中考数学创新应用题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考总复习数学专题优化训练:创新型应用题

中考总复习数学专题优化训练:创新型应用题

专题训练十四 创新型应用题一、选择题1.用一把带有刻度的直角尺①可以画出两条平行的直线a 与b ,如图4-19(1);②可以画出∠AOB 的平分线OP ,如图4-19(2);③可以检验工件的凹面是否成半圆,如图4-19(3);④可以量出一个圆的半径如图4-19(4).上述四个方法中,正确的个数是图4-19(1) 图4-19(2)图4-19(3) 图4-19(4)A.1B.2C.3D.4 2.某商品降价20%后欲恢复原价,则提价的百分数为A.18%B.20%C.25%D.30%3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处离地面2米(左右对称),则该秋千所荡过的圆弧长为 A.π米 B.2π米 C.34π米 D.23π米 4.某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由一个可分裂繁殖成A.8个B.16个C.4个D.32个5.如图4-20是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是图4-20图4-216.如图4-22,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,AE与A′E重合,若∠A=30°,则∠1+∠2等于图4-22A.50°B.60°C.45°D.以上都不对7.如图4-23,2块相同的长方形地砖拼成了一个矩形图案(地砖间的缝隙忽略不计),则每块地砖的长和宽分别为A.40,20B.45,15C.50,10D.55,5团体购票,总计支付门票费1 008元,则这两个旅游团人数相差________________人.A.10B.20C.30D.40二、填空题9.在正方体的截面中,最多可以截出__________________边形.10.如图4-24是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为___________________.图4-2411.如图4-25是某同学在沙滩上用石子摆成的小房子.图4-25观察图形的变化规律,写出第n个小房子用了_______________块石子.12.科学家研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153 cm,下肢长为92 cm,该女士穿的高跟鞋鞋跟的最佳高度约为______________ cm.(精确到0.1 cm)13.如图4-26,两个长、宽各为a米、b米的矩形花圃,都修建了形状不同的一条宽为c米的小路,问:这两条小路的面积是否相等?_______________________(填相等或不相等).若相等,面积是________________.图4-2614.小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是________________.15.某同学在使用计算器求20个数的平均数的时候,错将88误输入为8,那么由此求出的平均数比实际平均数少___________________.16.将一张长方形的纸对折,如图4-27所示,可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到________________条折痕.如果对折n次,可以得到________________条折痕.图4-27三、解答题17.正方形通过剪切可以拼成三角形.方法如图4-28.图4-28模仿上面图示的方法,解答下列问题:(画图、标示)(1)如图4-29(1),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(2)如图4-29(2),对于任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(1) (2)图4-2918.集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1—20号)和1只红球,规定:每次只摸一只球.摸前交1元钱且在1—20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元.(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?19.国家课改实验区某市在2005年进行了中考评价改革:由过去的“分分计较”变为注重对学生“学业水平”的考核,下面列举了部分考试科目的相关信息.(1)刘小明同学的五科等级为1A4B ,张小思同学的五科等级为2A2B1C ,马小虎同学的五科等级为1A3B1C ,请分别计算三人的位次值之和,并将三人的成绩按规则由优到劣依次进行排序.(2)孙大力同学参加中考,五科位次值之和为25(已知他五科等级中均没有D 、E 、F 这三个等级),试问他五科中有几个A ,几个B ,几个C ?20.如图,两种规格的钢板原料,图4-30①的规格为1 m ×5 m ,图4-30②是由5个1 m ×1 m 的小正方形组成.电焊工王师傅准备用其中的一种钢板原料裁剪后焊接成一个无重叠无缝隙的正方形形状的工件(不计加工中的损耗).图4-30(1)焊接后的正方形工件的边长是________________.(2)分别在图4-30①和图4-30②中标出裁剪线,并画出所要求的正方形形状的工件示意图(保留要焊接的痕迹).(3)从节约焊接材料的角度,试比较选用哪种原料较好?21.(2006浙江嘉兴中考)某旅游胜地欲开发一座景观山,从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C)的水平线为x 轴、过山顶(点A)的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为y=-41x 2+8,BC 所在抛物线的解析式为y=41(x-8)2,且已知B(m,4). (1)设P(x,y)是山坡线AB 上任意一点,用y 表示x,并求点B 的坐标.(2)从山顶开始,沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).图4-31①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,OE=1 600(米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为y=281(x-16)2.试求索道的最大悬空高度.一、选择题 1答案:D提示:由平行性质、角平分线性质、半圆的圆周角是直角、圆的切线性质. 2答案:C提示:设原价为a 元,提价的百分数为x ,则a(1-20%)(1+x)=a. 3答案:B提示:运用三角函数求出秋千左右摆动的夹角为120°,从而根据弧长公式求解. 4答案:B提示:经过两小时,这种细菌由一个可分裂繁殖成24. 5答案:C提示:由蓄水池横断面、注水体积分析进水时间与水深之间的关系. 6答案:B提示:连结AA ′,利用三角形的外角性质. 7答案:B提示:长和宽分别为x 、y ,列方程组可求解. 8答案:C提示:由甲、乙合在一起团体购票为1 008元,根据门票价格求得总人数为112.再根据分别购票的门票费1 314元,再确定人数. 二、填空题 9答案:六提示:正方体最多有6个面. 10答案:100 mm提示:用勾股定理求解. 11答案:n 2+4n提示:小房子上面等边三角形点的个数为3n ,下面长方形点的个数为n(n+1). 12答案:6.7提示:运用比例求解. 13答案:相等 bc提示:把小路两边的花圃拼接在一起来看. 14答案:9:30 提示:由对称可得. 15答案:4提示:由于错将88误输入8,则总和少80,即平均数实际少4. 16答案:(1)15 (2)2n -1 提示:24-1=15. 17答案:(1)如图:(2)如图:提示:由题意提供方法.18解:(1)P (摸到红球)=P (摸到同号球)=211,故没有利; (2)每次的平均收益为211(5+10)-2119=-214<0,故每次平均损失214元.19解:(1)刘小明:6+20=26,张小思:12+10+4=26,马小虎:6+15+4=25,排序为:张小思(26分)、刘小明(26分)、马小虎(25分).(2)1个A ,3个B ,1个C 或2个A ,1个B ,2个C. 20答案:(1)5 m (2)如图:(3)提示:①需4×2=8. ②需2×2+1=5. 所以②好些.21解:(1)∵P(x,y)是山坡线AB 上任意一点, ∴y=-41x 2+8,x ≥0. ∴x 2=4(8-y),x=2y -8.∵B(m,4),∴m=248-=4.∴B(4,4). (2)在山坡线AB 上,x=2y -8,A(0,8). ①令y 0=8,得x 0=0; 令y 1=8-0.002=7.998, 得x 1=2002.0≈0.089 44.∴第一级台阶的长度为x 1-x 0=0.089 44(百米)≈894(厘米). 同理,令y 2=8-2×0.002,y 3=8-3×0.002, 可得x 2≈0.126 49,x 3≈0.154 92.∴第二级台阶的长度为x 2-x 1=0.037 05(百米)≈371(厘米), 第三级台阶的长度为x 3-x 2=0.028 43(百米)≈284(厘米). ②取点B(4,4),又取y=4+0.002,则x=2998.3≈3.999 00.∵4-3.999 00=0.001<0.002,∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚. (注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级,从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性)②另解:连接任意一段台阶的两端点P 、Q,如图. ∵这种台阶的长度不小于它的高度, ∴∠PQR ≤45°.当其中有一级台阶的长大于它的高时,∠PQR<45°. 在题设图中,作BH ⊥OA 于H.则∠ABH=45°.又第一级台阶的长大于它的高,∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚. (3)D(2,7)、E(16,0)、B(4,4)、C(8,0),由图可知,只有当索道在BC 上方时,索道的悬空高度才有可能取最大值.索道在BC 上方时,悬空高度y=281(x-16)2-41(x-8)2 =141(-3x 2+40x-96) =-143(x-320)2+38. 当x=320时,y max =38.∴索道的最大悬空高度为3800米.。

中考数学专题练习应用题

中考数学专题练习应用题

A M 4530B 北第4题 中考应用题附参考答案1。

(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?2。

(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.3。

(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道?4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案?(参考数据:7.13≈,4.12≈)5。

(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树。

6。

(2010年厦门湖里模拟)某果品基地用汽车装运A 、B 、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息: 水果品牌 A B C每辆汽车载重量(吨) 2.2 2.1 2每吨水果可获利润(百元) 6 8 5(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.7.(2010年杭州月考)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润 甲店 200 170乙店 160 150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A 、B 两村调水,其中A 村需水15万吨,B 村需水13万吨,甲、乙两水库各可调出水14万吨。

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习例1. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.例2. 某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩, 解得:4256x y =⎧⎨=⎩; 答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 型计算器:(70)a -台,则3040(70)2500a a +-,解得:30a ,答:最少需要购进A 型号的计算器30台.例3.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例4.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:3020680 50401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例5. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(9)x -元/条, 根据题意得:312042009x x=-, 解得:35x =,经检验,35x =是原方程的解,926x ∴-=.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200)a -条B 型芯片,根据题意得:2635(200)6280a a +-=,解得:80a =.答:购买了80条A 型芯片.例6. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1(1)81x x x +++=, 整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍去), 2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.例7. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【解答】解:(1)设租用甲车x 辆,则乙车(10)x -辆.根据题意,得4030(10)3401620(10)170x x x x +-⎧⎨+-⎩, 解,得47.5x .又x 是整数,4x ∴=或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为420006180018800⨯+⨯=元;②甲5辆,乙5辆;总费用520005180019000⨯+⨯=元;③甲6辆,乙4辆;总费用为620004180019200⨯+⨯=元;④甲7辆,乙3辆.总费用为720003180019400⨯+⨯=元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.例8. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+,化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意,答:该品牌饮料一箱有10瓶.例9. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得:25000(1)7200x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200(120%)8640x +=⨯+=(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次.例10.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,210000(1)12100x⨯+=,解得10.1x=,22.1x=-(不合题意,舍去);答:捐款增长率为10%.(2)12100(110%)13310⨯+=元.答:第四天该单位能收到13310元捐款.。

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总1. 已知函数f(x) = x^2 - 2x + 1,求f(x)的零点个数。

2. 已知a、b、c为三角形的三边,且满足a^2 + b^2 = c^2,求证三角形ABC是直角三角形。

3. 已知等差数列{an}的首项a1=1,公差d=2,求第10项a10的值。

4. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的导数。

5. 已知等比数列{bn}的首项b1=2,公比q=2,求第6项b6的值。

6. 已知函数h(x) = log2(x+1),求h(x)的反函数。

7. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的顶点坐标。

8. 已知等差数列{cn}的首项c1=1,公差d=2,求第10项c10的值。

9. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的极值点。

10. 已知函数h(x) = log2(x+1),求h(x)的定义域。

11. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的单调区间。

12. 已知等比数列{dn}的首项d1=2,公比q=2,求第6项d6的值。

13. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的拐点坐标。

14. 已知函数h(x) = log2(x+1),求h(x)的值域。

15. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的奇偶性。

16. 已知等差数列{en}的首项e1=1,公差d=2,求第10项e10的值。

17. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的单调递增区间。

18. 已知函数h(x) = log2(x+1),求h(x)的单调递减区间。

19. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的周期。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

中考数学创新题型大集合

中考数学创新题型大集合
(3)直线 l : y kx 2 经过和谐点 P,与 x 轴交于点 D,与反比例函数 G:y
y
1 O 1
x
5、 【探究】 如图 1, 点 N m ,n
是抛物线 y1 4 x 2 1 上的任意一点,l 是过点 0,2 且
1
与 x 轴平行的直线,过点 N 作直线 NH⊥l,垂足为 H. ①计算: m=0 时,NH= ; m=4 时,NO= . ②猜想: m 取任意值时,NO NH(填“>”、“=”或“<”). 【定义】我们定义:平面内到一个定点 F 和一条直线 l(点 F 不在直线 l 上)距离相等 的点的集合叫做抛物线,其中点 F 叫做抛物线的“焦点”,直线 l 叫做抛物线的“准线”.如图 1 中 的点 O 即为抛物线 y1 的“焦点”, 直线 l: y 2 即为抛物线 y1 的“准线”.可以发现“焦点”F 在抛物 线的对称轴上. 【应用】 (1)如图 2,“焦点”为 F(-4,-1)、“准线”为 l 的抛物线 y2
创新题型
1、给出如下规定:两个图形 G1 和 G2,点 P 为 G1 上任一点,点 Q 为 G2 上任一点,如果 线段 PQ 的长度存在最小值,就称该最小值为两个图形 G1 和 G2 之间的距离. 在平面直角坐 标系 xOy 中,O 为坐标原点. 2 ,3 ) 和 (1) 点 A 的坐标为 A(1,0) ,则点 B(2,3) 和射线 OA 之间的距离为________, 点 C ( 射线 OA 之间的距离为________; (2)如果直线 y=x 和双曲线 y 研究) (3)点 E 的坐标为(1, 3 ),将射线 OE 绕原点 O 逆时针旋转 60,得到射线 OF,在坐标 平面内所有和射线 OE,OF 之间的距离相等的点所组成的图形记为图形 M. ①请在图 2 中画出图形 M,并描述图形 M 的组成部分; (若涉及平面中某个区域时可 以用阴影表示) ②将射线 OE,OF 组成的图形记为图形 W,抛物线 y x 2 2 与图形 M 的公共部 分记为图形 N,请直接写出图形 W 和图形 N 之间的距离.

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总1. 某学校计划为教职工提供两种不同的健康保险方案。

方案A的年保费为1200元,方案B的年保费为800元。

若学校有教职工500人,教职工们平均选择方案A和方案B的人数之比为2:3,那么选择方案A的人数是____人。

2. 一个等差数列的第一个数是5,公差是3,那么这个等差数列的第10个数是多少?3. 一次函数的图像是一条直线,已知这条直线的斜率为2,并且它与x轴的交点是(1, 0),那么这条直线的方程是什么?4. 一个圆的半径增加了10%,原来的面积是π,那么新的面积是多少?5. 一个长方体的长、宽、高分别是8cm、5cm和3cm,那么这个长方体的对角线长度是多少?6. 三个连续的整数,中间的整数是5,那么这三个整数是什么?7. 一个班级有40名学生,其中有20名女生和20名男生。

如果从班级中随机选择2名学生,那么选出的两名学生中至少有一名女生的概率是多少?8. 一个正方体的边长是4cm,那么它的对角线长度是多少?9. 一个数列的前三项分别是1、2和3,每一项都比前一项多2,那么这个数列的第10项是多少?10. 一个三角形的两边分别是6cm和8cm,第三边的长度是多少?11. 一个圆锥的底面半径是3cm,高是5cm,那么这个圆锥的体积是多少?12. 一个等差数列的前两项分别是1和3,公差是2,那么这个等差数列的第10项是多少?13. 一个正方体的对角线长度是12cm,那么这个正方体的边长是多少?14. 一个班级有30名学生,其中有15名女生和15名男生。

如果从班级中随机选择2名学生,那么选出的两名学生中至少有一名女生的概率是多少?15. 一个圆的半径增加了20%,原来的面积是π,那么新的面积是多少?16. 一个等差数列的前两项分别是2和4,公差是2,那么这个等差数列的第10项是多少?17. 一个长方体的长、宽、高分别是4cm、3cm和2cm,那么这个长方体的对角线长度是多少?18. 三个连续的整数,中间的整数是7,那么这三个整数是什么?19. 一个班级有50名学生,其中有25名女生和25名男生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创新应用题一、解直角三角形的应用问题从近几年全国各省市的中考试题来看,直角三角形的解法及其应用,成为中考的热点,它着重考查学生的应用能力与创新能力。

例1.(xx 年福建三明市)xx 年5月22日,媒体广泛报道了我国“重测珠峰高度”的活动,测量人员从六个不同观察点同时对峰顶进行测量(如图1)。

小英同学对此十分关心,从媒体得知一组数据:观察点C 的海拔高度为5200米,对珠峰峰顶A 点的仰角∠ACB=11°34′58″,AC=18174.16米(如图2),她打算运用已学知识模拟计算。

⑴现在也请你用此数据算出珠峰的海拔高度(精确到0.01米);⑵你的计算结果与1975年公布的珠峰海拔高度8848.13米相差多少?珠峰是长高了,不是变矮了呢?解: ⑴在Rt △ABC 中,∵sin ∠ACB=ACAB∴AB=AC sin ∠ACB=18174.16×sin11°34′58″ ≈3649.073649.07+5200=8849.07 ∴珠峰的海拔高度为8849.07米⑵8849.07-8848.13=0.94练习一1.如图所示,秋千链子的长度为3m ,静止时的秋千踏板(大小忽略不计)距地面0.5m .秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为︒53,则秋千踏板与地面的最大距离约为多少? (参考数据:︒53sin ≈0.8,︒53cos ≈0.6)0.5m︒533m2、如图,晚上,小亮在广场上乘凉。

图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯。

⑴请你在图中画出小亮在照明灯(P)照射下的影子;⑵如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度。

3.如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P. 若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.4、如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?5、6月以来,我省普降大雨,时有山体滑坡灾害发生。

北峰小学教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示:AF∥BC,斜坡AB长30米,坡角 ABC=65º。

为了防止滑坡,保障安全,学校决定对该土坡进行改造,经过地质人员勘测,当坡角不超过45º时,可以确保山体不滑坡。

(1)求坡顶与地面的距离AD等于多少米?(精确到0.1米)(2)为确保安全,学校计划改造时保持坡脚B不动,坡顶A沿AF削进到E点处,求AE至少是多少米?(精确到0.1米)二、统计知识的有关内容从近几年全国全省市的中考试题来看,对统计初步的知识的考查有加强的趋势,而且着重考查运用统计知识解决实际问题能力,热点是常常以新情景下的统计知识应用题。

例题2、(xx 年宁德)某县教育局专门对该县xx 年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图如下。

根据图中信息回答:(1)已知上非达标...高中的毕业生有2328人,求该县xx 年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的频率,你对该县教育发展有何积极建议?请写出一条建议。

解:(1)232830%=7760(人)∴该县xx 年共有初中毕业生7760人。

(2)7760×13.1%≈1017(人),7760×11.9%≈923(人)(1016人与924人也正确,若答案为小数总扣1分)∴就读职业高中的毕业生数为1017人,赋闲在家的毕业生有923人。

(3)只要言之有理均可得3分如:赋闲在家学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生。

又如:在普通高中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中练习二 1、(近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市xx ~xx 年游客总人数和旅游业总收入情况.5750005507508531225人数万人次()2001~2004年游客总人数统计图2001~2004年旅游业总收入统计图424000665000940000收入万元()2001200320022004200400600800120010002000004000006000008000001000000年份根据统计图提供的信息,解答下列问题:(1)xx年游客总人数为万人次,旅游业总收入为万元;(2)在xx年,xx年,xx年这三年中,旅游业总收入增长幅度最大的是年,这一年比上一年增长的百分率为(精确到0.1%);(3)xx年的游客中,国内游客为1200万人次,其余为海外游客. 据统计,国内游客的人均消费为700元,问海外游客的人均消费为多少元?(注:旅游收入=游客人数×游客的人均消费)2、)xx年5月30日,国务院关税税则委员会决定从当天起对纺织品出口关税进一步作出调整,对一些纺织品取消征收出口关税。

在此背景下,(沈阳日报)(xx年6月1日)报道了xx年1—4月份沈阳服装对各国出口的情况,并绘制统计图如下。

请你根据统计图中提供的信息,回答下列问题:(1)xx年1—4月份,沈阳服装企业出口额较多的是哪两个国家?(2)xx年1—4月份,沈阳服装企业平均每月出口总额是多少万美元?3、据xx年5月8日《南通日报》报道:今年“五一”黄金周期间,我市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图秘所示,其中住宿消费为3438.24万元.(1)求我市今年“五一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?(2)对于“五一”黄金周期间的旅游消费,如果我市xx年要达到3.42亿元的目标,那么,xx年到xx年的平均增长率是多少?xx年南通市“五一”黄金周旅游各项消费分布统计图(第24题)4.一列火车自A城驶往B城,沿途有n 个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.(1)根据题意,完成下表:(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示).(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?5、宁波港是一个多功能、综合性的现代化大港,年货物吞吐量位于中国大陆第二,世界排名第五,成功跻身于国际大港行列。

如图是宁波港xx年~xx年货物吞吐量统计图。

(1)统计图中你能发现哪些信息,请说出两个;(2)有人断定宁波港贷物吞吐量每年的平均增长率不超过15%,你认为他的说法正确吗?请说明理由。

货物吞吐量(万吨)年份三、不等式组与方程在生产、生活方面的应用例3、光明农场现有某种植物10 000kg,打算全部用于生产高科技药品和保健食品.若生产高科技药品,1kg 该植物可提炼出0.01kg 的高科技药品,将产生污染物0.1kg ;若生产保健食品,1kg 该植物可制成0.2kg 的保健食品,同时产生污染物0.04kg .已知每生产1kg 高科技药品可获利润5 000元,每生产1kg 保健食品可获利润100元.要使总利润不低于410 000元,所产生的污染物总量不超过880kg ,求用于生产高科技药品的该植物重量的范围.分析:这是一道贴近生活的应用题,其特点是数据繁杂,在充分理解题意的基础上把问题转化成解不等组,所以列不等式组和求其整数解是基础,把实际问题转化成数学模型是关键。

解:设用于生产高科技药品的该植物重量为x kg ,则用于生产保健食品的植物重量为)10000(x -kg.根据题意,得 ⎩⎨⎧≤-+≥-⨯+⨯.880)10000(04.01.0410000)10000(2.010001.05000x x x x ,解得 7000≤x ≤8000.答:用于生产高科技药品的该植物重量不低于7000kg 且不高于8000kg .说明:本题是应用一元一次不等式组解决经济问题,要求学生要具有一定的阅读能力和分析能力。

练习三1、某种吊车的车身高EF=2m ,吊车臂AB=24m ,现要把如图1的圆柱形的装饰物吊到14m 高的屋顶上安装。

吊车在吊起的过程中,圆柱形的装饰物始终保持水平,如图2,若吊车臂与水平方向的夹角为59º,问能否吊装成功。

(sin59º=0.8572,cos59º=0.5150,t a n59º=1.6643,cot59º=0.6009)2.海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.xx 年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被多少条?3.小明的家在某公寓楼AD内,他家的前面新建了一座大厦BC,小明想知道大厦的高度,但由于施工原因,无法测出公寓底部A与大厦底部C的直线距离,于是小明在他家的楼底A处测得大厦顶部B的仰角为60︒,爬上楼顶D处测得大厦的顶部B的仰角为30︒,已知公寓楼AD的高为60米,请你帮助小明计算出大厦的高度BC。

4.大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度。

5.农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚,如右图所示。

如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是( )A.64πm2B.72πm2C.78πm2D.80πm2能力训练1.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。

按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。

(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE。

相关文档
最新文档