路
• 光纤传输基本理论的分析,主要是为光纤技 术的应用奠定基础。分析手段上,首先,利 用光线理论来分析光在光纤中的传播特性, 并对光纤中的模式及其基本性质进行初步讨
论;然后,用波动理论来进一步深入分析光
纤中的导波场的特性,依据光纤波导的边界 条件求解波导场方程,导出本征值方程,并 根据导模的截止和远离截止条件对光纤中的 模式特性进行详细讨论。
是K在z轴上的投影。
导模β的值是分立的,每一个β值代表着一个导模 (有时几个导模具有相同的β值,称之为“简并”)。
• C) 横向传播常数 横向传播常数即波矢K的横向分量
2 2 j n2 j k0
j 1,2
n1k0, 这里,j取1和2分别对应于纤芯和包层。纤芯中,
n2, k0 为实数;在包层中, 为虚数。为方便起见, 1 2
• 光纤波导中,电磁波在纵向(轴向)以“行波”的形式存
在,在横向以“驻波”的形式存在。其特征是:场分
布沿轴向的变化只体现在相位上,场强度不随轴向传 播距离而变化(假设光纤中无模式耦合,也不存在损耗 与增益)。
z 若数学处理上,规定光纤轴向为 z坐 e zj方向,则场分布与 标的关系可用指数形式表示为 ,可进一步对亥姆
线方程, 它描述光线在任意光纤波导中传播的光线轨迹。
需要说明的是,光学发展史上,几何光学基本概念的形成,包括 直线传播,以及反射、折射等,都远远早于光学的波动理论。程
函数方程也完全可以从费马原理得到,而不必借助麦克斯韦的电
磁波理论。 为说明方法的统一性和理论的自洽性,可以从波动理论推导出几 何光学的基本方程。 需要注意的是,几何光学理论物理概念清晰,易于理解,但仅仅 是波动理论的零波长近似,其结果仅适用于多模光纤,不适合单 模光纤。
(4)混杂模(HE或EH):Ez≠0, Hz≠0。
光纤中存在的模式多数为HE(EH)模,有时也出 TE(TM)模。
• 模式分析的基本参数
a) 场分布 场分布就是指六个场分量 Ex , Ey , Ez 和 H x , H y , H z 它们是波导场方程满足条件条件的本征解;、 b) 纵向传播常数 纵向传播常数即与本征解对应的本征值β,其意义 是导模的相位在z轴单位长度上的变化量,也就是β
分离和时、空坐标的分离。
分离变量
• 电矢量与磁矢量分离: 波动方程,是只与 电场强度E(x,y,z,t)有关的方程式及只与 磁场强度H(x,y,z,t)有关的方程式; • 时、空坐标分离: 亥姆霍兹方程,是关于 E(x,y,z)和H(x,y,z)的方程式; • 空间坐标纵、横分离:波导场方程,是 关于E(x,y)和H(x,y)的方程式; • 边界条件:在两种介质交界面上电磁场 矢量的E(x,y)和H(x,y)切向分量要连续。
0
V包含了光纤的结构及光波的工作波长,它是一个直
接与光的频率成正比的无量纲的量。光纤的很多特性 与之都有关。它定量表示了光纤支持横模的能力。
• V越大,允许存在的导模数就越多。所谓导模“截止”,
是指除基模外,其他导模都可能在某一V值下不允许存在,
这时导模转化为辐射模。而使某一导模截止的频率值,
称为导模的“截止条件”。
2 x, y, z 2 x, y, z 0
2 4
这就是亥姆霍兹方程,该方程对任何电磁波的传播都 适用。加上边界条件后,即可求出任意波导结构中光波