广安市2015年中考数学试题及答案
2015年四川省广安市岳池县中考数学二诊试卷(解析版)

2015年四川省广安市岳池县中考数学二诊试卷一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣35.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,66.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣28.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.59.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.410.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是.12.(3分)分解因式2x3﹣12x2+18x=.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)14.(3分)代数式有意义,x应满足的条件是.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|18.(6分)先化简,再求值:(),其中a=﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.22.(8分)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.26.(9分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2015年四川省广安市岳池县中考数学二诊试卷参考答案与试题解析一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.【分析】根据倒数的定义,即可解答.【解答】解:﹣的倒数是﹣8,故选:B.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.【解答】解:点M(﹣1,﹣5)向右平移3个单位长度,得到点N的坐标为(2,﹣5),故点N在第四象限.故选:D.3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10.7万人×7=749000人=7.49×105人.故选:C.4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣3【分析】根据一元二次方程的解,把x=﹣2代入原方程得到关于k的一元二次方程,然后解此方程即可.【解答】解:把x=﹣2代入原方程得4﹣2k+6=0,解得k=5.故选:A.5.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,6【分析】根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.【解答】解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,∴=2,又∵∠A=∠D,∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,∵△ABC的周长是16,面积是12,∴△DEF的周长为16÷2=8,面积为12÷4=3,故选:A.6.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,()2015=()2015=﹣1.故选:B.8.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.5【分析】根据众数的定义确定x=5,然后把数据按大小关系排列确定中位数.【解答】解:根据题意,x=5.把这组数据从小到大排列为:3,5,5,7,8,11.所以中位数为=6.故选:C.9.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.4=2S△AOM,又S△AOM=|k|,则k的值即可求出.【分析】由题意得:S△ABM【解答】解:设A(x,y),∵直线y=mx与双曲线y=交于A、B两点,∴B(﹣x,﹣y),=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△BOM=S△AOM+S△BOM=2S△AOM=2,S△AOM=|k|=1,则k=±2.∴S△ABM又由于反比例函数位于一三象限,k>0,故k=2.故选:A.10.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是(﹣8,0).【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=x+5沿y轴向上平移3个单位,则平移后直线解析式为:y=x+8,直线与x轴的交点坐标为:0=x+8,解得:x=﹣8.故答案为(﹣8,0)12.(3分)分解因式2x3﹣12x2+18x=2x(x﹣3)2.【分析】首先提公因式2x,然后利用完全平方公式即可分解.【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.故答案是:2x(x﹣3)2.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.14.(3分)代数式有意义,x应满足的条件是x≠±4.【分析】利用分式有意义的条件是分母不等于零,进而求出即可.【解答】解:代数式有意义,则|x|﹣4≠0,故x应满足的条件是:x≠±4.故答案为:x≠±4.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.【分析】画出旋转后的图形位置,根据图形可知△ABB′是等腰直角三角形,所以sin∠ABB′=sin45°求解.【解答】解:如右图,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,∴△ABB′是等腰直角三角形,∴sin∠ABB′=sin45°=.故答案为:.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是﹣1<x<5.【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【解答】解:由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2,又由表格数据可知当y<10时,对应的x的范围为﹣1<x≤2,又由二次函数的对称性可知当2<x<5时,y值的范围也是y<10,故答案为:﹣1<x<5.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2×++1﹣2+=+.18.(6分)先化简,再求值:(),其中a=﹣1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣1时,原式==﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.【分析】先证明△ABD与△EBF全等,得到EF=AD,再根据平行四边形的对边相等即可证明.【解答】证明:∵EF∥DA,∴∠A=∠E,又∵AB=BE,∠ABD=∠EBF,∴△ABD≌△EBF,∴EF=AD,∵四边形ABCD是平行四边形,∴AD=BC,∴EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.【分析】(1)解方程组可得到A点坐标和B点坐标;=S△AOD+S△BOD进行(2)先确定一次函数与y轴的交点D的坐标,然后根据S△AOB计算.【解答】解:(1)解方程组得或.所以A点坐标为(﹣2,4),B点坐标为(4,﹣2);(2)直线AB交y轴于点D,如图,把x=0代入y=﹣x+2得y=2,则D点坐标为(0,2),=S△AOD+S△BOD=×2×2+×2×4=6.所以S△AOB四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:(2分) (1)P (两数相同)=.(3分)(2)P (两数和大于10)=.(5分)22.(8分)一辆汽车从A 地驶往B 地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h ,普通公路和高速公路各是多少km ?【分析】由题意得:从A 地驶往B 地,前路段为普通公路,其余路段为高速公路.得到:高速公路的长度=普通公路长度的两倍;汽车从A 地到B 地一共行驶了2.2h .最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.【解答】解:设普通公路长为x (km ),高速公路长为y (km ).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.【分析】取AE的中点G,连接BG,根据折叠的性质和菱形的性质可知AG⊥BG,AG=a,根据勾股定理求出BG,再根据正切定义计算即可.【解答】解:取AE的中点G,连接BG,由题意知菱形ABCD的边长为a,则AB=BE=a,∴AG⊥BG,AG=a,在Rt△ABG中,BG===a,∴tanA===.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.【分析】(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径和BC的长,即可得到结果.【解答】(1)证明:连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圆的切线;(2)解:∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,解得:R=5,在R t△BEC中,BC===2,在R t△DBC中,sin∠BDC===.26.(9分)如图,抛物线y=﹣x 2+mx +n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y=﹣x 2+mx +n 经过A (﹣1,0),C (0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,四边形CDBF=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+=,∴a=2时,S四边形CDBF的面积最大∴E(2,1).。
2015年四川省达州市中考数学试题及解析

A .B .C .2015D .﹣20152015 年四川省达州市中考数学试卷一、选择题(共 10 小题,每小题 3 分,满分 30 分在每小题给出的四个选项中,只有一项 符合要求) 1.(3 分)(2015•达州)2015 的相反数是( )﹣2.(3 分)(2015•达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状 图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体 的形状图是( )A .B .C .D .3.(3 分)(2015•达州)下列运算正确的是( )A .a •a 2=a 2B .(a 2)3=a 6C .a 2+a 3=a 6D .a 6÷a 2=a 34.(3 分)(2015•达州)2015 年某中学举行的春季田径径运动会上,参加男子跳高的 15 名 运动员的成绩如表所示: 成绩(m ) 1.80 1.50 1.60 1.65 1.70 1.75 人数 1 2 4 3 3 2 这些运动员跳高成绩的中位数和众数分别是( ) A .1.70m ,1.65m B .1.70m ,1.70m C .1.65m ,1.60m D .3,45.(3 分)(2015•达州)下列命题正确的是( )A .矩形的对角线互相垂直B .两边和一角对应相等的两个三角形全等C .分式方程 +1= 可化为一元一次方程 x ﹣2+(2x ﹣1)=﹣1.5D .多项式 t 2﹣16+3t 因式分解为(t+4)(t ﹣4)+3t6.(3 分)(2015•达州)如图,△ABC 中,BD 平分∠ ABC ,BC 的中垂线交 BC 于点 E ,交 BD 于点 F ,连接 CF .若∠ A=60°,∠ ABD=24°,则∠ ACF 的度数为()m >m ≤ 且 m ≠2( ( A .48° B .36° C .30° D .24°7.(3 分)(2015•达州)如图,直径 AB 为 12 的半圆,绕 A 点逆时针旋转 60°,此时点 B 旋转到点 B ′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π8.(3 分)(2015•达州)方程(m ﹣2)x 2﹣( )x+ =0 有两个实数根,则 m 的取值范围A .B .C .m ≥3D .m ≤3 且 m ≠29.(3 分)(2015•达州)若二次函数 y=ax 2+b x +c (a ≠0)的图象与 x 轴有两个交点,坐标分 别为(x 1,0)、(x 2,0),且 x 1<x 2,图象上有一点 M (x 0,y 0),在 x 轴下方,则下列判断 正确的是( )A .a (x 0﹣x 1)(x 0﹣x 2)<0B .a >0C .b 2﹣4ac ≥0D .x 1<x 0<x 210. 3 分) 2015•达州)如图,AB 为半圆 O 的在直径,AD 、BC 分别切⊙O 于 A 、B 两点, CD 切⊙O 于点 E ,连接 OD 、OC ,下列结论:①∠ DOC=90°,②AD+BC=CD ,③△S AOD :△S BOC =AD 2:AO 2,④OD :OC=DE :EC ,⑤OD 2=DE •CD ,正确的有( )A .2 个B .3 个C .4 个D .5 个二、填空题(本题 6 个小题,每小题 3 分,為 18 分.把最后答案直接填在题中的横线上)11.(3 分)(2015•达州)在实数﹣2、0、﹣1、2、﹣ 中,最小的是 .112.(3 分)(2015•达州)已知正六边形 ABCDEF 的边心距为 cm ,则正六边形的半径为cm .13.(3 分)(2015•达州)新世纪百货大楼“宝乐”牌童装平均每天可售出 20 件,每件盈利 40 元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价 1 元,那么平均每天就可多售出 2 件.要想平均每天销售这种童装盈利 1200 元,则每件童装 应降价多少元?设每件童裝应降价 x 元,可列方程为 .14.(3 分)(2015•达州)如图,将矩形 ABCD 沿 EF 折叠,使顶点 C 恰好落在 AB 边的中 点 C ′上,点 D 落在 D ′处,C ′D ′交 AE 于点 M .若 AB=6,BC=9,则 AM 的长为.15.(3 分)(2015•达州)对于任意实数 m 、n ,定义一种运运算 m ※ n=mn ﹣m ﹣n+3,等式 的右边是通常的加减和乘法运算,例如:3※ 5=3×5﹣3﹣5+3=10.请根据上述定义解决问题: 若 a <2※ x <7,且解集中有两个整数解,则 a 的取值范围是 .16.(3 分)(2015•达州)在直角坐标系中,直线 y=x+1 与 y 轴交于点 A ,按如图方式作正 方形 A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 1C 2…,A 1、A 2、A 3…在直线 y=x+1 上,点 C 1、C 2、C 3… 在 x 轴上,图中阴影部分三角形的面积从左导游依次记为 S 1、S 2、S 3、…S n ,则 S n 的值为 (用含 n 的代数式表示,n 为正整数).三、解答题,解答对应必要的文字说明,证明过程及盐酸步骤17.(6 分)(2015•达州)计算:(﹣1)2015+20150+2﹣﹣| ﹣|( ( 利用列表法或树状图,求 A 等级中一男一女参加比赛的概率. 男生分别用代码 A 1、A 2 表18. 7 分) 2015•达州)化简•﹣,并求值,其中 a 与 2、3 △构成ABC的三边,且 a 为整数.四、解答题(共 2 小题,满分 15 分)19.(7 分)(2015•达州)达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学 将选手成绩划分为 A 、B 、C 、D 四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题: (1)参加演讲比赛的学生共有 人,扇形统计图中 m= , n= ,并把条形统计图补充完整.(2)学校欲从 A 等级 2 名男生 2 名女生中随机选取两人,参加达州市举办的演讲比赛,请 ( 示,女生分别用代码 B 1、B 2 表示)20.(8 分)(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学 习机,经投标,购买 1 台平板电脑比购买 3 台学习机多 600 元,购买 2 台平板电脑和 3 台学 习机共需 8400 元.(1)求购买 1 台平板电脑和 1 台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共 100 台,要求购买的总费用不超过 168000 元,且购买学习机的台数不超过购买平板电脑台数的 1.7 倍.请问有哪几种购买方 案?哪种方案最省钱?五、解答题(共 2 小题,满分 15 分)21.(7 分)(2015•达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤 凰山与中心广场的相对高度 AB ,其测量步骤如下:(1)在中心广场测点 C 处安置测倾器,测得此时山顶 A 的仰角∠ AFH=30°;(2)在测点 C 与山脚 B 之间的 D 处安置测倾器(C 、D 与 B 在同一直线上,且 C 、D 之间 的距离可以直接测得),测得此时山顶上红军亭顶部 E 的仰角∠ EGH=45°; (3)测得测倾器的高度 CF=DG=1.5 米,并测得 CD 之间的距离为 288 米;a b b 2已知红军亭高度为 12 米,请根据测量数据求出凤凰山与中心广场的相对高度 AB .( 1.732,结果保留整数)取22.(8 分)(2015•达州)如图,在平面直角坐标系中,四边形 ABCD 是菱形,B 、O 在 x轴负半轴上,AO=,tan ∠AOB= ,一次函数 y=k 1x+b 的图象过 A 、B 两点,反比例函数y=的图象过 OA 的中点 D .(1)求一次函数和反比例函数的表达式;(2)平移一次函数 y=k 1x+b 的图象,当一次函数 y=k 1x+b 的图象与反比例函数 y=象无交点时,求 b 的取值范围.的图六、解答题(共 2 小题,满分 17 分)23.(8 分)(2015•达州)阅读与应用: 阅读 1:、 为实数,且 a >0, >0,因为( (当 a=b 时取等号).﹣)≥0,所以 a ﹣2 +b ≥0 从而 a+b ≥2 阅读 2:若函数 y=x+ ;(m >0,x >0,m 为常数),由阅读 1 结论可知:x+ ≥2 ,所以当 x= ,即 x=时,函数 y=x+ 的最小值为 2 .阅读理解上述内容,解答下列问题:问题 1:已知一个矩形的面积为 4,其中一边长为 x ,则另一边长为 ,周长为 2(x+ ),求当 x= 时,周长的最小值为 ;问题 2:已知函数 y 1=x+1(x >﹣1)与函数 y 2=x 2+2x+10(x >﹣1),当 x= 时, 的最小值为 ;问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)24.(9分)(2015•达州)在△ABC的外接圆⊙O△中,ABC的外角平分线CD交⊙O于点D,F为点,且上﹣=连接DF,并延长DF交BA的延长线于点E.(1)判断DB与DA的数量关系,并说明理由;(2)求证:△BCD≌△AFD;(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.七、解答题(共1小题,满分12分)25.(12分)(2015•达州)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+b x+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P△,使ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.A.B.C.2015D.﹣20152015年四川省达州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项符合要求)1.(3分)(2015•达州)2015的相反数是()﹣考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2015的相反数是:﹣2015,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2015•达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A.B.C.D.考点:由三视图判断几何体;作图-三视图.分析:由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3,据此可得出图形.解答:解:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.点评:本题考查几何体的三视图.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有3列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.(3分)(2015•达州)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.解答:解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2015•达州)2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩(m) 1.80 1.50 1.60 1.65 1.70 1.75人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,4考点:众数;中位数.分析:首先根据这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,判断出这些运动员跳高成绩的中位数即可;然后找出这组数据中出现次数最多的数,则它就是这些运动员跳高成绩的众数,据此解答即可.解答:解:∵15÷2=7…1,第8名的成绩处于中间位置,∴男子跳高的15名运动员的成绩处于中间位置的数是1.65m,∴这些运动员跳高成绩的中位数是1.65m;∵男子跳高的15名运动员的成绩出现次数最多的是1.60m,∴这些运动员跳高成绩的众数是1.60m;综上,可得这些运动员跳高成绩的中位数是1.65m,众数是1.60m.故选:C.点评:(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2015•达州)下列命题正确的是()A.矩形的对角线互相垂直B.两边和一角对应相等的两个三角形全等C.分式方程+1=可化为一元一次方程x﹣2+(2x﹣1)=﹣1.5D.多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t考点:命题与定理.分析:根据矩形的性质,全等三角形的判定,分式方程的解法以及因式分解对各选项分析判断即可得解.解答:解:A、矩形的对角线互相垂直是假命题,故本选项错误;B、两边和一角对应相等的两个三角形全等是假命题,故本选项错误;C、分式方程+1=两边都乘以(2x﹣1),可化为一元一次力程x﹣2+(2x﹣1)=﹣1.5是真命题,故本选项正确;D、多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t错误,故本选项错误.故选C.点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°考点:线段垂直平分线的性质.分析:根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.解答:解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.点评:此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.m >m ≤ 且 m ≠27.(3 分)(2015•达州)如图,直径 AB 为 12 的半圆,绕 A 点逆时针旋转 60°,此时点 B 旋转到点 B ′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π考点:扇形面积的计算;旋转的性质.分析:根据题意得出 AB=AB ′=12,∠ BAB ′=60°,根据图形得出图中阴影部分的面积S=+ π×122﹣ π×122,求出即可.解答:解:∵ AB=AB ′=12,∠ BAB ′=60°∴ 图中阴影部分的面积是: S=S 扇形 B ′AB +S 半圆 O ′﹣S 半圆 O==24π. 故选 B .+ π×122﹣ π×122点评:本题考查的是扇形的面积及旋转的性质,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.8.(3 分)(2015•达州)方程(m ﹣2)x 2﹣( )x+ =0 有两个实数根,则 m 的取值范围A .B .C .m ≥3D .m ≤3 且 m ≠2考点:根的判别式;一元二次方程的定义. 专题:计算题.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.( (解答:解:根据题意得,解得 m ≤ 且 m ≠2.故选 B .点评:本题考查了根的判别式:一元二次方程 a x2+bx+c=0(a ≠0)的根与△ =b2﹣4ac 有如下关系:当△ >0 时,方程有两个不相等的两个实数根;当△ =0 时,方程有两个相等的 两个实数根;当△ <0 时,方程无实数根.9.(3 分)(2015•达州)若二次函数 y=ax 2+b x +c (a ≠0)的图象与 x 轴有两个交点,坐标分 别为(x 1,0)、(x 2,0),且 x 1<x 2,图象上有一点 M (x 0,y 0),在 x 轴下方,则下列判断 正确的是( )A .a (x 0﹣x 1)(x 0﹣x 2)<0B .a >0C .b 2﹣4ac ≥0D .x 1<x 0<x 2考点:抛物线与 x 轴的交点.分析:由于 a 的符号不能确定,故应分 a >0 与 a <0 进行分类讨论. 解答:解:A 、当 a >0 时,∵ 点 M (x 0,y 0),在 x 轴下方, ∴ x 1<x 0<x 2,∴ x 0﹣x 1>0,x 0﹣x 2<0, ∴ a (x 0﹣x 1)(x 0﹣x 2)<0;当 a <0 时,若点 M 在对称轴的左侧,则 x 0<x 1<x 2, ∴ x 0﹣x 1<0,x 0﹣x 2<0, ∴ a (x 0﹣x 1)(x 0﹣x 2)<0; 若点 M 在对称轴的右侧,则 x 1<x 2<x 0, ∴ x 0﹣x 1>0,x 0﹣x 2>0, ∴ a (x 0﹣x 1)(x 0﹣x 2)<0; 综上所述,a (x 0﹣x 1)(x 0﹣x 2)<0,故本选项正确;B 、a 的符号不能确定,故本选项错误;C 、∵ 函数图象与 x 轴有两个交点,∴ △ >0,故本选项错误;D 、x 1、x 0、x 2 的大小无法确定,故本选项错误.故选 A .点评:本题考查的是抛物线与 x 轴的交点,在解答此题时要注意进行分类讨论.10. 3 分) 2015•达州)如图,AB 为半圆 O 的在直径,AD 、BC 分别切⊙O 于 A 、B 两点, CD 切⊙O 于点 E ,连接 OD 、OC ,下列结论:①∠ DOC=90°,②AD+BC=CD ,③△S AOD :△S BOC =AD 2:AO 2,④OD :OC=DE :EC ,⑤OD 2=DE •CD ,正确的有( )A.2个B.3个C.4个D.5个考点:切线的性质;切线长定理;相似三角形的判定与性质.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用H L可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形D EO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;由△AOD∽△BOC,可得===,选项③正确;由△ODE∽△OEC,可得,选项④错误.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在△Rt ADO和△Rt EDO中,,∴△Rt ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理△Rt CEO≌△Rt CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选C.点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二、填空题(本题6个小题,每小题3分,為18分.把最后答案直接填在题中的横线上)11.(3分)(2015•达州)在实数﹣2、0、﹣1、2、﹣中,最小的是﹣2.考点:实数大小比较.分析:利用任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,即可得出结果.解答:解:在实数﹣2、0、﹣1、2、﹣中,最小的是﹣2,故答案为:﹣2.点评:本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.12.(3分)(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为2cm.考点:正多边形和圆.分析:根据题意画出图形,连接OA、OB,过O作OD⊥AB,再根据正六边形的性质及锐角三角函数的定义求解即可.解答:解:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OAD=60°,AO=,∴OD=OA•sin∠OAB=解得:AO=2..故答案为:2.关键.13.(3分)(2015•达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为(40﹣x)(20+2x)=1200.考点:由实际问题抽象出一元二次方程.专题:销售问题.分析:根据题意表示出降价x元后的销量以及每件衣服的利润,由平均每天销售这种童装盈利1200元,进而得出答案.解答:解:设每件童裝应降价x元,可列方程为:(40﹣x)(20+2x)=1200.故答案为:(40﹣x)(20+2x)=1200.点评:此题主要考查了由实际问题抽象出一元二次方程,正确表示出销量与每件童装的利润是解题关键.14.(3分)(2015•达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.考点:翻折变换(折叠问题).分析:先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.解答:解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9﹣x,∵BF2+BC′2=FC′2,∴x2+32=(9﹣x)2,解得:x=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠BFC′∵∠A=∠B=90°∴△AMC′∽△BC′F∴∵BC′=AC′=3,∴AM=.3故答案为:.点评:本题主要考查了折叠的性质和相似三角形的判定与性质,能够发现△AMC′∽△BC′F 是解决问题的关键.15.(3分)(2015•达州)对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是4≤a<5.考点:一元一次不等式组的整数解.专题:新定义.分析:利用题中的新定义化简所求不等式,求出a的范围即可.解答:解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为4≤a<5,故答案为:4≤a<5点评:此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.(3分)(2015•达州)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左导游依次记为S1、S2、S3、…S n,则S n的值为22n﹣(用含n的代数式表示,n为正整数).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第一个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出S n的值.解答:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,解:原式=﹣1+1+ ﹣ + =1﹣ . ( (∴ OA 1=1,OD=1, ∴ ∠ ODA 1=45°, ∴ ∠ A 2A 1B 1=45°, ∴ A 2B 1=A 1B 1=1, ∴ S 1= ×1×1= ,∵ A 2B 1=A 1B 1=1, ∴ A 2C 1=2=21, ∴ S 2= ×(21)2=21同理得:A 3C 2=4=22,…,S 3= ×(22)2=23∴ S n = ×(2n ﹣1)2=22n ﹣3故答案为:22n ﹣3.点评:本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.三、解答题,解答对应必要的文字说明,证明过程及盐酸步骤17.(6 分)(2015•达州)计算:(﹣1)2015+20150+2﹣1﹣| ﹣ |考点:实数的运算;零指数幂;负整数指数幂. 专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 7 分) 2015•达州)化简 •﹣,并求值,其中 a 与 2、3 △构成ABC的三边,且 a 为整数.考 分式的化简求值;三角形三边关系.点 :专 计算题. 题 :分 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把 a 的 析 值代入计算即可求出值.= 利用列表法或树状图,求 A 等级中一男一女参加比赛的概率. 男生分别用代码 A 1、A 2 表:解 解:原式 答:•+ =+ === ,∵ a 与 2、3 △构成 ABC 的三边,且 a 为整数, ∴ 1<a <5,即 a=2,3,4,当 a=2 或 a=3 时,原式没有意义, 则 a=4 时,原式=1.点 此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键. 评 :四、解答题(共 2 小题,满分 15 分)19.(7 分)(2015•达州)达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学 将选手成绩划分为 A 、B 、C 、D 四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有 40 人,扇形统计图中 m= 20 ,n= 30 ,并把条形 统计图补充完整.(2)学校欲从 A 等级 2 名男生 2 名女生中随机选取两人,参加达州市举办的演讲比赛,请 ( 示,女生分别用代码 B 1、B 2 表示)考点:列表法与树状图法;扇形统计图;条形统计图. 分析:(1)根据题意得:参加演讲比赛的学生共有:4÷10%=40(人),然后由扇形统计图的知识,可求得 m ,n 的值,继而补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与 A 等级中一 男一女参加比赛的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:参加演讲比赛的学生共有:4÷10%=40(人),∵ n%=×100%=30%,∴ m%=1﹣40%﹣10%﹣30%=20%,∴m=20,n=30;如图:故答案为:40,20,30;(2)画树状图得:∵共有12种等可能的结果,A等级中一男一女参加比赛的有8种情况,∴A等级中一男一女参加比赛的概率为:=.点评:此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设购买平板电脑x台,学习机(100﹣x)台,根据“购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍”列出不等式组,求出不等式组的解集,即可得出购买方案,进而得出最省钱的方案.解答:解:(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意得:,解得:,则购买1台平板电脑和1台学习机各需3000元,800元;(2)设购买平板电脑x台,学习机(100﹣x)台,根据题意得:,解得:37.03≤x≤40,正整数x的值为38,39,40,当x=38时,y=62;x=39时,y=61;x=40时,y=60,方案1:购买平板电脑38台,学习机62台,费用为114000+49600=163600(元);方案2:购买平板电脑39台,学习机61台,费用为117000+48800=165800(元);方案3:购买平板电脑40台,学习机60台,费用为120000+48000=168000(元),则方案1最省钱.点评:此题考查了一元一次不等式组的应用,以及二元一次方程组的应用,找出题中的等量关系是解本题的关键.五、解答题(共2小题,满分15分)21.(7分)(2015•达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.解答:解:设AH=x米,在△RT EHG中,∵∠EGH=45°,∴GH=EH=AE+AH=x+12,∵GF=CD=288米,(1)连接 AC ,交 OB 于 E ,由菱形的性质得出 BE=OE= OB ,OB ⊥AC ,由三角函∴ HF=GH+GF=x+12+288=x+300,在 △Rt AHF 中,∵ ∠ AFH=30°,∴ AH=HF •tan ∠ AFH ,即 x=(x+300)•,解得 x=150( +1).∴ AB=AH+BH ≈409.8+1.5=411(米)答:凤凰山与中心广场的相对高度 AB 大约是 411 米.点评:此题主要考查了解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(8 分)(2015•达州)如图,在平面直角坐标系中,四边形 ABCD 是菱形,B 、O 在 x轴负半轴上,AO=,tan ∠ AOB= ,一次函数 y=k 1x+b 的图象过 A 、B 两点,反比例函数y=的图象过 OA 的中点 D .(1)求一次函数和反比例函数的表达式;(2)平移一次函数 y=k 1x+b 的图象,当一次函数 y=k 1x+b 的图象与反比例函数 y=象无交点时,求 b 的取值范围.的图考点:反比例函数综合题. 分析:数 tan ∠ AOB= = ,得出 OE=2AE ,设 AE=x ,则 OE=2x ,根据勾股定理得出OA=x=,解方程求出 AE=1,OE=2,得出 OB=2OE=4,得出 A 、B 的坐标,由待定系数法即可求出一次函数的解析式;再求出点 D 的坐标,代入反比例函数 y=,求出 k 2 的值即可;(3)由题意得出方程组无解,消去 y 化成一元二次方程,由判别式△ <0,即可求出 b 的取值范围.解答:解:(1)连接 AC ,交 OB 于 E ,如图所示:。
2015-2016年四川省广安市邻水中学九年级(上)期中数学试卷和答案

2015-2016学年四川省广安市邻水中学九年级(上)期中数学试卷一、选择题(每道题只有一项符合要求.每题3分,共30分)1.(3分)以下关于x的方程中,是一元二次方程的是()A.ax2+bx+c=0 B.x2=0 C.=4x D.xy=12.(3分)已知关于x的一元二次方程2x2+bx﹣3=0的一个根为﹣2,则b的值是()A.B.﹣1 C.﹣ D.3.(3分)关于方程3x2+10x+9=0的根的情况,正确的说法是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上答案均不正确4.(3分)将二次函数y=﹣2(x+1)2﹣5的图象向右移动一个单位,再向上移动5个单位后得到的二次函数解析式为()A.y=﹣2x2B.y=﹣2(x﹣2)2C.y=﹣2(x﹣2)2﹣10 D.y=﹣2x2﹣105.(3分)以下几何图形中,一定是中心对称图形的是()A.三角形B.平行四边形C.等腰梯形D.抛物线6.(3分)如图,已知∠AOB=30°,M为OB上一点,且OM=5cm,以M为圆心,以r为半径作圆,则当r=4cm时,⊙M与直线OA的位置关系是()A.相交B.相切C.相离D.都有可能7.(3分)如图,AB是⊙O的直径,弧BC=弧BD,∠A=32°,则∠BOD的值为()A.16°B.32°C.48°D.64°8.(3分)已知扇形的圆心角为120°,半径为6cm的圆,则扇形的弧长为()A.3cm B.3πcm C.4cm D.4πcm9.(3分)如图,⊙O的半径是6cm,弦AB=10cm,弦CD=8cm,且AB⊥CD于P,则OP的长是()A.cm B.cm C.7cm D.4cm10.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.二、填空题(每题3分,共18分)11.(3分)若关于x的方程有两个不相等的实数根,则k的取值范围是.12.(3分)某工厂第一年的利润是20万元,第三年的利润是y万元,则y与平均年增长率x之间的函数关系式是.13.(3分)若a<0,则点P(a2,)关于原点对称的点位于第象限.14.(3分)如图,正方形ABCD的边长为2,分别以AB、BC为直径,在正方形内作半圆,则图中阴影部分的面积为平方单位.15.(3分)已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于.16.(3分)已知:二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.正确的序号是.三、解答题(第17题5分,第18、19、20题每题6分,共17分)17.(5分)解方程:(x﹣1)(x+2)=54.18.(6分)已知二次函数y=x2﹣4x﹣5的图象与一次函数y=x+1的图象交于A、B两点(点A在点B左侧),C为抛物线的顶点.(1)求A、B、C的交点坐标.(2)求△ABC的面积.19.(6分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言可表达为:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为多少?20.(6分)已知:如图,⊙O是Rt△ABC中的内切圆,切点分别为D、E、F,且∠C=90°,AC=6cm,BC=8cm.求:⊙O的半径是多少cm?四、实践应用题(第21题6分,第22、23、24题每题8分,共30分)21.(6分)将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?22.(8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高.23.(8分)如图1,四边形ABCD和四边形AEFG都是正方形.(1)连接DF和BF.求证:DF=BF;(2)将正方形AEFG绕点A旋转一定角度(如图2),连接DG,在旋转过程中,你能找到与DG相等的线段吗?请加以证明.24.(8分)如图,⊙O的半径为3cm,现准备将这个圆分成三个面积相等的三部分.请你设计至少四种方案(要求:1.有图形的分割示意图;2.图中标明关键而必要的数据;3.有简单的计算说明过程)五、推理与证明(本题共9分)25.(9分)已知:如图,Rt△ABC中,∠ABC=90°,以AB为⊙O的直径作圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若AB=3,BC=4,求△DEC的面积.六、拓展研究(本题共10分)26.(10分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.2015-2016学年四川省广安市邻水中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每道题只有一项符合要求.每题3分,共30分)1.(3分)以下关于x的方程中,是一元二次方程的是()A.ax2+bx+c=0 B.x2=0 C.=4x D.xy=1【解答】解:A、aax2+bx+c=0,a=0时是一元一次方程,故A错误;B、x2=0是一元二次方程,故B正确;C、=4x是分式方程,故C错误;D、xy=1是二元二次方程,故D错误;故选:B.2.(3分)已知关于x的一元二次方程2x2+bx﹣3=0的一个根为﹣2,则b的值是()A.B.﹣1 C.﹣ D.【解答】解:把x=2代入关于x的一元二次方程2x2+bx﹣3=0,得2×22﹣2b﹣3=0,解得b=.故选:D.3.(3分)关于方程3x2+10x+9=0的根的情况,正确的说法是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上答案均不正确【解答】解:3x2+10x+9=0,∵△=102﹣4×3×9=﹣8<0,∴方程没有实数根,故选:C.4.(3分)将二次函数y=﹣2(x+1)2﹣5的图象向右移动一个单位,再向上移动5个单位后得到的二次函数解析式为()A.y=﹣2x2B.y=﹣2(x﹣2)2C.y=﹣2(x﹣2)2﹣10 D.y=﹣2x2﹣10【解答】解:抛物线y=﹣2(x+1)2﹣5的顶点坐标是(﹣1,﹣5),将其图象向右移动一个单位,再向上移动5个单位后得到新抛物线的顶点坐标是(0,0),则新抛物线的解析式为y=﹣2x2.故选:A.5.(3分)以下几何图形中,一定是中心对称图形的是()A.三角形B.平行四边形C.等腰梯形D.抛物线【解答】解:A、此图形不是中心对称图形,故此选项错误;B、此图形是中心对称图形,故此选项正确;C、此图形不是中心对称图形,故此选项错误;D、此图形不是中心对称图形,故此选项错误.故选:B.6.(3分)如图,已知∠AOB=30°,M为OB上一点,且OM=5cm,以M为圆心,以r为半径作圆,则当r=4cm时,⊙M与直线OA的位置关系是()A.相交B.相切C.相离D.都有可能【解答】解:作MH⊥OA于H,如图所示:在Rt△OMH中,∵∠HOM=30°,∴MH=OM=cm,∵r=4cm,∴MH<r,∴⊙M与直线OA的位置关系是相交;故选:A.7.(3分)如图,AB是⊙O的直径,弧BC=弧BD,∠A=32°,则∠BOD的值为()A.16°B.32°C.48°D.64°【解答】解:连接OC,∵∠A=32°,∴∠BOC=2∠A=64°;∵,∴∠BOD=∠BOC=64°.故选:D.8.(3分)已知扇形的圆心角为120°,半径为6cm的圆,则扇形的弧长为()A.3cm B.3πcm C.4cm D.4πcm【解答】解:∵扇形的圆心角为120°,半径为6,∴扇形的弧长是:=4π(cm).故选:D.9.(3分)如图,⊙O的半径是6cm,弦AB=10cm,弦CD=8cm,且AB⊥CD于P,则OP的长是()A.cm B.cm C.7cm D.4cm【解答】解:作OM⊥AB于M,ON⊥CD于N,连接OA,OC,∵AB=10cm,CD=8cm,∴AM=BM=5cm,CM=DN=4cm,∵⊙O的半径是6cm,∴OA=OC=6cm,∴OM==(cm),ON==2(cm)∵AB⊥CD,∴∠CPA=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵MP=ON=2cm,在Rt△OMP中,由勾股定理得:OP===(cm).故选:B.10.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.二、填空题(每题3分,共18分)11.(3分)若关于x的方程有两个不相等的实数根,则k的取值范围是k≥0.【解答】解:∵关于x的方程有两个不相等的实数根,∴△=4k+4>0,∴k>﹣1,而成立则k≥0,∴k≥0.故答案为:k≥0.12.(3分)某工厂第一年的利润是20万元,第三年的利润是y万元,则y与平均年增长率x之间的函数关系式是y=20x2+40x+20(x>0).【解答】解:设增产率为x,因为第一年的利润是20万元,所以第二年的利润是20(1+x),第三年的利润是20(1+x)(1+x),即20(1+x)2,依题意得函数关系式:y=20(1+x)2=20x2+40x+20 (x>0)故:y=20x2+40x+20 (x>0).13.(3分)若a<0,则点P(a2,)关于原点对称的点位于第三象限.【解答】解:由点P(a2,)关于原点对称的点为(﹣a2,﹣)位于第三象限,故答案为:三.14.(3分)如图,正方形ABCD的边长为2,分别以AB、BC为直径,在正方形内作半圆,则图中阴影部分的面积为(3﹣)平方单位.【解答】解:易知:两半圆的交点即为正方形的中心,设此点为O,连接AC,则AC必过点O,连接OB;则图中的四个小弓形的面积相等,∴两个半圆的面积﹣Rt△ABC的面积=4个小弓形的面积,∴两个小弓形的面积为(﹣1),图中阴影部分的面积=Rt△ADC﹣2个小弓形的面积=2﹣(﹣1)=3﹣.故答案是:(3﹣).15.(3分)已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于2:3.【解答】解:由勾股定理得,BC=10,以AB=6为半径的圆的周长=12π,对应的圆的面积=36π,对应的侧面面积=60π,∴S1=96π,以AC=8为半径的圆的周长=16π,对应的圆的面积=64π,对应的侧面面积=80π,∴S2=144π,∴S1:S2=2:3.16.(3分)已知:二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.正确的序号是①②③④.【解答】解:①=﹣1,抛物线顶点纵坐标为﹣1,正确;②ac+b+1=0,设C(0,c),则OC=|c|,∵OA=OC=|c|,∴A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,∴ac+b+1=0,故正确;③abc>0,从图象中易知a>0,b<0,c<0,故正确;④a﹣b+c>0,当x=﹣1时y=a﹣b+c,由图象知(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0,故正确.三、解答题(第17题5分,第18、19、20题每题6分,共17分)17.(5分)解方程:(x﹣1)(x+2)=54.【解答】解:x2+x﹣56=0,(x﹣7)(x+8)=0,x﹣7=0或x+8=0,所以x1=7,x2=﹣8.18.(6分)已知二次函数y=x2﹣4x﹣5的图象与一次函数y=x+1的图象交于A、B两点(点A在点B左侧),C为抛物线的顶点.(1)求A、B、C的交点坐标.(2)求△ABC的面积.【解答】解:(1)联立抛物线与直线,得,解得,,即B(6,7),A(1,0)y=x2﹣4x﹣5=(x﹣2)2﹣9顶点C坐标为(2,﹣9);(2)如图,设BC的解析式为y=kx+b,将B,C点坐标代入,得,解得,BC的解析式为y=4x﹣17,当y=0时,4x﹣17=0,解得x=,S△ABC=×(﹣1)×[7﹣(﹣9)]=26.19.(6分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言可表达为:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为多少?【解答】解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵CE=1,∴OE=x﹣1,在直角三角形AOC中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).20.(6分)已知:如图,⊙O是Rt△ABC中的内切圆,切点分别为D、E、F,且∠C=90°,AC=6cm,BC=8cm.求:⊙O的半径是多少cm?【解答】解:设⊙O半径是rcm,连接OA、OB、OC、OD、OE、OF,如图所示:∵⊙O为△ABC的内切圆,切点是D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,OD=OE=OF=r,∵AC=6,BC=8,由勾股定理得:AB=10,=S△OAC+S△OBC+S△OAB,根据三角形的面积公式得:S△ACB∴AC×BC=AC×r+BC×r+AB×r,即:×6×8=×6r+×8r+×10r,解得:r=2;即:⊙O的半径是2cm.四、实践应用题(第21题6分,第22、23、24题每题8分,共30分)21.(6分)将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?【解答】解:设涨价x元能赚得8000元的利润,即售价定为每个(x+50)元,应进货(500﹣10x)个,…(1分)依题意得:(50﹣40+x)(500﹣10x)=8000,…(5分)解得x1=10 x2=30,当x=10时,x+50=60,500﹣10x=400;当x=30时,x+50=80,500﹣10x=200 …(8分)答:售价定为每个60元时应进货400个,或售价定为每个80元时应进货200个.…(9分)22.(8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高.【解答】解:(1)由题意得点E(1,1.4),B(6,0.9),代入y=ax2+bx+0.9得,解得,故所求的抛物线的解析式是y=﹣0.1x2+0.6x+0.9;(2)把x=3代入y=﹣0.1x2+0.6x+0.9得y=﹣0.1×32+0.6×3+0.9=1.8故小华的身高是1.8米;23.(8分)如图1,四边形ABCD和四边形AEFG都是正方形.(1)连接DF和BF.求证:DF=BF;(2)将正方形AEFG绕点A旋转一定角度(如图2),连接DG,在旋转过程中,你能找到与DG相等的线段吗?请加以证明.【解答】(1)证明:如图1所示:∵四边形ABCD和四边形AEFG都是正方形,∴AB=AD,∠A=∠AGF=∠AEF=90°,AG=AE=GF=EF,∴DG=BE,∠DGF=∠BEF=90°,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:如图所示:BE=DG,理由如下:根据题意得:∠BAD=∠EAG=90°,∴∠DAG=∠BAE,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴BE=DG.24.(8分)如图,⊙O的半径为3cm,现准备将这个圆分成三个面积相等的三部分.请你设计至少四种方案(要求:1.有图形的分割示意图;2.图中标明关键而必要的数据;3.有简单的计算说明过程)【解答】解:根据题意四种方案如下所示:方案一,如下图一所示:将整圆分成三个圆心角等于120°的扇形,则将整个圆分成了三个面积相等的三部分;方案二,如下图二所示:作以OA为半径的圆,使得它的面积等于以OC为半径的圆的面积的;作以OB 为半径的圆,使得它的面积等于以OC为半径的圆的面积的,则则将整个圆分成了三个面积相等的三部分;方案三,如下图三所示:作弓形AB的面积等于弓形CD的面积,使得它们的面积都等于整圆面积的,则将整个圆分成了三个面积相等的三部分;方案四,如下图四所示:作弓形AB的面积等于弓形CD的面积,使得它们的面积都等于整圆面积的,则将整个圆分成了三个面积相等的三部分.五、推理与证明(本题共9分)25.(9分)已知:如图,Rt△ABC中,∠ABC=90°,以AB为⊙O的直径作圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若AB=3,BC=4,求△DEC的面积.【解答】(1)证明:连结OD、BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴△BDC为直角三角形,而E是BC的中点,∴ED=EB=EC,∴∠3=∠4,而OB=OD,∴∠1=∠2,∴∠2+∠4=∠1+∠3=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:在Rt△ABC中,AC===5,∵BD•AC=AB•AC,∴BD==,在Rt△BDC中,CD==,=••=,∴S△BDC∵BE=CE,∴S=S△BEC=.△CDE六、拓展研究(本题共10分)26.(10分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.【解答】解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
四川省达州市2015年中考数学真题试题(含解析)

一、选择题(共 10 小题,每小题 3 分,满分 30 分在每小题给出的四个选项中,只有一项 符合要求) 1. 2015 的相反数是( ) A . 考点: 相反数.. 分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数. 解答: 解:2015 的相反数是:﹣2015, 故选:D. 点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2. (3 分) (2015•达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形 状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几 何体的形状图是( ) B ﹣ . C 2015 . D ﹣2015 .
考点: 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..
专题: 计算题. 分析: A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; B、原式利用幂的乘方运算法则计算得到结果,即可做出判断; C、原式不能合并,错误; D、原式利用同底数幂的除法法则计算得到结果,即可做出判断. 解答: 解:A、原式=a3,错误; B、原式=a6,正确; C、原式不能合并,错误; D、原式=a4,错误, 故选 B. 点评: 此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握 运算法则是解本题的关键. 4. (3 分) (2015•达州)2015 年某中学举行的春季田径径运动会上,参加男子跳高的 15 名 运动员的成绩如表所示: 成绩(m) 人数 1.80 1.50 1.60 1.65 1.70 3 1.75 2 D 3,4 . 1 2 4 3 这些运动员跳高成绩的中位数和众数分别是( ) B 1.70m,1.70m .
x﹣2+(2x﹣1)=﹣1.5 是真命题,故本选项正确; D、多项式 t2﹣16+3t 因式分解为(t+4) (t﹣4)+3t 错误,故本选项错误. 故选 C. 点评: 本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判 断命题的真假关键是要熟悉课本中的性质定理. 6. (3 分) (2015•达州)如图,△ABC 中,BD 平分∠ABC,BC 的中垂线交 BC 于点 E,交 BD 于点 F,连接 CF.若∠A=60°,∠ABD=24°,则∠ACF 的度数为( )
四川省广安市中考数学试卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前四川省广安市2016年高中阶段教育学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( ) A .13B .3-C .3D .3± 2.下列运算正确的是( )A .32624)(a a =-- B3=± C .236mm m =D .33323x x x +=3.经统计广安市2015年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为( ) A .74110⨯B .84.110⨯C .94.110⨯D .90.4110⨯ 4.下列图形中既是轴对称图形又是中心对称图形的是( )等边三角形A平行四边形B 正五边形C圆D 5.函数y =中自变量x 的取值范围在数轴上表示正确的是( )ABCD6.若一个正n 边形的每个内角为144,则这个正n 边形的所有对角线的条数是( ) A .7B .10C .35D .707.那么被遮盖的两个数据依次是( ) A .35,2B .36,4C .35,3 D.36,58.下列说法:○1三角形的三条高一定都在三角形内; ○2有一个角是直角的四边形是矩形; ○3有一组邻边相等的平行四边形是菱形; ○4两边及一角对应相等的两个三角形全等; ○5一组对边平行,另一组对边相等的四边形是平行四边形. 其中正确的个数有( ) A .1个B .2个C .3个D .4个9.如图,AB 是圆O 的直径,弦CD AB ⊥,30BCD ∠=,CD =,则S 阴影=( )A .2πB .8π3C .4π3D .3π8毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根.下列结论:○1240b ac -<; ○20abc >; ○30a b c -+<;○42m >-.其中,正确的个数有( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.将点(1,3)A -沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A '的坐标为 .12.如图,直线12l l ∥,若1130∠=,260∠=,则3∠= .13.若反比例函数(0)ky k x=≠的图象经过点(1,3)-,则第一次函数(0)y kx k k =-≠的图象经过 象限.14.某市为治理污水,需要铺设一段全长600m 的污水排放管道,铺设120m 后,为加快施工进度,后来每天比原计划增加20m ,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可列方程 . 15.如图,三个正方形的边长分别为2,6,8,则图中阴影部分的面积为 .16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()1,2,(3,4,)na b n +=…的展开式的系数规律(按a 的次数由大到小的顺序):122233223443223411()121()21331()3314641()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++请依据上述规律:写出20162()x x-展开式中含2014x 项的系数是 .三、解答题(本大题共10小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:11()tan60|33-+-.18.(本小题满分6分)先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=.19.(本小题满分6分)如图,四边形ABCD 是菱形,CE AB ⊥交AB 的延长线于点E ,CF AD ⊥交AD 的延长线于点F ,求证:DF BE =.20.(本小题满分6分)如图,一次函数1(0)y kx b k =+≠和反比例函数2(0)my m x=≠的图象交于点(1,6)A -,(,2)B a -.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出12y y >时,x 的取值范围.21.(本小题满分6分)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动.收集整理数据后,老师将减压方式分为五类,并绘制图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学一共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C ”所对应的圆心角度数; (3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率. 22.(本小题满分8分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只(1)用8辆汽车装运乙、丙两种水果共22吨到A 地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B 地销售(每种水果不少于一车),设装运甲水果的汽车为m 辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m 表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?23.(本小题满分8分)如图,某城市市民广场一入口处有五级高度相等的小台阶,已知台阶总高1.5米,为了安全现要做一个不锈钢扶手AB 及两根与FG 垂直且长为1米的不锈钢架杆AD 和BC (杆子的底端分别为D ,C ),且66.5DAB ∠=.(参考数据:cos66.50.40≈,sin66.50.92≈)(1)求点D 与点C 的高度差DH ;(2)求所有不锈钢材料的总长度(即AD AB BC ++的长,结果精确到0.1米).24.(本小题满分8分)在数学活动课上,老师要求学生在55⨯的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB 或AD 都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种).周长=周长=周长=周长=25.(本小题满分9分)如图,以ABC △的BC 边上一点O 为圆心的圆,经过A,C 两点且与BC边交于点E .点D 为CE 的下半圆弧的中点,连接AD 交线段EO 于点F ,若AB BF =. (1)求证:AB 是O 的切线;(2)若4CF =,DF ,求O 的半径r 及sin B .26.(本小题满分10分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)如图,抛物线2y x bx c =++与直线132y x =-交于A ,B 两点,其中点A 在y 轴上,点B 坐标为(4,5)--,点P 为y 轴左侧的抛物线上一动点,过点P 作PC x ⊥轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由;(3)当点P 运动到直线AB 下方某一处时,过点P 作PM AB ⊥,垂足为M ,连接PA 使PAM △为等腰直角三角形,请直接写出此时点P 的坐标.四川省广安市2016年高中阶段教育学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】3-的绝对值是3,所以选C .【提示】绝对值有两重意义:一是几何意义,数轴上表示某数的点与原点的距离称为这个数的绝对值;二是代数意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.即(0),||0(0),(0).a a a a a a ⎧⎪==⎨⎪-⎩><常根据代数意义化简绝对值.【考点】绝对值的概念 2.【答案】D【解析】因为326(2)4a a -=,故选项A 错误;3=,故选项B 错误;因为235m m m =,故选项C 错误;因为33323x x x +=,故选项D 正确.【提示】整式的运算除了注意字母的指数计算外,还需注意系数的计算. 【考点】整式和二次根式的计算 3.【答案】B【解析】根据科学计数法的概念,8410000000 4.110=⨯,故选B . 【提示】科学计数法需确定系数a 和指数n ,这是解题的关键. 【考点】科学计数法 4.【答案】D【解析】等边三角形是轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;正五边形是轴对称图形,但不是中心对称图形;圆既是轴对称图形,也是中心对称图形,故选D .【考点】轴对称图形和中心对称图形的概念5.【答案】A【解析】根据二次根式被开方数是非负数360x +≥,得2x ≥-,解得,在数轴上表示为,故选A .【提示】注意解集在数轴上表示时使用空心点还是实心点,解集中包括本数用实心点,不包括本数用空心点. 【考点】二次根式成立的条件 6.【答案】C【解析】根据题意得144(2)180n n =-,解得10n =.又(3)1073522n n -⨯==,故选C . 【提示】求正多边形的边数是解答此题的关键. 【考点】正多边形的内角和,正多边形的对角线条数 7.【答案】B【解析】设被遮盖的第一个数为a ,根据题意得1(38343740)375a ++++=,解得36a =,21(19109)45s ∴=++++=,故选B .【提示】利用平均数求出遮盖的第一个数是解答此题的关键.数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【考点】一组数据的平均数求方差 8.【答案】A【解析】因为钝角三角形的高有两条在三角形外,故命题①错误;有三个角是直角的四边形是矩形或有一个角是直角的平行四边形是矩形,故命题②错误;由菱形的定义知命题③正确;两边及夹角对应相等的两个三角形才能全等,故结论④错误;一组对边平行、另一组对边相等的四边形有可能是等腰梯形,故结论⑤错误,综上所述,正确的只有③,故选A .【提示】本题考查的知识点比较多,要充分使用定义、公理和定理来进行判断. 【考点】判断真假命题 9.【答案】B 【解析】AB 是O 的直径,CD AB ⊥于点E,CD =,CE DE ∴==30BCD ∠=︒,60CBE ∴∠=︒,260BOD BCD ∠=∠=︒,CBE BOD ∴∠=∠,()BCE O AA DE S ∴≅△△,BODS S ∴=阴影扇形,又4OD =,260π48π3603BODS S ∴===阴影扇形,故选B .【提示】将不规则图形转换为规则图形是求面积的最佳方法,解答本题的关键就是通过全等三角形将阴影部分的面积转换为扇形的面积. 【考点】垂径定理,三角形的面积,扇形面积,全等三角形 10.【答案】B【解析】根据图象,二次函数2y ax bx c =++与x 轴有两个交点,240b ac ∴->,故结论①错误;根据图象可判断0a >,0b <,0c <,0abc ∴>,故结论②正确;当1x =-时,y 0a b c =-+>,故结论③错误;根据图象可知,二次函数2y ax bx c =++的顶点的纵坐标为2-,当抛物线向上平移2个或2个以上单位长度后与x 轴只有一个交点或没有交点,∴若一元二次方程20ax bx c m ++-=要有两个不相等的实数根,则2m ->,故结论④正确,综上所述,正确结论是②④,故选B .【提示】充分利用二次函数与一元二次函数的关系是解答此题的关键. 【考点】二次函数的图象性质第Ⅱ卷二、填空题 11.【答案】(2,2)-【解析】根据题意,点A '的横坐标为132-=-,纵坐标为352-+=,所以点A '的坐标为(2,2)-.【提示】将点(,)a b 进行平移变换:向右平移m 个单位长度,坐标变为(,)a m b +,向左平移m 个单位长度,坐标变为(,)a m b -,向上平移m 个单位长度,坐标变为(,)a b m +,向下平移m 个单位长度,坐标变为(,)a b m -. 【考点】点平移后坐标的变化12.【答案】70︒【解析】12l l ∥,14130∴∠=∠=︒,5180418013050∴∠=︒-∠=︒-︒=︒,又260∠=︒,6∴∠18025180605070=︒-∠-∠=︒-︒-︒=︒,3670∴∠=∠=︒.【提示】利用同位角,邻补角,对顶角,三角形内角和进行转换和计算是解答此题的关键.【考点】平行线的性质,三角形的内角和 13.【答案】一、二、四【解析】根据题意得1(3)3k =⨯-=-,∴一次函数的解析式为33y x =-+,30-<,30>,∴图象经过一、二、四象限.【提示】求出一次函数解析式是解答本题的关键. 【考点】反比例函数,一次函数的图象性质14.【答案】1204801120x x +=+【解析】设原计划每天铺设x m 管道,则先铺设了120x天,后来还有600120480-=m ,每天铺设(20)x +m ,则需48020x +天,一共用了11天,所以列得方程1204801120x x +=+.【提示】从题中分析出数量之间的等量关系是解答本题的关键.数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【考点】列分式方程解应用题 15.【答案】21【解析】根据正方形的性质,可得AB CD ∥,ABG CDG ∴△△,AB BGCD DG=,即8168CD =,4CD ∴=,同理可得1EF =,(25)6221S ∴=+⨯÷=阴影.【提示】利用比例式求梯形的上底和下底是解答此题的关键. 【考点】正方形的性质,相似三角形的判定和性质 16.【答案】4032-【解析】通过观察,可得规律:20162()x x-的展开式中,含2014x 项的系数为1(2)20164032⨯-⨯=-.【考点】探究规律 三、解答题 17.【答案】0【解析】原式330=-=.【提示】先计算指数幂、化简二次根式、特殊角的三角函数值、化简绝对值,然后进行综合计算.【考点】实数的综合运算 18.【答案】5【解析】原式21(3)3=3(1)(1)1x x x x x x x ---=-+-+,240x +=,2x ∴=-,∴原式23521--==-+.【提示】先计算括号内的同分母的分式相减,再分解因式,将除法改为乘法,约分,将分式化为最简,再求出一元一次方程的解,将x 的值代入最简分式,求出原分式的值.【考点】分式的化简求值,解一元一次方程 19.【答案】见解析【解析】证法一:四边形是菱形,CD BC ∴=,ABC ADC ∠=∠, CBE CDF ∴∠=∠. CF AD ⊥,CE AB ⊥, 90CFD CEB ∴∠=∠=︒.在CBE △和CDF △中,CEB CFD ∠=∠,CBE CDF ∠=∠,CB CD =,(AAS)CEB CFD ∴≅△△,DF BE ∴=.证法二:连接AC . 四边形ABCD 是菱形,CD BC ∴=,AC 平分DAB ∠. CF AD ⊥,CE AB ⊥,CE CF ∴=, 90CFD CEB ∴∠=∠=︒.在Rt CBE △和Rt CDF △中,CB CD =,CE CF =,Rt Rt HL ()CEB CFD ∴≅△△,DF BE ∴=.【提示】根据菱形的性质和已知条件,可判定两个三角形全等,再根据全等三角形的对应边相等,证得结论.【考点】菱形的性质,全等三角形的判定和性质20.【答案】(1)一次函数解析式为:124y x =-+,反比例函数解析式为:26y x=- (2)1x -<或03x << 【解析】(1)将(1,6)A -代入2my x=得6m =-,数学试卷 第13页(共18页) 数学试卷 第14页(共18页)26y x∴=-. 将(,2)B a -代入26y x=-得3a =, (3,2)B ∴-.将(1,6)A -,(,2)B a -代入1y kx b =+得6,32,k b k b -+=⎧⎨+=-⎩2,4,k b =-⎧∴⎨=⎩ 124y x ∴=-+.(2)1x ∴<-或03x <<.【提示】(1)将点A 的坐标代入反比例函数,可求出其解析式,在将点B 的坐标代入反比例函数的解析式求出a 的值,得B 点的坐标,再将点A ,B 的坐标代入一次函数,可求得一次函数的解析式;(2)根据图象,取直线在双曲线上方的部分对应的自变量的值的取值范围. 【考点】一次函数的图象性质,反比例函数的图象性质 四、实践应用 21.【答案】(1)50 (2)见解析,度数为108︒(3)110【解析】(1)102050÷%=名.(2)D 类的人数为12(图略),“体育活动C ”所对应的圆心角度数为1536010850⨯︒=︒. (3)1()10P =选取两名女生.【提示】(1)根据A 类的人数和所占的百分比,可求出接受调查的总人数; (2)根据总人数和其他类的人数,可求出D 类的总人数,作出条形图即可;(3)可列表或画树状图得到总的等可能结果数和两名同学都是女生的结果数,从而求出相应的概率. 【考点】统计22.【答案】(1)装运乙水果有2辆车,装运丙水果有6辆车(2)12,322.a m b m =-⎧⎨=-⎩(3)当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元【解析】(1)设装运乙、丙水果的车分别为x 辆、y 辆得8,2322,x y x y +=⎧⎨+=⎩2,6.x y =⎧∴⎨=⎩答:装运乙水果有2辆车,装运丙水果有6辆车. (2)设装运乙,丙水果的车分别为a 辆、b 辆得 20,42372,m a b m a b ++=⎧⎨++=⎩12,322.a m b m =-⎧∴⎨=-⎩ (3)设总利润为w 千元,4527(12)43(322)10216w m m m m =⨯+⨯-+⨯-=+.1,121,3221,m m m ⎧⎪-⎨⎪-⎩≥≥≥1215.5m ∴≤≤, m 为正整数,13,14,15m ∴=.在10216w m =+中,w 随m 的增大而增大,∴当15m =时,366w =最大千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.【提示】(1)根据汽车的总数和水果的总运输量可列二元一次方程组或一元一次方程,解出方程的解即可;(2)用(1)的方法解答本小题即可,此小题是为(3)题作准备;(3)根据题意列出总利润m 的函数关系式,根据m 的取值范围可求出总利润的最大值. 【考点】列方程或方程组解应用题,利用不等式及函数求最大值 23.【答案】(1) 1.2DH =米 (2)5.0米【解析】(1)41.5 1.25DH =⨯=米数学试卷 第15页(共18页) 数学试卷 第16页(共18页)(2)过点B 作BM AH ⊥,垂足为M . 在矩形BMHC 中,1HM BC ==米,1.2AM DH AD BC ∴=+-=米.在Rt ABM △中,cos AMA AB=,1.23.00cos 0.40AM AB A ∴=≈=米,总长度1 3.001 5.0AD AB BC =++≈++=米. 答:总长度为5.0米.【提示】(1)观察图形,高度差占整个台阶高度的45,根据台阶总高度可求出高度差; (2)作B M A H ⊥,将图形分成一个矩形和一个直角三角形,可求出对应线段的长,然后求出总长度. 【考点】直角三角形 24.【答案】见解析 【解析】第一种(四选一):=周长=周长=周长=周长第二种(二选一):=周长5=周长第三种:第四种:第五种=+周长=+周长=周长【提示】先根据题目的要求作出三角形,在根据勾股定理求出各边的长,然后求出三角形的周长.【考点】作三角形,求三角形的周长,勾股定理 五、推理与论证25.【答案】解:(1)证明:连接AO ,DO .D 为CE 的下半圆弧的中点,90EOD ∴∠=︒. AB BF =,OA OD r ==,BAF BFA OFD ∴∠=∠=∠,OAD ADO ∠=∠, 90BAF DAO OFD ADO ∴∠+∠=∠+∠=︒,即90BAO ∠=︒,AB ∴是O 的切线.(2)半径3r =,3sin 5B =【解析】(1)证明:连接AO ,DO .D 为CE 的下半圆弧的中点,90EOD ∴∠=︒. AB BF =,OA OD r ==,数学试卷 第17页(共18页) 数学试卷 第18页(共18页)BAF BFA OFD ∴∠=∠=∠,OAD ADO ∠=∠, 90BAF DAO OFD ADO ∴∠+∠=∠+∠=︒,即90BAO ∠=︒,AB ∴是O 的切线.(2)4OF CF OC r =-=-,OD r =,DF =∴在Rt OFD △中,222OF OD DF +=,即222(4)r r +-=,13r ∴=,21r =(舍去),∴半径3r =,3OA ∴=,431OF CF OC =-=-=, 1BO BF FO AB =+=+.在Rt ABO △中,222AB AO BO +=,2223(1)AB AB ∴+=+,4AB ∴=,5BO =,3sin 5AO B BO ==.【提示】(1)连接OA ,OD ,根据点D 是下半圆弧的中点可得对应圆心角为90︒,再根据等边对等角转换角相等,从而证得OC AB ⊥,即证;(2)设圆的半径为r ,根据勾股定理可列得方程,从而求出圆的半径长;在利用勾股定理求出AB 的长,从而求得OA ,OB 的长,得到B ∠的正弦值.【考点】圆的切线判定,圆的相关性质,等腰三角形的性质,垂径定理,锐角三角函数 六、拓展探究26.【答案】(1)2932y x x =+- (2)存在,点13(1,)2P --或15(3,)2--或(21P -- (3)315(,)22P --【解析】(1)由132y x =-得(0,3)A -, 把(0,3)A -,(4,5)B --代入2y x bx c =++得3,1645,c b c =-⎧⎨-+=-⎩,9,23,b c ⎧=⎪⎨⎪=-⎩2932y x x ∴=+-. (2)存在.设29(,3)(0)2P m m m m +-<,则1(,3)2D m m -,2|4|PD m m ∴=+.PD AO ∥,∴当3PD OA ==时,就存在以O ,A ,P ,D 为顶点的平行四边形,即2|4|3m m +=. ①243m m +=,解得12m =--,22m =-+; ②243m m +=-,解得11m =-,23m =-, ∴点13(1,)2P --或15(3,)2--或(212----. (3)315(,)22P --.【提示】(1)因为点A 是直线与y 轴的交点,可根据直线解析式求出点A 的坐标,在将点A ,B 的坐标代入,求出抛物线的解析式;(2)设点P 的坐标为待定系数表示的代数式,则可表示出点D 的坐标,根据一组对边平行且相等的四边形是平行四边形可列得方程,解出待定系数的值,从而求得点P 的坐标;(3)根据等腰直角三角形含有直角和线段相等,可根据勾股定理和线段的等量关系,求出点P 的坐标.【考点】二次函数的图象性质,平行四边形的判定和性质,等腰三角形与数形的结合思想.。
四川省广安市中考数学试卷及答案

四川省广安市中考数学试卷及答案题号 一 二 三四五六 七总分 总分人16 17 18 19 20 21 22 23 24 25 布分 20 40 7 8 9 9 9 9 9 9 10 12 150得分注意事项:1.本试卷共8页,满分150分,考题时间120分钟。
2.答卷前将密封线内的项目填写清楚。
3.用蓝、黑墨水笔直接答在试题卷中。
4.解答题要写出必要的文字说明、证明过程或演算步骤。
一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填入题前的括号内。
(本大题共5个小题,每小题4分,共20分) ( ) 1. 25的平方根是 A. 5 B. -5 C. ±5 D. 625 ( ) 2. 下列各式中计算正确的是A. 2a+3b=5abB. a ·a 3=a 3C. (a 2)3=a 5D. (2a)3=8a3( ) 3. “12315”是消费者权益保护投诉热线电话号码,数据1、2、3、1、5的中位数是A. 1B. 2C. 3D. 5 ( ) 4. 图中几何体的主视图是( ) 5. 你吃过拉面吗?在做拉面的过程中就渗透着数学知识。
如果用一定体积的面团做成拉面,下面图中能大致反映面条的总长度y 与面条的粗细(横截面积)S 之间的函数关系的图象是二、填空题:请把最简答案直接填写在题后的横线上。
(本大题共10个小题,每 小题4分,共40分)27.当x___________时,1+x 在实数范围内有意义。
S S SS yyyyO O OA B C DO正面A B C D 得 分 评卷人 得 分评卷人8.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解是_______________。
(第8题图) (第10题图) (第11题图) 9.一元二次方程x2+2x=0的解是__________________。
10.如图,将△ABC绕AC边的中点O旋转180o后与原三角形拼成的四边形一定是__________形。
2015年四川省广安市中考数学真题及答案

四川省广安市2015年中考数学试卷一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()D答.解:的倒数是此题主要考查倒数的意义,2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()3.(3分)(2015•广安)下列运算正确的是(),正确;4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是()5.(3分)(2015•广安)下列四个图形中,线段BE是△ABC 的高的是()B D6.(3分)(2015•广安)下列说法错误的是(),正确;7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()y=,x+2≠0,即8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是(),可得:10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()+bx+c=a+b+c二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0 .12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35 度.∴∠C=∠AOB=35°.13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|= 1﹣a .14.(3分)(2015•广安)不等式组的所有整数解的积为0 .解:x15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH 的面积为9cm2.∴EH=BD=FG EF=AC=HG∴AO=AB=3OB==3∴BD=6∵EH=BD EF=AC∴EH=3FG=916.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t2>t3>t1.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.)﹣4×18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.,20.(6分)(2015•广安)如图,一次函数的图象与x 轴、y 轴分别相交于A 、B 两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C ,如果点B 的坐标为(0,2),OA=OB ,B 是线段AC 的中点.(1)求点A 的坐标及一次函数解析式.(2)求点C 的坐标及反比例函数的解析式.y=,y=(k≠0)的图象上,y=.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为 4 .(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.利用概率公式=.22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.村的小货车为解得:23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.∴EF=35×角构造直角三角形并结合图形利用三角函数解直角三24.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.(9分)(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.,由=OP 可证△DBE∽△DPO,进而可得:,=AB=12=2,AP==3∴PB=PA=3∴OC=BE,BD=tanD=.六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD 一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l 上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.标为m+2y=x+2∴1=x+2),,解得,∴n=m+2∴S=×1×(m+2m+1S=m+1∴y=×(﹣+2=,或y=×1+2=。
广安市中考数学(客观3年、主观5年至2013年)

广安近年中考数学试卷分析客观题2011-2013主,主观题2009-2013五年一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填涂在机读卡上(本大题共10个小题,每小题3分,共30分) C 1.(3分)(2012•广安)﹣8的相反数是( ) A . 8 B . ﹣8 C .D .﹣1、3-的倒数是( ) A 、13B 、13-C 、±13D 、3考点:实数(算术平方根、相反数、倒数)。
2.(3分)(2013•广安)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问2.(2012•广安)经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是( )美元.A . 1.5×104B . 1.5×105C . 1.5×1012D . 1.5×1013 4、(2011•广安)从《中华人民共和国2010年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)( )A . 3a ﹣a=3B . a 2•a 3=a 5C . a 15÷a 3=a 5(a ≠0)D . (a 3)3=a 62、(2011•广安)下列运算正确的是( )A 、(1)1x x --+=+B =、 22= D 、222()a b a b -=-4.(3分)(2013•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是( )BC4.(2012•广安)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A . 美B . 丽C . 广D . 安 9、(2011•广安)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A 、18 B 、19 C 、20 D 、215.(2012•广安)下列说法正确的是( ) A . 商家卖鞋,最关心的是鞋码的中位数 B . 365人中必有两人阳历生日相同 C . 要了解全市人民的低碳生活状况,适宜采用抽样调查的方法 D . 随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定3、(2011•广安)已知样本数据l ,0,6,l ,2,下列说法不正确的是( ) A 、中位数是6 B 、平均数是2 C 、众数是1 D 、极差是6考点: 统计。