中考数学复习专题代数式
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
中考数学知识点【代数式】

中考数学知识点【代数式】一、重要概念分类:1、代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3、单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,=x, =│x│等。
4、系数与指数区别与联系:①从位置上看;②从表示的意义上看5、同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6、根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7、算术平方根⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);⑵算术平方根与绝对值① 联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。
8、同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9、指数⑴ ( —幂,乘方运算)① a0时,0;②at;0时, 0(n是偶数), t;0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/ (a≠0,p是正整数)二、运算定律、性质、法则1、分式的加、减、乘、除、乘方、开方法则2、分式的性质⑴基本性质:= (m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3、整式运算法则(去括号、添括号法则)4、幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤技巧:5、乘法法则:⑴单×单;⑵单×多;⑶多×多。
中考数学常考易错专题 1-2《代数式》

代数式易错清单1.在规律探索问题中如何用含n的代数式表示.【例1】(2014·湖北十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的().【解析】观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.∵2013÷4=503…1,∴2013是第504个循环组的第2个数.∴从2013到2014再到2015,箭头的方向是.【答案】 D【误区纠错】本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.2.求代数式的值时,一般应先化简再代入求值.【误区纠错】在计算括号内的分式加减法时,通分出错,或者分子加减时出错.【误区纠错】本题易错点一是化简时没注意运算顺序;易错点二是去掉分母计算.名师点拨1.能用字母表示实际意义,正确解释代数式的含义.2.会用数字代替字母求代数式的值.3.能用数学语言表述代数式.提分策略1.列代数式的技巧.列代数式的关键是正确理解数量关系,弄清运算顺序和括号的作用.掌握文字语言和、差、积、商、倍、分、大、小、多、少等在数学语言中的含义,此外还要掌握常见的一些数量关系,如行程、营销利润问题等.【例1】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.【解析】设原收费标准每分钟是x元,则(x-a)(1-20%)=b,解得x=a+1.25b.【答案】a+1.25b2.求代数式的值的方法.求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果,对于特殊的代数式,也可以用以下方法求解:①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入求值;②给出代数式中所含几个字母间的关系,不直接给出字母的值,该类题一般是把代数式通过恒等变形,转化成为用已知关系表示的形式,再代人计算;③在给定条件中,字母间的关系不明显,字母的值含在题设条件中,该类题应先由题设条件求出字母的值,再代人代数式的值.【例2】按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解析】由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.【答案】553.列代数式探索规律.根据一系列数式关系或一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中以图形为载体的数式规律最为常见.猜想这种规律,需要把图形中的有关数量关系式列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论.【例3】观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个★.【解析】观察发现:相邻的下一个图形比这个图形多3个“★”,由此得第n个图形★的个数为3n+1,故第9个图形★的个数为3×9+1=28.【答案】28专项训练一、选择题1. (2014·甘肃天水一模)下列运算中正确的是().A. 3a-2a=1B. a·a2=3a3C. (ab2)3=a3b3D. a2·a3=a52. (2014·福建岚华中学)下列运算正确的是().A. a3÷a3=aB. (a2)3=a5C. D. a·a2=a33. (2014·山东东营模拟)下列运算正确的是().4. (2013·广西钦州四模)下列二次三项式是完全平方式的是().A. x2-8x-16B. x2+8x+16C. x2-4x-16D. x2+4x+165. (2013·江苏东台第二学期阶段检测)下列运算中正确的是().A. 3a+2a=5a2B. 2a2·a3=2a6C. (2a+b)(2a-b)=4a2-b2D. (2a+b)2=4a2+b26. (2013·浙江宁波北仑区一模)对任意实数x,多项式-x2+6x-10的值是().A. 负数B. 非负数C. 正数D. 无法确定二、填空题7. (2014·湖北黄石模拟)化简÷的结果为.8. (2014·山东聊城模拟)下面是用棋子摆成的“上”字:(第8题)如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.9. (2014·山西太原模拟)计算:(x+3)(x-3)= .10. (2014·天津塘沽区一模)计算(a2)3的结果等于.11. (2014·河北廊坊模拟)计算:x3·x3+x2·x4= .12.(2013·河北唐山二模)随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低m元后,又降低20%,此时售价为n元,则该手机原价为元.13. (2013·浙江杭州拱墅一模)计算:3a·(-2a)= ;(2ab2)3= .14. (2013·江苏南京一模)课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,该推导过程的第一步是:(a-b)2= .三、解答题15. (2014·江苏无锡港下初中模拟)化简:16. (2014·北京平谷区模拟)已知a2+2a=3,求代数式2a(a-1)-(a-2)2的值.17. (2014·浙江金华6校联考)先化简,再求值:(a+2)(a-2)+4(a-1)-4a,其中a=-3.18.(2013·北京龙文教育一模)已知x2+3x-1=0,求代数式的值.参考答案与解析1. D[解析]3a-2a=a;a·a2=a3;(ab2)3=a3b6.3. C[解析]3x3-5x3=-2x3,6x3÷2x-2=3x5,-3(2x-4)=-6x+12.4.B[解析]根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.5. C[解析]3a+2a=5a;2a2·a3=2a5;(2a+b)2=4a2+4ab+b2.6. A[解析]原式=-(x-3)2-1.8.4n+2[解析]第一个“上”字需要6(=4×1+2)个棋子,第二个“上”字需要10(=4×2+2)个棋子,第三个“上”字需要14(=4×3+2)个棋子,∴第n个“上”字需用4n+2个棋子.9.x2-9[解析]考查平方差公式.10.a6[解析]a2·a3=a5,(a2)3=a6.11. 2x6[解析]原式=x6+x6=2x6.13.-6a28a3b6[解析]3a·(-2a)=-6a2;(2ab2)3=23a3b6=8a3b6.14. [a+(-b)]2(注:写a2+2a·(-b)+(-b)2也可)16.原式=2a2-2a-(a2-4a+4)=2a2-2a-a2+4a-4=a2+2a-4.∵a2+2a=3,∴原式=3-4=-1.17.原式=a2-4+4a-4-4a=a2-8.当a=-3时,原式=1.学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。
中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
(专题精选)初中数学代数式分类汇编含答案解析

(专题精选)初中数学代数式分类汇编含答案解析一、选择题1.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( )A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.2.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.3.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x =【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.4.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.5.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.9.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =,∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.13.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.14.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .16.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.17.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.。
中考数学专题复习:代数式与整式

中考数学专题复习:代数式与整式1. 计算(-a)6÷a3的结果是()A. -a3B. -a2C. a3D. a22. 计算下列代数式,结果为x6的是()A. x2+x4B. x8-x2C. x2·x4D. x12÷x33. 计算2a2·3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84. 若x+y=2,z-y=-3,则x+z的值等于()A. 5B. 1C. -1D. -55. 墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A. +B. -C. ×D. ÷6. 下列运算正确的是()A. a+2a=3a2B. a2·a3=a5C. (ab)3=ab3D. (-a3)2=-a67. 下列多项式中,能运用平方差公式分解因式的是()A. a2+b2B. 2a-b2C. a2-b2D. -a2-b28. 下列计算正确的是()A. 5ab-3a=2bB. (-3a2b)2=6a4b2C. (a-1)2=a2-1D. 2a2b÷b=2a29. 下列因式分解正确的是()A. a(a-b)-b(a-b)=(a-b)(a+b)B. a2-9b2=(a-3b)2C. a2+4ab+4b2=(a+2b)2D. a2-ab+a=a(a-b)10. 按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…,第n个单项式是()A. (-2)n-1aB. (-2)n aC. 2n-1aD. 2n a11. 计算:ab·(a+1)=________.12. 计算:2a·3ab=________.13. 分解因式:xy2-4x=____________.14. 因式分解:x3+2x2y+xy2=________.15. 分解因式:3a2-6ab+3b2=________.16. 已知a=7-3b,则代数式a2+6ab+9b2的值为________.17. 观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=________(用含n的式子表示).18. 化简:(x+y)2-x(x+2y).19. 计算:x(x-2y)-(x+y)(x+3y).20. 计算:2(m-1)2-(2m+1)(m-1).21. 计算:(3x-y)2+(3x+y)(3x-y).22. 按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A. 1B. 2C. 3D. 423. 下列图形是由大小、形状相同的“小等边三角形”按照一定的规律组成,其中第1幅图中有3个小等边三角形,第2幅图中有8个小等边三角形,第3幅图中有15个小等边三角形,…,依此类推,则第10幅图中小等边三角形的个数为()A. 63个B. 80个C. 99个D. 120个24. 人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图表示,那么图○50中的白色小正方形地砖的块数是()A. 150B. 200C. 355D. 50525. 若7a x b2与-a3b y的和为单项式,则y x=________.26. 如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有________个三角形(用含n的代数式表示).第26题图27. 下面各图形是由大小相同的黑点组成,图①中有2个点,图②中有7个点,图③中有14个点,…,按此规律,第10个图中黑点的个数是________.第27题图28. 先化简,再求值:(x+1)2-x(x+1),其中x=2.29. 先化简,再求值:(x+1)(x-1)+x(2-x),其中x=1 2.30. 先化简,再求值:(2x+y)2+(x+y)(x-y)-5x(x-y),其中x-1+|y+2|=0.31. 如图①,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图②所示长方形.这两个图能解释下列哪个等式()A. x2-2x+1=(x-1)2B. x2-1=(x+1)(x-1)C. x2+2x+1=(x+1)2D. x2-x=x(x-1)第31题图参考答案1. C2. C3. C4. C5. D【解析】根据“同底数幂相除,底数不变,指数相减”可知x3÷x=x3-1=x2,故答案为D.6. B【解析】A.a+2a=3a,此选项错误.B.a2·a3=a2+3=a5,此选项正确.C.(ab)3=a3b3,此选项错误.D.(-a3)2=a6,此选项错误.7. C8. D【解析】5ab与3b不属于同类项,不能合并,A选项错误;(-3a2b)2=(-3)2a4b2=9a4b2,B选项错误;完全平方公式(a-1)2=a2-2a+1,C选项错误;单项式除法2a2b÷b=2a2,D 选项正确.9. C【解析】逐项分析如下:10. A【解析】∵a=(-2)1-1a=(-2)0a,-2a=(-2)2-1a=(-2)1a,4a=(-2)3-1a=22a.∴第n个单项式为(-2)n-1a.11. a2b+ab12. 6a2b【解析】根据单项式乘以单项式的法则,可得2a·3ab=6a2b.13. x(y+2)(y-2)【解析】xy2-4x=x(y2-4)=x(y+2)(y-2).14. x(x+y)215. 3(a-b)216. 49【解析】∵a=7-3b,∴a+3b=7,两边同时平方得(a+3b)2=49,即a2+6ab+9b2=49.17. n2+(-1)n+12n+118. 解:原式=x2+2xy+y2-x2-2xy=y2.19. 解:原式=x 2-2xy -x 2-3xy -xy -3y 2=-6xy -3y 2.20. 解:原式=2m 2-4m +2-2m 2+2m -m +1=-3m +3.21. 解:原式=9x 2-6xy +y 2+9x 2-y 2=18x 2-6xy .22. B 【解析】当输入一个正整数,第一次输出的结果为22时,3x +1=22,解得x =7;当输入一个正整数,第二次输出的结果为22时,3x +1=7,解得x =2.故选B .23. D 【解析】设第n 幅图中有a n (n 为正整数)个小等边三角形.∵a 1=3=1+2,a 2=8=(1+2)+(3+2)=1+3+2×2,a 3=15=(1+2)+(3+2)+(5+2)=1+3+5+2×3,…,∴a n =1+3+…+(2n -1)+2n =n 2+2n (n 为正整数),∴a 10=102+2×10=120,即第10幅图中有120个小等边三角形.24. C 【解析】由图形可知图中白色小正方形地砖有12+7(n -1)=7n +5(块).当n =50时,白色小正方形地砖有7×50+5=355(块).故选C .25. 8 【解析】∵7a x b 2与-a 3b y 的和为单项式,∴7a x b 2与-a 3b y 是同类项,∴x =3,y =2,∴y x =23=8.26. (3n +1) 【解析】根据题意得,第1个图案的三角形个数:4=3×1+1;第2个图案的三角形个数:7=3×2+1;第3个图案的三角形个数:10=3×3+1;…;由此规律可得,第n 个图案有(3n +1)个三角形.27. 119 【解析】第1个图形一共有2个点,第2个图形一共有3+2×2=7个点,第3个图形一共有4+(3+2)×2=14个点,第4个图形一共有5+(4+3+2)×2=23个点,…,∴第10个图形一共有:11+(10+9+8+7+6+5+4+3+2)×2=119个点. 28. 解:原式=x 2+1+2x -x 2-x=x +1.当x =2时,原式=2+1=3. 29. 解:原式=x 2-1+2x -x 2=2x -1.当x =12时,原式=2×12-1=0.30. 解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy=9xy.∵x-1+|y+2|=0,∴x=1,y=-2.∴原式=9×1×(-2)=-18.31. B【解析】将边长为x的正方形剪去一个边长为1的正方形,剩余图形的面积是(x2-1),拼成的矩形的面积是(x+1)(x-1),故题中的两个图解释的等式是x2-1=(x+1)(x-1).故选B.。
中考数学复习考点题型专题讲解13 已知式子的值求代数式的值

中考数学复习考点题型专题讲解 专题13 13 已知式子的值求代数式的值已知式子的值求代数式的值已知式子的值求代数式的值1.已知:x 2﹣5x =6,请你求出代数式10x ﹣2x 2+5的值. 【答案】-7.【分析】先把10x ﹣2x 2+5变形为﹣2(x 2﹣5x )+5,然后把x 2﹣5x =6整体代入进行计算即可. 【详解】解:10x ﹣2x 2+5=﹣2(x 2﹣5x )+5,∵x 2﹣5x =6,∴原式=﹣2×6+5=﹣12+5=﹣7.【点睛】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.掌握代数式求值是解题关键.2.已知33x y −=−,求()53x y −−的值.【答案】8【分析】将33x y −=−直接带入到()53x y −−中即可.【详解】解:当33x y −=−时,()()53538x y −−=−−=.【点睛】本题主要考查了代数式求值,整体代入的思想是解题的关键.3.已知a 、b 互为相反数,c 、d 互为倒数,||2m =,且0m <,求23a cd b m −++的值.【答案】-8【分析】结合题目条件,根据相反数、倒数、绝对值求出a +b =0,cd =1,m =-2,再代入求出即可.【详解】解:解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,且0m < ∴a +b =0,cd =1,m =-2,∴23=()230213(2)8a cd b m a b cd m −+++−+=−×+×−=−.【点睛】本题考查了相反数、倒数、绝对值、有理数的混合运算等知识点,能求出a +b =0、cd =1、m =-2是解此题的关键.4.已知代数式 5a +3b 的值为 -4.(1)求代数式 8a - 3(a -b -3)-9 的值;(2)求代数式 2(a +b -5)- (7a +5b -10)的值;(3)求代数式 -6(3a -2b -1)+3(2a -5b -2)+(2a -3b +10)的值. 【答案】(1)-4(2)4(3)18【详解】试题分析:(1)把所给的整式化简成5a +3b ,然后根据条件可得出结果;(2)把所给的整式化简成-(5a +3b ),代入计算即可;(3)把所给的整式化简成-2(5 a +3b )+10,代入计算即可.试题解析:(1)原式=8a -3a +3b +9-9(1分)=5a +3b (2分)= -4;(2)原式="2a +2b -10-7a -5b +10=" -5a -3b (4分)=-(5a +3b )= 4(3)原式=-18a +12b +6+6a -15b -6+2a -3b +10(6分)=-2(5 a +3b )+10(7分)=-2×(-4)+10=18.考点:化简求值.5.整体思想是数学学习中的一种重要的思想方法,认真阅读下面的探究过程,然后解决问题: 探究:已知x 满足2210x x +−=,求代数式222021++x x 的值.解:由2210x x +−=可得,221x x +=,将22x x +看作一个整体,代入得:原式222021*********=++=+=x x ,∴代数式222021++x x 的值为2022.(1)若x 满足250x x −−=,求代数式215−+x x 的值;(2)若222100,50+−=−=x xy y ,且2222,22=−+=−+A x xy y B x xy y ,求代数式43A B −的值.【答案】(1)20(2)0【分析】(1)把将2x x −看作一个整体代入215−+x x ,再求值即可;(2)先求解22210,5+==x xy y ,根据()()2222434322−=−+−−+A B x xy y x xy y 2222x xy y =+−,再整体代入求值即可.*(1)解:由250x x −−=可得:25x x −=,将2x x −看作一个整体代入得:21551520−+=+=x x ;(2)因为22100+−=x xy ,250−=y ,所以22210,5+==x xy y ,()()2222434322−=−+−−+A B x xy y x xy y ,2222x xy y =+−,所以将2210+=x xy 、25y =分别代入,可得4310250−=−×=A B .【点睛】本题考查的是求解代数式的值,掌握“整体代入法求解代数式的值”是解本题的关键.6.已知a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6,求(a +3c )﹣(2b +c )+(b +d )的值. 【答案】-1【分析】原式去括号整理后,把已知等式代入计算即可求出值.【详解】解:∵a -2b =-5,b -c =-2,3c +d =6,∴原式=a +3c -2b -c +b +d =(a -2b )+(b -c )+(3c +d )=-5-2+6=-1.【点睛】本题考查了已知式子求代数式的值的知识,先去括号再对照已知的式子进行变形是解答本题的关键.7.先化简,再求值:已知122A a b =−+,314B a b =−−,若3b a −的值为-8,求2A B −的值.8.已知代数式5331ax bx x ++−(1)已知当1x =时,该代数式的值为1−,试求a b +的值:(2)已知当3x =时,该代数式的值为9,试求当3x =−时该代数式的值.【答案】(1)a +b =-3;(2)-11【分析】(1)将x =1代入代数式即可求出a +b 的值;(3)将x =3代入代数式求出35a +33b 的值,再将x =-3代入代数式,变形后将35a +33b 的值整体代入计算即可求出值.(1)解:把x =1代入代数式,得到a +b +3-1=-1,∴a +b =-3;(2)解:把x =3代入代数式,得到35a +33b +9-1=9,即35a +33b =1,当x =-3时,原式=-35a -33b -9-1=-(35a +33b )-9-1=-1-9-1=-11.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 9.阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()3a b +看成是一个整体,则()()()()()()332353325363a b a b a b a b a b +−+++=−++=+.尝试应用:(1)把()22a b −看成一个整体,合并()()()222225262a b a b a b −−−+−的结果是____________.(2)已知2320x y +−=,求2392016x y ++的值;(3)已知21a b −=,23b c −=−,6c d −=,求()()()22a c b c b d −−−+−的值. 【答案】(1)()232a b − (2)2022(3)4【分析】(1)利用合并同类项进行计算即可;(2)把2392016x y ++的前两项提公因式3,再代入求值即可;(3)利用已知条件求出a c −,2b d −的值,再代入计算即可.(1)()()()222225262a b a b a b −−−+− ()()22562a b =−+−()232a b =−故答案为:()232a b −.(2)∵2320x y +−=,∴232x y +=,∴2392016x y ++()2332016x y =++322016=×+2022=; (3)∵21a b −=①,23b c −=−②,6c d −=③,∴①+②得:2a c −=−,②+③得:23b d −=,∴()()()22a c b c b d −−−+−()233=−−−+4=【点睛】此题主要考查了整式的加减−−化简求值,解题的关键是掌握整体思想,注意去括号时符号的变化.10.阅读理解:已知5412a b −=,求代数式()()232a b a b −+−的值. 解:因为5412a b −=,所以原式5226385242122a b a b a b a b =−+−=−=−=×=. 仿照以上解题方法,完成下面的问题:(1)已知3a b −=−,求()31a b a b −−++的值;(2)已知222a ab +=,21ab b −=,求2225a ab b +−的值.【答案】(1)5−(2)5【分析】(1)仿照例题,可得()31a b a b −−++()()31a b a b =−−−+,将3a b −=−,整体代入求解即可;(2)仿照例题,可得2225a ab b +−()()2222a ab ab b =++−,将222a ab +=,21ab b −=,,整体代入求解即可.(1)解:因为3a b −=−,所以原式()()31a b a b =−−−+()()3331=×−−−+5=−.(2)解:因为222a ab +=,21ab b −=,所以原式2225a ab b +=−()()2222a ab ab b =++−221=×+5=.【点睛】本题考查了代数式求值,整体代入是解题的关键.11.如下表,给出了在x 的不同取值时,三个代数式所得到的代数式的值,回答问题:(1)根据表中信息可知:=a _____________;b =____________;m =____________;n =_____________;(2)表中代数式23x −+的值的变化规律是:x 的值每增加1,23x −+的值就都减少2.类似地,代数式35x −的值的变化规律是:__________________;(3)请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减少5;(4)已知1x ,2x ,3x 是三个连续偶数;当1x x =时,1mx n y +=;当2x x =时,2x n y +=;当3x x =时,3mx n y +=;且1232022y y y ++=.求123x x x ++的值.【答案】(1)7;1;0.5;2(2)x 的值每增加1,35x −的值就都增加3(3)57x −−(答案不唯一)(4)123x x x ++的值为4032【分析】(1)分别将2x =−和2x =代入两个代数式.计算可得a 和b 的值;分别把0x =和2x =−代入mx n +,建立方程组求解即可;(2)结合所给例子并观察表格数字的变化情况即可得出结论;(3)按要求使x 的系数为5−,常数项可随意取值即可;(4)在(1)计算的基础上,分别代入上面三个式子,计算即可.(1)解:用2替换代数式中的x ,2(2)37a =−×−+=,3251b =×−=.由表格可知,当0x =时,2n =;当2x =−时,21m n −+=;解得2n =,0.5m =;故答案为:7;1;0.5;2;(2)解:观察表格中第三行可以看出,x 的值每增加1,35x −的值就都增加3,故答案为:x 的值每增加1,35x −的值就都增加3;(3)解:x ∵的值每增加1,代数式的值就都减小5,x \的系数为5−,∴这个含x 的代数式是:57x −−(答案不唯一);(4)解:由(1)知,2n =,0.5m =,110.52y x ∴=+,220.52y x =+,330.52y x =+,1231230.5()6y y y x x x ∴++=+++,1232022y y y ++=∵,1234032x x x ∴++=,即123x x x ++的值为4032.【点睛】本题主要考查列代数式和求代数式的值,涉及到有理数的混合运算,掌握运算法则准确计算是解题的关键.12.整体思想是中学数学解题中一种重要思想方法.有这样一道题:“如果整式a +b 的值为-4,那么整式2(a +2b )+3a +b ”的值是多少?”爱动脑筋的小明同学把a +b 作为一个整体进行求解,解题过程为:原式=2a +4b +3a +b=5a +5b=5(a +b )=5×(-4)=-20.请仿照以上解题方法,解决下面的问题:(1)已知a 2+a =3,求2a 2+2a +2022的值;(2)已知a -2b =-3,求3(a -b )-4a +5b +5的值.【答案】(1)2028(2)8【分析】(1)利用整体代入的思想代入计算即可;(2)首先把代数式进行变形,然后再代入计算即可(1)解:当a 2+a =3时,2a 2+2a +2022=2(a 2+a )+2022=2×3+2022=2028(2)解:当a -2b =-3时,3(a -b )-4a +5b +5=3a -3b -4a +5b +5=-a +2b +5=-(a -2b )+5=-(-3)+5=8【点睛】此题考查了整式的加减一化简求值,利用整体代入的思想解答是解此题的关键. 13.我们知道,42(421)3x x x x x −+=−+=.类似地,我们把()a b +看成一个整体,则4()2()((421)()3())a b a b a b a b a b =+−+++−++=+.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把2()a b −看成一个整体,则合并2223()8()6()a b a b a b −−−+−的结果是.(2)已知223x y−=,求2842y x−+−的值.【答案】(1)2()a b−(2)10,过程见解析【分析】(1)把2()a b−看成一个整体,合并同类项即可;(2)把2842y x−+−的前两项提取公因式4,然后整体代入求值.(1)解:2223()8()6()a b a b a b−−−+−=(3-8+6)2()a b−=2()a b−故答案为:2()a b−(2)解:∵223x y−=,∴2842y x−+−=24(2)2y x−+−=24(2)2x y−−=432×−=10【点睛】本题考查了整式的加减,掌握整体的思想是解决本题的关键.14.A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a-b,B、C两站之间的距离BC=2a-b,B、D两站之间的距离BD=72a-2b-1.求:(1)A 、C 两站之间的距离AC ;(2)若A 、C 两站之间的距离AC =9015.数学中,运用整体思想方法在例如:已知m 2+3m =1,则2m=90km ,求C 、D 两站之间的距离C D .方法在求整式的值时非常重要.2+6m +1=2(m 2+3m )+1=2×1+1=3请你根据上面材料解答以下问题:(1)若n2﹣2n=3,求2﹣n2+2n的值;(2)当x=1时,px3+qx﹣1=4,当x=﹣1时,求px3+qx﹣1的值;(3)当x=2021时,ax5+bx3+cx+2=k,当x=﹣2021时,直接写出ax5+bx3+cx+2的值(用含k 的式子表示).【答案】(1)-1(2)-6(3)﹣k+4【分析】(1)将代数式适当变形,利用整体代入的方法解答即可;(2)将x=1代入px3+qx﹣1=4中,得到关于p,q的关系式,将x=﹣1代入px3+qx﹣1后,适当变形,利用整体代入的方法解答即可;(1)解:∵n2-2n=3∴2−+n n22()2=−−n n22=−23=−1∴2−+=−.n n221(2)解:∵当1x =时,3114px qx p q +−=+−=∴5p q +=∴当1x =−时,31px qx +−1p q =−−−()1p q =−+−51=−−6=−∴1x =−时316px qx +−=−.(3)解:∵当2021x =时,532ax bx cx k +++=∴20215a +20213b +2021c +2=k∴532021202120212a b c k ++=−∴当2021x =−时,532ax bx cx +++532021202120212a b c =−−−+()532021202120212a b c =−+++ ()22k =−−+4k =−+∴2021x =−时5324ax bx cx k +++=−+.【点睛】本题考查了整体代入求整式值.解题的关键在于用将代数式适当变形.体现了整体代入的方法和思想.16.【阅读理解】“整体思想”是一种重要的数学思想方法,在多项式的化简求值中应用极为广泛. 比如,()424213x x x x x −+=−+=,类似地,我们把()a b −看成一个整体,则()()()()()()424213a b a b a b a b a b −−−+−=−+−=−.(1)化简()()()42a b a b a b +++−+的结果是______.(2)化简求值,()()()()223553x y x y x y x y +++++−+,其中12x y +=. (3)若224x y −=,请直接写出23610x y −++的值. 【答案】(1)55a b +;(2)()()282x y x y +++,3;(3)-2.【分析】(1)直接合并同类项,再用分配律去括号即可;(2)先用整体思想化简,再整体代入式子的值,计算即可;(3)逆用乘法分配律,然后整体代入式子的值,计算即可.(1)解:()()()42a b a b a b +++−+,=()5a b +,=55a b +;(2)17.数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,221a a +=,则代数式()222442242146a a a a ++=++=×+=.请你根据以上材料解答以下问题:(1)若232x x −=,则213x x +−=;(2)已知5a b −=,3b c −=,求代数式()2323a c a c −−++的值; (3)当1x =−,2y =时,代数式221ax y bxy −−的值为8,则当1x =,2y =−时,求代数式221ax y bxy −−的值.【答案】(1)-1;(2)42;(3)-10本号资料全#部来源于微信公众号:数学第*六感【分析】(1)根据整体思想代入计算即可求解;(2)根据已知条件先求出a -c 的值,再整体代入到所求代数式中即可;(3)根据已知可得2a +4b =9,再整体代入到所求代数式中即可.【详解】解:(1)因为x 2-3x =2,所以1+3x -x 2=1-(x 2-3x )=1-2=-1故答案为:-1.(2)∵a -b =5,b -c =3,∴a -b +b -c =a -c =5+3=8,∴(a -c )2-3a +2+3c =(a -c )2-3(a -c )+2=82-24+2=64-24+2=42;(3)∵当x =-1,y =2时,代数式ax 2y -bxy 2-1的值为8,即2a +4b -1=8,所以2a +4b =9,∴当x =1,y =-2时,代数式ax 2y -bxy 2-1=-2a -4b -1=-(2a +4b )-1=-9-1=-10.【点睛】本题考查了代数式求值,解决本题的关键是运用整体代入思想.18.用整体思想解题:为了简化问题,我们往往把一个式子看成一个数——整体.试按提示解答下面问题.(1)已知A +B =3x 2-5x +1,A -C =-2x +3x 2-5,求:当x =2时,B +C 的值.提示:B +C =(A +B )-(A -C ).(2)若代数式2x 2+3y +7的值为8,求代数式6x 2+9 y +8的值.提示:把6x 2+9 y +8变形为含有2x 2+3y +7的形式.(3)已知2xy x y=+,求代数式3533x xy y x xy y −+−+−的值.提示:把xy 和x y +分别看作整体;再由已知可得2()xy x y =+,代入3533x xy y x xy y −+−+−.。
中考数学专题02 代数式【考点巩固】(解析版)

专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题 代数式一. 教学目标:1. 复习整式的有关概念,整式的运算2. 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,能把简单多项式分解因式。
3. 掌握分式的概念、性质,掌握分式的约分、通分、混合运算。
4. 理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根,了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
二. 教学重点、难点:因式分解法在整式、分式、二次根式的化简与混合运算中的综合运用。
三.知识要点:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式;(2)单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号(4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同;两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项;(6)因式分解与整式乘法的过程恰为相反。
知识点2 整式的运算 (如结构图)多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=-μ写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。
知识点4 分式的概念(1)分式的定义:整式A 除以整式B ,可以表示成B A 的形式。
如果除式B 中含有字母,那么称BA 为分式,单项式乘以单项式()()n n nmnn m n m n m b a ab a a a a a ===⋅+ 提公因式法公式法其中A 称为分式的分子,B 为分式的分母。
对于任意一个分式,分母都不能为零。
(2)分式的约分(3)分式的通分知识点5 分式的性质(1))0(≠=m B A Bn Am (2)已知分式ba ,分式的值为正:a 与b 同号;分式的值为负:a 与b 异号;分式的值为零:a =0且b ≠0;分式有意义:b ≠0。
(3)零指数 )0(10≠=a a(4)负整数指数 ).p ,0a (a 1a pp 为正整数≠=- (5)整数幂的运算性质 nn n m n n m n m n m n m n m b a )ab (,a )a (),0a (a a a ,a a a ==≠=÷=⋅-+上述等式中的m 、n 可以是0或负整数.知识点6 根式的有关概念1. 平方根:若x 2=a (a>0),则x 叫做a 的平方根,记为a ±。
注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2. 算术平方根:一个数的正的平方根叫做算术平方根;3. 立方根:若x 3=a (a>0),则x 叫做a 的立方根,记为3a 。
4. 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。
5. 同类二次根式:化简后被开方数相同的二次根式。
知识点7 二次根式的性质 ①)0(≥a a 是一个非负数; ②)0()(2≥=a a a ③⎪⎩⎪⎨⎧<-=>==)0a (a )0a (0)0a (a |a |)a (2 ④)0,0(>≥=b a b a b a ⑤)0,0(≥≥⋅=b a b a ab知识点8 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.(2)二次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即).0b ,0a (ab b a ≥≥=⋅二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.例1. 如果单项式13-n m yax 与525y x m --的和①为0时,a 、m 、n 各为多少 ②仍为一个单项式,a 、m 、n各为多少 解:①⎪⎩⎪⎨⎧=--==51n 3m 2m 5a⎪⎩⎪⎨⎧===2n 1m 5a ②⎩⎨⎧=--=51n 3m 2m ⎩⎨⎧==2n 1m a 为有理数例2. 因式分解:(1)2294my mx - (2)1)(2)(2++++b a b a (3)-2x 2+5xy +2y 2解:①原式=m (2x +3y )(2x -3y )②原式2)1b a (++=③令0y 2xy 5x 222=++- ∴4y 16y 25y 5x 22-+±-= ∴y 4415x ±= 原式=-2(x -y 4415+)(x -y 4415-) 例3. (1)已知))(123(2k a a a ++-的结果中不含2a 项,求k 的值; (2)k a a a ++-23的一个因式是1+a ,求k 的值;解:(1)a 2的系数为:3k -2=0 ∴k =32 (2)当a =-1时(-1)3-(-1)2+(-1)+k =0 ∴k =3例4. 利用简便方法计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的值, 你能确定积的个位数是几吗解:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=264-1 ∵264的个位数为6 ∴积的个位数字为5例5. x 为何值时,下列分式的值为0无意义(1)22+-x x (2)22322--+-x x x x解:当①x =2 ②x =1 时为零 当③x =-2 ④x =2,x =-1时分式无意义例6. 分式的约分与通分1. 约分:1n 21n 21n 2n 2y x 4.1y x 8.0+--2. 通分c b 5a 42,b a 10c 32,2ac 2b 5- 解:①原式=2y7x 4 ②2223108c b a c a ,2223103C b a bc ,22231025c b a ab - 例7. 先化简后再求值:1x 11x 2x 3x 2x 1x 3x 222++++--÷--,其中12x += 原式=)1)(1(3-+-x x x ×)3)(1()1(2-++x x x +11+x =11-x +11+x =122-x x 当x =2+1时,原式=1例8. 若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。
解:1+a =4a 2-2=0, a 1=1 , a 2=-43 例题精讲例9. 已知:a =321+,求01222)1()211(12a a a a a a a a ++----+--值 解:∵a =321+ ∴a =2-3<1 原式=1)1()1(|1|2-----a a a a a +1 =)1(1--a a a -(a -1)+1 =a 1--a +1+1=a1--a +2 当a =321+时,a =2-3, 321+=a ∴原式=-2-3-2+3+2=-2例10. 把根号外的因式移到根号内:(1)a a 1; (2)1x 1)1x (---; (3)x 1x -; (4)2x 1)x 2(-- 解:(1)原式=a (2)原式=x --1 (3)原式=x -- (4)原式=2--x 例11. 观察下列各式及其验证过程 232232+=。
验证:322122)12(2122)22(3222233+=-+-=-+-= 383383+=。
验证:833133)13(3133)33(8383322233+=-+-=-+-== 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证。
针对上述各式反映的规律,写出用n (n 为任意自然数,且n≥2)表示的等式,并给出证明。
解:(1)1544144)14(41544415415442233+=-+-=+-== (2)1n n n 1n n )1n (n 1n n n n 1n n 1n n n 22223232-+=-+-=-+-=-=-一. 选择题1. 下列运算正确的是( ) A. 623632x x x =⋅ B. m m a a a 1243=⋅ C. 436)3(2a a a =-⋅- D. 5322)2()(b b b =-⋅- 2. 把a 2-a -6分解因式,正确的是( )A. a (a -1)-6B. (a -2)(a +3)C. (a +2)(a -3)D. (a -1)(a +6)3. 设(x +y )(x +2+y )-15=0,则x +y 的值是( )A. -5或3B. -3或5C. 3D. 54. 不论a为何值,代数式-a2+4a-5的值( )A. 大于或等于0B. 0C. 大于0D. 小于05. 化简二次根式22a a a +-的结果是( ) A. 2--a B. 2---a C. 2-a D. 2--a6. 下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( )A. 1B. 2C. 3D. 47. 当1<x<2时,化简∣1-x ∣+4-4x +x 2 的结果是( ) 课后练习A. -1B. 2x -1C. 1D. 3-2x二. 填空题8. 矩形的面积为6x 2+13x +5(x >0),其中一边长为2x +1,则另一边为 。