2019届中考数学专题复习代数式整式与因式分解专题训练

合集下载

中考:历年代数式和因式分解题汇总-教学文档

中考:历年代数式和因式分解题汇总-教学文档

2019中考:历年代数式和因式分解题汇总一、选择题1.(天津3分)若实数、、满足 .则下列式子一定成立的是(A) (B) (C) (D) 【答案】D.【考点】代数式变形,完全平方公式。

【分析】∵ 由得 .故选D.2.(河北省2分)下列分解因式正确的是A、﹣ + 3=﹣ (1+ 2)B、2 ﹣4 +2=2( ﹣2 )C、 2﹣4=( ﹣2)2D、 2﹣2 +1=( ﹣1)2【答案】D.【考点】提公因式法和应用公式法因式分解。

【分析】根据提公因式法,平方差公式,完全平方公式求解即可求得答案:A、﹣ + 3=﹣ (1﹣ 2)=﹣ (1+ )(1﹣ ),故本选项错误;B、2 ﹣4 +2=2( ﹣2 +1),故本选项错误;C、 2﹣4=( ﹣2)( +2),故本选项错误;D、 2﹣2 +1=( ﹣1)2,故本选项正确。

故选D.3.(河北省2分)下列运算中,正确的是A、2 ﹣ =1B、 + 4= 5C、(﹣2 )3=﹣6 3D、 2 =x2【答案】D.【考点】合并同类项,幂的乘方与积的乘方,整式的除法。

【分析】A中整式相减,系数相减再乘以未知数,故本选项错误;B、不同次数的幂的加法,无法相加,故本选项错误;C、整式的幂等于各项的幂,故本选项错误;D、整式的除法,相同底数幂底数不变,指数相减。

故本答案正确。

故选D.4.(山西省2分)下列运算正确的是A. B. C. D. 【答案】A.【考点】幂的乘方与积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法。

【分析】根据幂的乘方与积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法运算法则对各选项计算后利用排除法求解:A. ,本选项正确;B. ,故本选项错误;C. ,故本选型错误;D. ,故本选项错误。

故选A.5.(内蒙古巴彦淖尔、赤峰3分)下列运算正确的是A. B. C. D. 【答案】A.【考点】同底幂乘法和除法,合并同类项,完全平方公式。

【分析】根据同底幂乘法和除法,合并同类项,完全平方公式运算法则逐一计算作出判断:A. ,选项正确;B.2 和3 不是同类项,不好合并,选项错误;C. ,选项错误;D. 选项错误。

2019届冀教版中考《第2讲整式与因式分解》知识梳理+【五套中考模拟卷】

2019届冀教版中考《第2讲整式与因式分解》知识梳理+【五套中考模拟卷】

第2讲整式与因式分解关键点拨及对应举例(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或代数式的值常运用整体代入法计单项式的系数,所有字母的指数和叫做单项式的次数.(ab失分警示:5.整式的常用方法:①提公因式法:中考数学模拟试卷一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD//BC ,对角线AC 、BD 交于点O ,且AC=BD ,下列四个命题中真命题是( ▲ )(A ) 若AB=CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC=∠ACB,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC⊥BD 且AO=OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为 ▲ .16.如图,在梯形ABCD 中,AB//CD ,∠C=90°,BC=CD=4,52=AD ,若a AD =,=,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP//AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB=AC ,点D 在BA 的延长线上,BC=24,135sin =∠ABC .(1)求AB 的长;(2)若AD=6.5,求DCB ∠的余切值.ACD第21题图第14题图ADE F第15题图第16题图D CBA第18题图AB CD22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD//BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB//CD ;(2)若BD GD BC ⋅=2,BG=GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标. 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD. 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC=x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.中考数学二模试卷 参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)第22题图ACDEFGB第23题图备用图 第24题图19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分) 整理得:0619132=+-x x (2分)解得:1,13621==x x (2分) 分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分)解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB=AC ∴BC BE 21= ∵BC=24 ∴ BE=12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分) 设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE=5,BE=12,AB=13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x=70或者x=250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG=GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分)∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A(0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA=OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8,∴OD⊥AB,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO=5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB,垂足为点H ,则由(1)可得AH=4,OH=3 ∵AC=x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO=5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB//AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD,垂足为点F ,则OF=AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO=5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA//BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO=5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD中考数学模拟试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=;(C )325a a a ⋅=; (D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差. 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离. 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:21+2-= ▲ .8.在实数范围内分解因式:243x -= ▲ .91的解是 ▲ .10.已知关于x 的方程230x x m --=没有实数根,那么m 的取值范围是 ▲ .11.已知直线(0)y kx b k =+≠与直线13y x =-平行,且截距为5,那么这条直线的解析式为 ▲ .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设BA a =uu r r ,BC b =uu u r r ,那么CE =uu u r▲ (用a r 、b r的式子表示).15.如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足1a 与2a 互为相反数,1b 与2b 相等,1c 与2c 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数232y x x =-+-的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示) 17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o,点B 的俯角为60o.那么此车从A 到B 的平均速度为 ▲ 米/秒.1.7321.414) 18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o,AB = 12,DC = 7,5cos 13ABC ∠=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)120183(1)2cos45+8---o.20.(本题满分10分)解方程组:221;20.y x x xy y -=⎧⎨--=⎩ 21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.22.(本题满分10分)为了响应上海市市政府“绿色出行”的号召,为自己骑车上学.已知他家离学校7.515千米/小时,骑自行车所用时间比驾车所用时间多14小时,求自行车的平均速度? 23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 点A 和点B (1,0),与y 轴相交于点C (0,(1)求抛物线的解析式和顶点D 的坐标;(2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 底的等腰三角形,求Q 点的坐标.25.(本题满分14分,其中第(1)小题4如图,已知在Rt △ABC 中,∠ACB = 90oB 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (1)如果设BF = x ,EF = y ,求y 与x(2)如果2ED EF =,求ED 的长;(第24题图)(第21题图)ABD C(第18题图)AM(第17题图)l(3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.中考数学二模试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ;2.C ;3.A ;4.B ;5.D ;6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.5; 8.2x x +(; 9.1x =; 10.94m <-; 11.153y x =-+; 12.512; 13.8; 14.13a b -r r ; 15.2132y x x =+-; 16.5cot 2α(或52tan α); 17.17.3; 18.12.三、解答题:(本大题共7题,满分78分)19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)20.解:由②得:20x y -=,+0x y =…………………………………………(2分)原方程组可化为120y x x y -=⎧⎨-=⎩,10y x x y -=⎧⎨+=⎩………………………………(2分)解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………(5分) ∴原方程组的解是21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩……………………………………(1分) 21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴AB ==1分)∵90BAC ∠=,1tan 2ABC ∠=,∴AC . 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分)∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分)(2)11522ABC S AB AC ∆=⋅=⨯.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上; 令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分)分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF+BG = OA = 2;……………………………………………………(1分) ∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+ 1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)22.解:设自行车的平均速度是x 千米/时.………………………………………(1分) 根据题意,列方程得7.57.51154x x -=+;……………………………………(3分) 化简得:2154500x x +-=;………………………………………………(2分)解得:115x =,230x =-;…………………………………………………(2分)经检验,115x =是原方程的根,且符合题意,230x =-不符合题意舍去.(1分)答:自行车的平均速度是15千米/时.………………………………………(1分)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC=2∠BAF=2∠EAC .∵∠BAC=2∠C ,∴∠BAF=∠C=∠EAC .…………………………(1分)又∵BD 平分∠ABC ,∴∠ABD=∠DBC .……………………………(1分)∵∠ABF=∠C ,∠ABD=∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BF BC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分)(2)∵FG ∥AC ,∴∠C=∠FGB ,∴∠FGB=∠FAB .………………(1分)∵∠BAF=∠BGF ,∠ABD=∠GBD ,BF=BF ,∴ABF GBF ∆∆≌.∴AF=FG ,BA=BG .…………………………(1分)∵BA=BG ,∠ABD=∠GBD ,BD=BD ,∴ABD GBD ∆∆≌.∴∠BAD=∠BGD .……………………………(1分)∵∠BAD=2∠C ,∴∠BGD=2∠C ,∴∠GDC=∠C ,∴∠GDC=∠EAC ,∴AF ∥DG .……………………………………(1分)又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分)∴AF=FG .……………………………………………………………(1分)∴四边形ADGF 是菱形.……………………………………………(1分)24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分) ∴抛物线的解析式是:223y x x =--+.……………………………(1分)∴顶点坐标D (-1,4).……………………………………………(1分)(2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO=∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵AC =DC =AD =,∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=, ∴1tan 3DC DAC AC ∠==, 又∵∠DAC 和∠OCB 都是锐角,∴∠DAC=∠OCB .…………………(1分)∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分)(3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-,化简得:220x y -+=.………………………………………………(1分)由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分)解得1134x y ⎧-+=⎪⎪⎨⎪=⎪⎩,2234x y ⎧-=⎪⎪⎨⎪=⎪⎩.∴点Q的坐标是⎝⎭,⎝⎭.…(2分) 25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=∴10AB =.……………………………………………………………(1分)过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪⎪⎝⎭⎝⎭, ∴(08)y x <<.………………………………………(1分+1分) (2)取ED 的中点P ,联结BP 交ED 于点G∵2ED EF =,P 是ED 的中点,∴EP EF PD ==.∴∠FBE =∠EBP =∠PBD .∵EP EF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分)又∵∠CEA =∠DEB ,∴∠CAE=∠EBP=∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===. 在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CE CAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) ∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分) (3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形,只可能∠ABD =∠CDB = 90o . 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==∴321651025CD AB ==,32853245CE BE -==∴CD CE AB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o .∵AC ∥BD ,∠ACB = 90o , ∴∠ACB =∠CBD = 90o .∴∠ABD =∠ACB +∠BCD > 90o.与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC不可能为直角梯形.…………………………(2分)中考数学模拟试卷一、选择题(共12小题,每小题3分,共36分)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.(x﹣1)(x﹣3)=0 D. =22.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+3.方程x(x+3)=x+3的根为()A.x=﹣3 B.x=1 C.x1=1,x2=3 D.x1=1,x2=﹣34.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个6.一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法确定7.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+28.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A.﹣3 B.﹣1 C.2 D.39.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠010.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175 B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)2=17511.已知点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣5的图象上,则下列结论正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y112.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)13.抛物线y=x2﹣2x﹣1的顶点坐标是.14.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .15.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.16.抛物线y=a(x+1)2经过点(﹣2,1),则a= .17.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有支.18.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三、解答题(共8题,共72分)19.解方程:(1)x2+2x﹣7=0;(2)2(x﹣3)2=5(3﹣x).20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出对应的△A′B′C′图形;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.22.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?23.如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积.参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.(x﹣1)(x﹣3)=0 D. =2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义分别判断即可.【解答】解:A、没有说明a是否为0,所以不一定是一元二次方程;B、移项合并同类项后未知数的最高次为1,所以不是一元二次方程;C、方程可整理为x2﹣4x+3=0,所以是一元二次方程;D、不是整式方程,所以不是一元二次方程;故选:C.2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.3.方程x(x+3)=x+3的根为()A.x=﹣3 B.x=1 C.x1=1,x2=3 D.x1=1,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x+3,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x+3)﹣(x+3)=0即:(x+3)(x﹣1)=0∴x+3=0或x﹣1=0∴x1=1,x2=﹣3.故选D.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.6.一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】先计算△=b2﹣4ac,然后根据△的意义进行判断根的情况.【解答】解:∵△=b2﹣4ac=12﹣4•1•=0,∴原方程有两个相等的实数根.故选B.7.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【考点】二次函数图象与几何变换.【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.8.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A.﹣3 B.﹣1 C.2 D.3【考点】二次函数图象上点的坐标特征.【分析】根据二次函数图象上点的坐标特征,把(1,1)代入解析式可得到a+b的值,然后计算a+b+1的值.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴a+b+1=3.故选D.9.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0.故选D.10.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175 B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)2=175【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选B.11.已知点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣5的图象上,则下列结论正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】分别计算出自变量为﹣1、2和3所对应的函数值,然后比较函数的大小即可.【解答】解:∵点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣5的图象上,∴当x=﹣1时,y1=x2﹣4x﹣5=1+4﹣5=0;当x=2时,y2=x2﹣4x﹣5=4﹣8﹣5=﹣9;当x=3时,y3=x2﹣4x﹣5=9﹣12﹣5=﹣8,∴y1>y3>y2.故选B.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)13.抛物线y=x2﹣2x﹣1的顶点坐标是(1,﹣2).【考点】二次函数的性质.【分析】已知抛物线解析式为一般式,根据顶点坐标公式可求顶点坐标.也可以运用配方法求解.【解答】解:解法1:利用公式法y=ax2+bx+c的顶点坐标公式为(,),代入数值求得顶点坐标为(1,﹣2).解法2:利用配方法y=x2﹣2x﹣1=x2﹣2x+1﹣2=(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).14.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= ﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.15.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.【考点】旋转的性质;等边三角形的性质.【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.【解答】解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.16.抛物线y=a(x+1)2经过点(﹣2,1),则a= 1 .【考点】二次函数图象上点的坐标特征.【分析】把点(﹣2,1),直接代入抛物线y=a(x+1)2求a.【解答】解:∵抛物线y=a(x+1)2经过点(﹣2,1),把点(﹣2,1)代入解析式得1=a(﹣2+1)2,解得a=1.17.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有15 支.【考点】一元二次方程的应用.【分析】设参加比赛的球队共有x支,则每支球队都要与余下的(x﹣1)支球队进行比赛,又每两支球队都要在自己的主场和客场踢一场,即每两支球队相互之间都要比赛两场,故这x支球队一共需要比赛x(x ﹣1)场,而这个场次又是210场,据此列出方程.【解答】解:设参加比赛的球队共有x支,每一个球队都与剩余的x﹣1队打球,即共打x(x﹣1)场∵每两支球队都要在自己的主场和客场踢一场,即每两支球队相互之间都要比赛两场,∴每两支球队相互之间都要比赛两场,即x(x﹣1)=210,解得:x2﹣x﹣210=0,(x﹣15)(x+14)=0,x1=15.x2=﹣14(负值舍去)故参加比赛的球队共有15支,故答案为:15.18.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7 .【考点】解一元二次方程-因式分解法.【分析】此题考查学生的分析问题和探索问题的能力.解题的关键是理解题意,在此题中x+2=a,5=b,代入所给公式得:(x+2)*5=(x+2)2﹣52,则可得一元二次方程,解方程即可求得.【解答】解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三、解答题(共8题,共72分)19.解方程:(1)x2+2x﹣7=0;(2)2(x﹣3)2=5(3﹣x).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)首先把方程移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.(2)先移项,然后提取公因式进行因式分解.【解答】解:(1))∵x2+2x﹣7=0∴x2+2x=7∴x2+2x+1=7+1∴(x+1)2=8∴x=±2﹣1x1=﹣1+2,x2=﹣1﹣2.(2)2(x﹣3)2=5(3﹣x).2(x﹣3)2+5(x﹣3)=0,(x﹣3)(2x﹣6+5)=0,x﹣3=0或2x﹣1=0,解方程得:x1=3,x2=.20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.21.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出对应的△A′B′C′图形;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.【考点】作图-旋转变换;平行四边形的性质.【分析】(1)根据关于原点对称的定义,写出B1的坐标即可.(2)分别画出A、B、C绕坐标原点O逆时针旋转90°的对应点A′、B′、C′即可.(3)满足条件的点D′有三个,画出图象即可解决问题.【解答】解:(1)B1的坐标(2,﹣3);(2)△A′B′C′如图所示;(3)四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标(﹣3,4)、(﹣3,﹣7)、(3,6);22.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?。

2019年中考数学专题复习 第二讲整式、因式分解 (共68张PPT)精品物理

2019年中考数学专题复习  第二讲整式、因式分解 (共68张PPT)精品物理
∴原式=2(a-b)-1=2-1=1.
答案:1
(3)由题意可知:m=-1,n=0,c=1, ∴原式=(-1)2015+2016×0+12017=0. 答案:0
【答题关键指导】 整体代入法求代数式值的三种方法 (1)直接整体代入求值:如果已知的代数式与要求的代 数式之间都含有相同的式子,只要把已知式子的值直 接代入到要求的式子中,即可得出结果.
(3)(2017·济宁中考)分解因式: ma2+2mab+mb2=____________.
【思路点拨】(1)先提取公因式,再利用平方差公式进 行分解. (2)通过两次提取公因式,来进行因式分解. (3)先提取公因式,再利用完全平方公式进行分解.
【自主解答】 (1)x3-x=x(x2-1)=x(x+1)(x-1). (2)原式=x(x-2)+(x-2)=(x+1)(x-2). (3)原式=m(a2+2ab+b2)=m(a+b)2.
【答题关键指导】 幂的运算的应用 (1)同底数幂的乘除法应用的前提是底数必须相同,若 底数互为相反数时,要应用积的乘方处理好符号问题, 转化成同底数,再应用法则.
(2)同底数幂的乘法、幂的乘方、积的乘方混合运算 的时候要注意三个方面:一是运算顺序,二是正确选择 法则,三是运算符号.
【变式训练】
2.(2017·潍坊中考)下列计算正确的是 ( )
A.a3×a2=a6
B.a3÷a=a3
C.a2+a2=a4
D.(a2)2=a4
【解析】选D.选项A是同底数幂的乘法,结果为a5,故选 项A错误;选项B是同底数幂的除法,结果为a2,故选项B 错误;选项C是合并同类项,结果为2a2,故选项C错误;选 项D是幂的乘方,底数不变,指数相乘,故选项D正确.

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

2019年全国各地中考数学试题分类汇编(第二期) 专题3 整式与因式分解(含解析)

2019年全国各地中考数学试题分类汇编(第二期) 专题3 整式与因式分解(含解析)

整式与因式分解一.选择题1.(2019•贵阳•3分)32可表示为()A.3×2 B.2×2×2 C.3×3 D.3+3【分析】直接利用有理数乘方的意义分析得出答案.【解答】解:32可表示为:3×3.故选:C.【点评】此题主要考查了有理数的乘方,正确把握有理数的乘方定义是解题关键.2. .(2019•贵阳•3分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【分析】直接利用平方差公式计算得出答案.【解答】解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【点评】此题主要考查了多项式乘法,正确应用公式是解题关键.3. (2019•海南•3分)当m=﹣1时,代数式2m+3的值是()A.﹣1 B.0 C.1 D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.4. (2019•海南•3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【点评】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.5.(2019•河南•3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.6. 小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7. (2019•江苏无锡•3分)分解因式4x2﹣y2的结果是()A.(4x+y)(4x﹣y)B.4(x+y)(x﹣y)C .(2x +y )(2x ﹣y )D .2(x +y )(x ﹣y )【分析】直接利用平方差公式分解因式得出答案. 【解答】解:4x 2﹣y 2=(2x +y )(2x ﹣y ). 故选:C .【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.8. (2019•江苏宿迁•3分)下列运算正确的是( ) A .a 2+a 3=a 5B .(a 2)3=a 5C .a 6÷a 3=a 2D .(ab 2)3=a 3b 6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别分析得出答案.【解答】解:A 、a 2+a 3,无法计算,故此选项错误; B 、(a 2)3=a 6,故此选项错误; C 、a 6÷a 3=a 3,故此选项错误; D 、(ab 2)3=a 3b 6,正确; 故选:D .【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.9. (2 019·江苏盐城·3分)下列运算正确的是( )【答案】B【解析】725a a a =⋅,故A 错;a a a 32=+,故C 错;632)(a a =,故D 错。

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。

中考数学《因式分解》专题复习试卷(含答案)

中考数学《因式分解》专题复习试卷(含答案)

2018-2019学年初三数学专题复习因式分解一、单选题1.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y22.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+93.多项式6x3y2﹣3x2y2+12x2y3的公因式为()A. 3xyB. ﹣3x2yC. 3xy2D. 3x2y24.下列四个多项式,哪一个是2X2+5X-3的因式?()A. 2x-1B. 2x-3C. x-1D. x-35.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. 6ab=2a.3b6.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A. 962×95+962×5=962×(95+5)=962×100=96200B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D. 962×95+962×5=91390+4810=962007.把代数式xy2﹣9x分解因式,结果正确的是()A. x(y2﹣9)B. x(y+3)2C. x(y+3)(y﹣3)D. x(y+9)(y﹣9)8.计算(﹣2)2002+(﹣2)2001所得的正确结果是()A. 22001B. ﹣22001C. 1D. 29.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y)D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x210.下列多项式中,能用提取公因式法分解因式的是()A. x2﹣yB. x2+2xC. x2+y2D. x2﹣xy+y211.下列由左边到右边的变形,属于分解因式的变形是()A. ab+ac+d=a(b+c)+dB. a2﹣1=(a+1)(a﹣1)C. 12ab2c=3ab•4bcD. (a+1)(a﹣1)=a2﹣112.分解因式(a2+1)2﹣4a2,结果正确的是()A. (a2+1+2a)(a2+1﹣2a)B. (a2﹣2a+1)2C. (a﹣1)4D. (a+1)2(a﹣1)213.把x2﹣xy2分解因式,结果正确的是()A. (x+xy)(x﹣xy)B. x(x2﹣y2)C. x(x﹣y2)D. x(x﹣y)(x+y)14.下列各式中,从左到右的变形是分解因式的是()A. x2﹣2=(x+1)(x﹣1)﹣1B. (x﹣3)(x+2)=x2﹣x+6C. a2﹣4=(a+2)(a﹣2)D. ma+mb+mc=m(a+b)+mc15.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x16.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题17.分解因式:a2+ab=________.18.分解因式:a2﹣9=________.19.将多项式x2y-2xy2+y3分解因式的结果是________.20.因式分解:2x2﹣18=________.21.已知m2+m﹣1=0,则m3+2m2+2017=________.三、计算题22.因式分解:(1);(2)23.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.24.因式分解:3ab2+6ab+3a.25.把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)26.把下列各式分解因式:(1);(2).四、解答题27.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.28.﹣x2+7x﹣10.五、综合题29.把下列各式因式分解(1)﹣36aby+12abx﹣6ab(2)9x2﹣12x+4;(3)4x2﹣9y2(4)3x3﹣12x2y+12xy2.30.因式分解:(1)5mx2﹣10mxy+5my2(2)x2(a﹣1)+y2(1﹣a)答案解析部分一、单选题1.【答案】B【解析】【解答】解:﹣6x3y2﹣3x2y+12x2y2=﹣3x2y(2xy+1﹣4y)故选:B.【分析】根据公因式的确定方法:①系数取最大公约数,②字母取公共的字母③指数取最小的,可得到答案;2.【答案】D【解析】【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】A、a2+(-b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故错误;D、-x2+9能用平方差公式分解因式,故正确.故选D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.3.【答案】D【解析】【解答】解:6x3y2﹣3x2y2+12x2y3的公因式为3x2y2.故选:D.【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.4.【答案】A【解析】【分析】利用十字相乘法将2x2+5x-3分解为(2x-1)(x+3),即可得出符合要求的答案.【解答】∵2x2+5x-3=(2x-1)(x+3),2x-1与x+3是多项式的因式,故选:A.【点评】此题主要考查了因式分解的应用,正确的将多项式因式分解是解决问题的关键.5.【答案】C【解析】【解答】解:A. 的右边不是积的形式,不是因式分解;故选项错误;B. 是多项式乘法,不是因式分解;故选项错误;C. 运用平方差公式因式分解,故选项正确;D. 不是把多项式化成整式积的形式,故选项错误.故选C.6.【答案】A【解析】【解答】解:计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故答案为:A.【分析】通过观察式子,两个加数项中分别存在一个962,所以采取的简便方法为提取公因式法,将962提出公因式,进行接下来的计算即可。

2019年中考数学复习 第一章 数与式 第二节 代数式及整式(含因式分解)练习

2019年中考数学复习 第一章 数与式 第二节 代数式及整式(含因式分解)练习

第二节 代数式及整式(含因式分解)姓名:________ 班级:________ 用时:______分钟1.(2018·攀枝花中考)下列运算结果是a 5的是( )A .a 10÷a 2B .(a 2)3C .(-a)3D .a 3·a 22.(2019·易错题)计算(-a)3÷a 结果正确的是( )A .a 2B .-a 2C .-a 3D .-a 43.(2018·贵阳中考)当x =-1时,代数式3x +1的值是( )A .-1B .-2C .4D .-44.(2018·邵阳中考)将多项式x -x 3因式分解正确的是( )A .x(x 2-1)B .x(1-x 2)C .x(x +1)(x -1)D .x(1+x)(1-x)5.(2018·河北中考)将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10-0.5)C .9.52=102-2×10×0.5+0.52D .9.52=92+9×0.5+0.526.(2019·易错题)若x 2-2mx +1是完全平方式,则m 的值为( )A .2B .1C .±1D .±127.(2017·朝阳中考)如果3x 2m y n +1与-12x 2y m +3是同类项,则m ,n 的值为( )A .m =-1,n =3B .m =1,n =3C .m =-1,n =-3D .m =1,n =-38.(2018·南充中考)下列计算正确的是( )A .-a 4b÷a 2b =-a 2bB .(a -b)2=a 2-b 2C .a 2·a 3=a 6D .-3a 2+2a 2=-a 29.(2019·原创题)某商店在2018年“世界杯”期间购进一批足球,每个足球的成本为50元,按成本增加a%定价,3个月后因销量下滑,出现库存积压,商家决定按定价的b%打折出售,列代数式表示打折后的价格为( )A .50(1+a%)(1+b%)B .50(1+a%)b%C .50(1+b%)a%D .50·a%·b%10.(2018·株洲中考)单项式5mn 2的次数是______.11.(2018·葫芦岛中考)分解因式:2a 3-8a =________________________.12.(2018·金华中考)化简(x -1)(x +1)的结果是____________.13.(2018·泰州中考)计算:12x·(-2x 2)3=____________.14.(2018·达州中考)已知a m =3,a n =2,则a 2m -n 的值为________.15.(2018·江西中考)计算:(a +1)(a -1)-(a -2)2.16.(2018·重庆中考B 卷)计算:(x +2y)2-(x +y)(x -y).17.(2017·盘锦中考)下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x -1=(x -1)2B .(a +b)(a -b)=a 2-b 2C .x 2+4x +4=(x +2)2D .ax 2-a =a(x 2-1)18.(2018·宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )A .2aB .2bC .2a -2bD .-2b19.(2018·攀枝花中考)分解因式:x 3y -2x 2y +xy =________________________.20.(2019·改编题)分解因式:(m +1)(m -9)+8m =__________________________21.(2018·宁波中考)先化简,再求值:(x -1)2+x(3-x),其中x =-12.22.(2018·襄阳中考)先化简,再求值:(x+y)(x-y)+y(x+2y)-(x-y)2,其中x=2+3,y=2- 3.23.(2019·创新题)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:24.(2018·湘潭中考)阅读材料:若a b =N ,则b =log a N ,称b 为以a 为底N 的对数.例如23=8,则lo g 28=log 223=3.根据材料填空:log 39=________.参考答案【基础训练】1.D 2.B 3.B 4.D 5.C 6.C 7.B 8.D 9.B 10.3 11.2a(a +2)(a -2) 12.x 2-1 13.-4x 7 14.9215.解:原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4=4a -5.16.解:原式=x 2+4xy +4y 2-x 2+y 2=4xy +5y 2.【拔高训练】17.C 18.B19.xy(x -1)2 20.(m +3)(m -3)21.解:原式=x 2-2x +1+3x -x 2=x +1. 当x =-12时,原式=-12+1=12.22.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2 =3xy.当x =2+3,y =2-3时,原式=3(2+3)(2-3)=3.23.解:方案二:a 2+ab +(a +b)b =a 2+ab +ab +b 2 =a 2+2ab +b 2=(a +b)2.方案三:a 2+[a +(a +b )]·b 2+[a +(a +b )]·b 2=a 2+ab +12b 2+ab +12b 2=a 2+2ab +b 2 =(a +b)2.【培优训练】24.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式、整式与因式分解
A 级 基础题
1.计算a3·a2正确的是( )
A .a
B .a5
C .a6
D .a9
2.(xx 年广东广州)计算(a2b)3·b2a
,结果是( ) A .a5b5 B .a4b5 C .ab5 D .a5b6
3.若3x2nym 与x4-nyn -1是同类项,则m +n =( )
A.53 B .-53
C .5
D .3 4.(xx 年广东深圳)下列运算正确的是( )
A .a2·a3=a6
B .3a -a =2a
C .a8÷a4=a2 D.a +b =ab
5.(xx 年广东广州)下列计算正确的是( )
A .(a +b)2=a2+b2
B .a2+2a2=3a4
C .x2y÷1y
=x2(y≠0) D.(-2x2)3=-8x6 6.(xx 年黑龙江龙东)下列各运算中,计算正确的是( )
A .(x -2)2=x2-4
B .(3a2)3=9a6
C .x6÷x2=x3
D .x3·x2=x5
7.(xx 年广东广州)分解因式:xy2-9x =__________________.
8.分解因式:4a2+8a +4=________________.
9.(xx 年贵州安顺)若代数式x2+kx +25是一个完全平方式,则k =________.
10.(xx 年上海)某商品原价为a 元,如果按原价的八折销售,那么售价是________元.(用含字母a 的代数式表示).
11.填空:x2+10x +________=(x +________)2.
12.(xx 年重庆)计算:x(x -2y)-(x +y)2=________________.
13.若mn =m +3,则2mn +3m -5nm +10=__________.
14.(xx 年浙江宁波)先化简,再求值:(x -1)2+x(3-x),其中x =-12
.
15.先化简,再求值:a(a -2b)+(a +b)2,其中a =-1,b = 2.
B级中等题
16.已知x-2y=3,那么代数式3-2x+4y的值是( )
A.-3 B.0 C.6 D.9
17.(xx年贵州安顺)已知x+y=3,xy=6,则x2y+xy2的值为__________.
18.观察下列各式的规律:
(a-b)(a+b)=a2-b2;
(a-b)(a2+ab+b2)=a3-b3;
(a-b)(a3+a2b+ab2+b3)=a4-b4;
……
可得到(a-b)(axx+axxb+…+abxx+bxx)=____________.
19.如果x2+mx+1=(x+n)2,且m>0,那么n的值是________.
20.已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.
C级拔尖题
21.(xx年重庆)下列图象(如图1­2­2)都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,则:
(1)第⑨个图形中小星星的颗数为________________;
(2)第个图形中小星星的颗数为________________.
图1­2­2
参考答案
1.B 2.A 3.A 4.B 5.D 6.D
7.x(y +3)(y -3) 8.4(a +1)2 9.±10
10.0.8a 11.25 5 12.-4xy -y2 13.1
14.解:原式=x2-2x +1+3x -x2=x +1.
当x =-12时,原式=-12+1=12
. 15.解:原式=a2-2ab +a2+2ab +b2=2a2+b2,
当a =-1,b =2时,原式=2+2=4.
16.A 17.3 2 18.axx -bxx 19.1
20.解:(x -2y)2-(x -y)(x +y)-2y2
=x2-4xy +4y2-(x2-y2)-2y2
=-4xy +3y2=-y(4x -3y).
∵4x =3y ,∴原式=0.
21.(1)144 (2)12
n(3n +5) 解析:∵ 第①个图为22=4;
第②个图为32+2=11;
第③个图为42+3+2=21;
第④个图为52+4+3+2=34.
∴依规律类推可得:
(1)第⑨个图形中小星星的颗数为:
102+9+8+7+6+5+4+3+2=144.
(2)第个图形中小星星的颗数为:
(n +1)2+n +(n -1)+(n -2)+…+4+3+2=(n +1)2+n +22(n -1)=12
n(3n +5). 欢迎您的下载,资料仅供参考!。

相关文档
最新文档