《因式分解专题训练》有标准答案
因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a ²-9b -9b²²=2、2x 2x³³-12x -12x²²+4x =2x ( )3、-27a -27a³³=( )³)³4、2xy 2xy²²-8x -8x³³ = 2x ( )()( )5、(、(x+2y x+2y x+2y)()()(y-2x y-2x y-2x))= -(x+2y x+2y)()()( )6、x (x-y x-y))+y +y((y-x y-x))=7、a-a a-a³³= a (a+1a+1)()()( )8、1600a 1600a²²-100=100-100=100(( )()( ) 9、9a 9a²²+( )+4 =( )²)²1010、(、(、(x+2x+2x+2))x-x-2= (x+2x+2)()()( )1111、、a ³-a =a ( )()( )1212、(、(、( )x ²+4x+16 =( )²)²1313、、3a 3a³³+5a +5a²²+( )=(a+ )()( +2a-4 +2a-4)1414、(、(、( )-2y -2y²² = -2( +1)²)²1515、、x ²-6x-7=-6x-7=((x )()(x x )1616、、3xy+6y 3xy+6y²²+4x +4x²²+8xy=3y( )+4x ( )=( )()( ) 1717、、a ²+3a-10=+3a-10=((a+m a+m)()()(a+n a+n a+n),则),则m= ,n= 1818、、8a 8a³³-b -b³³=(2a-b 2a-b)()()( )1919、、xy+y xy+y²²+mx+my=+mx+my=((y ²+my +my))+( )=( )()( ) 2020、(、(、(x x ²+y +y²)²²)²²)²-4x -4x -4x²²y ²=二、选择题(共32题)1、多项式2a 2a²²+3a+1因式分解等于(因式分解等于( )A 、(、(a+1a+1a+1)()()(a-1a-1a-1))B 、(、(2a+12a+12a+1)()()(2a-12a-12a-1))C 、(、(2a+12a+12a+1)()()(a+1a+1a+1))D 、(、(2a+12a+12a+1)()()(a-1a-1a-1))2、下列各式分解因式正确的是(、下列各式分解因式正确的是( )A 、3x 3x²²+6x+3= 3(x+1x+1)²)²)²B B 、2x 2x²²+5xy-2y +5xy-2y²²=(2x+y 2x+y)()()(x+2y x+2y x+2y)) C 、2x 2x²²+6xy= (2x+32x+3)()()(x+2y x+2y x+2y)) D 、a ²-6=-6=((a-3a-3)()()(a-2a-2a-2))3、下列各式中,能有平方差公式分解因式的是(、下列各式中,能有平方差公式分解因式的是( )A 、4x 4x²²+4B 、(、(2x+32x+32x+3)²)²)² -4 -4(3x 3x²²+2+2)²)²)²C 、9x 9x²²-2xD 、a ²+b +b²²4、把多项式x ²-3x-70因式分解,得(因式分解,得( ) A 、(、(x-5x-5x-5))(x+14) B 、(、(x+5x+5x+5)()()(x-14x-14x-14))C 、(、(x-7x-7x-7)()()(x+10x+10x+10))D 、(、(x+7x+7x+7)()()(x-10x-10x-10))5、已知a+b=0a+b=0,则多项式,则多项式a ³+3a +3a²²+4ab+b +4ab+b²²+b +b³的值是(³的值是(³的值是() A 、0 B 、1 C 、 -2 D 、 26、把4a 4a²²+3a-1因式分解,得(因式分解,得() A 、(、(2a+12a+12a+1)()()(2a-12a-12a-1)) B 、(、(2a-12a-12a-1)()()(a-3a-3a-3))C 、(、(4a-14a-14a-1)()()(a+1a+1a+1))D 、(、(4a+14a+14a+1)()()(a-1a-1a-1))7、下列等式中,属于因式分解的是(、下列等式中,属于因式分解的是() A 、a (1+b 1+b))+b +b((a+1a+1))= (a+1a+1)()()(b+1b+1b+1))B 、2a 2a((b+2b+2))+b +b((a-1a-1))=2ab-4a+ab-bC 、a ²-6a+10 =a (a-6a-6))+10D 、(、(x+3x+3x+3)²)²)²-2-2-2((x+3x+3))=(x+3x+3)()()(x+1x+1x+1))8、2m 2m²²+6x+2x +6x+2x²是一个完全平方公式,则²是一个完全平方公式,则m 的值是(的值是() A 、 0 B 、 ± 32 C 、 ±52 D 、949、多项式3x 3x³³-27x 因式分解正确的是()因式分解正确的是()A 、3x 3x((x ²-9-9))B 、3x 3x((x ²+9) C 、3x 3x((x+3x+3)()()(x-3x-3x-3)) D 、3x 3x((3x-13x-1)()()(3x+13x+13x+1))1010、已知、已知x >0,且多项式x ³+4x +4x²²+x-6=0+x-6=0,则,则x 的值是(的值是( ) A 、1 B 、2 C 、3 D 、41111、多项式、多项式2a 2a²²+4ab+2b +4ab+2b²²+k 分解因式后,它的一个因式是(分解因式后,它的一个因式是(a+b-2a+b-2a+b-2),则),则k 的值是(是() A 、4 B 、-4 C 、8 D 、-81212、对、对、对 a a 4 + 4进行因式分解,所得结论正确的是(进行因式分解,所得结论正确的是() A 、 (a ²+2+2)²)²)² B B 、 (a ²+2+2)) (a ²-2-2))C 、有一个因式为(、有一个因式为(a a ²+2a+2+2a+2))D 、不能因式分解、不能因式分解1313、多项式、多项式a ²(²(m-n m-n m-n))+9+9((n-m n-m)分解因式得()分解因式得()分解因式得() A 、(、(a a ²+9+9)()()(m-n m-n m-n)) B 、(、(m-n m-n m-n)()()(a+3a+3a+3)()()(a-3a-3a-3))C 、(、(a a ²+9+9)()()(m+n m+n m+n))D 、(、(m+n m+n m+n)()()(a+3a+3a+3)²)²)²1414、多项式、多项式m 4-14m -14m²²+1分解因式的结果是(分解因式的结果是() A 、(、(m m ²+4m+1+4m+1)()()(m m ²-4m+1-4m+1)) B 、(、(m m ²+3m+1+3m+1)()()(m m ²-6m+1-6m+1))C 、(、(m m ²-m+1-m+1)()()(m m ²+m+1+m+1))D 、(、(m m ²-1-1)()()(m m ²+1+1))1515、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是() A 、-x -x²²+3x = -x (x+3x+3)) B 、x ²+xy+x=x +xy+x=x((x+y x+y))C 、2m 2m((2m-n 2m-n))+n +n((n-2m n-2m))= (2m-n 2m-n)²)²)²D D 、a ²-4a+4=-4a+4=((a+2a+2)()()(a-2a-2a-2))1616、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是( )A 、2x 2x((a-b a-b))=2ax-2bxB 、2a 2a²²+a-1=a +a-1=a((2a+12a+1))-1C 、(、(a+1a+1a+1)()()(a+2a+2a+2))= a ²+3a+2D 、3a+6a 3a+6a²²=3a =3a((2a+12a+1))1717、下列各式、下列各式、下列各式① 2m+n 和m+2n ② 3n (a-b )和-a+b③x ³+y ³ 和x ²+xy ④a ²+b ² 和a ²-b ²其中有公因式的是( )A 、① ②B 、 ② ③C 、① ④D 、 ③ ④ 1818、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是( )A 、x ²+1B 、 x ²-1C 、 x ²+5yD 、x ²-5y1919、将以下多项式分解因式,结果中不含因式、将以下多项式分解因式,结果中不含因式x-1的是(的是( )A 、1 -x ³B 、x ²-2x+1C 、x (2a+32a+3))-(3-2a 3-2a))D 、2x 2x((m+n m+n))-2-2((m+n m+n))2020、若多项式、若多项式2x 2x²²+ax 可以进行因式分解,则a 不能为(不能为( )A 、0B 、-1C 、1D 、22121、已知、已知x+y= -3,xy=2 ,则x ³y+xy y+xy³的值是(³的值是(³的值是( ) A 、 2 B 、 4 C 、10 D 、202222、、多项式x a -y a 因式分解的结果是(x ²+y +y²)²)(x+y x+y))(x-y x-y)),则a 的值是() A 、2 B 、4 C 、-2 D-42323、对、对8(a ²-2b -2b²)²)²)-a -a -a((7a+b 7a+b))+ab 进行因式分解,其结果为(进行因式分解,其结果为( )A 、(、(8a-b 8a-b 8a-b)()()(a-7b a-7b a-7b))B 、(、(2a+3b 2a+3b 2a+3b)()()(2a-3b 2a-3b 2a-3b))C 、(、(a+2b a+2b a+2b)()()(a-2b a-2b a-2b))D 、(、(a+4b a+4b a+4b)()()(a-4b a-4b a-4b))2424、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是( )A 、x ²-x-4=-x-4=((x+2x+2)()()(x-2x-2x-2))B 、2x 2x²²-3xy+y -3xy+y²² =(2x-y 2x-y)()()(x-y x-y x-y))C 、x(x-y)- y(y-x)=(x-y x-y)²)²)²D D 、4x-5x 4x-5x²²+6=+6=((2x+32x+3)()()(2x+22x+22x+2))2525、多项式、多项式a=2x a=2x²²+3x+1+3x+1,,b=4x b=4x²²-4x-3-4x-3,则,则M 和N 的公因式是(的公因式是( )A 、2x+1B 、2x-3C 、x+1D 、x+32626、多项式(、多项式(、多项式(x-2y x-2y x-2y)²)²)²+8xy +8xy 因式分解,结果为(因式分解,结果为( )A 、(、(x-2y+2x-2y+2x-2y+2)()()(x-2y+4x-2y+4x-2y+4))B 、(、(x-2y-2x-2y-2x-2y-2)()()(x-2y-4x-2y-4x-2y-4))C 、(、(x+2y x+2y x+2y)²)²)²D D 、(、(x-2y x-2y x-2y)²)²)²2727、下面多项式、下面多项式、下面多项式 ① x ²+5x-50 ②x ³-1③ x ³-4x ④3x ²-12他们因式分解后,含有三个因式的是(他们因式分解后,含有三个因式的是() A 、① ② 、 B 、③ ④ C 、 ③ D 、④28、已知、已知x= 12+1,则代数式(,则代数式(x+2x+2x+2)()()(x+4x+4x+4))+x +x²²-4的值是(的值是( ) A 、4+2 2 B 、4-2 2 C 、2 2 D 、4 22929、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的( ) A 、4x 4x²² -2 =(4x-24x-2))x ² B 、1-x 1-x²²=(1-x 1-x)²)²)² C 、x ²+2 = (x+2x+2)()()(x+1x+1x+1)) D 、x ²-1=-1=((x+1x+1)()()(x-1x-1x-1))3030、若、若x ²+7x-30与x ²-17x+42有共同的因式x+m x+m,则,则m 的值为(的值为() A 、-14 B 、-3 C 、3 D 、103131、下列因式分解中正确的个数为(、下列因式分解中正确的个数为(、下列因式分解中正确的个数为() ① x ²+y ²=(x+y )(x-y ) ② x ²-12x+32=(x-4)(x-8) ③ x ³+2xy+x=x (x ²+2y ) ④x 4-1=(x ²+1)(x ²-1)A 、1B 、2C 、3D 、43232、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是() A 、0.0 9- x ² B 、x ²+20x+100C 、 4x ²+4x+4D 、x ²-y -y²²-2xy三、因式分解(共42题)1、x ²(²(a-b a-b a-b))+(b-a b-a))2、x ³-xy -xy²²3、(、(a+1a+1a+1)²)²)²-9-9-9((a-1a-1)²)²)²4、x (xy+yz+xz xy+yz+xz))-xyz5、(、(x-1x-1x-1)()()(x-3x-3x-3))+16、a ²-4a+4-b -4a+4-b²²7、(、(x x ²-2x -2x)²)²)²+2x +2x +2x((x-2x-2))+18、(、(x+y+z x+y+z x+y+z)³)³)³-x -x -x³³-y -y³³-z -z³³9、x 4-5x -5x²²+41010、、5+75+7((x+1x+1))+2+2((x+1x+1)²)²)²1111、、a ²+b +b²²-a -a²²b ²-4ab-11212、、x 4+x +x²²+11313、、a 5-2a -2a³³-8a1414、、a ²(²(b-2b-2b-2))-a -a((2-b 2-b)) 1515、、a ²(²(x-y x-y x-y))+16+16((y-x y-x))1616、、x ²+6xy+9y +6xy+9y²²-x-3y-301717、(、(、(x x ²+y +y²²-z -z²)²²)²²)²-4x -4x -4x²²y ²1818、、xy xy²²-xz -xz²²+4xz-4x1919、、x ²(²(y-z y-z y-z))+y +y²(²(²(z-x z-x z-x))+z +z²(²(²(x-y x-y x-y))2020、、3x 3x²²-5x-1122121、、3m 3m²²x-4n x-4n²²y-3n y-3n²²x+4m x+4m²²y2222、、x ²(²(2-y 2-y 2-y))+(y-2y-2))2323、、x 4+x +x²²y ²+y 42424、、x 4-162525、(、(、(x-1x-1x-1)²)²)²--(y+1y+1)²)²)²2626、(、(、(x-2x-2x-2)()()(x-3x-3x-3))-202727、、2(x+y x+y)²)²)²-4-4-4((x+y x+y))-302828、、x ²+1-2x+4+1-2x+4((x-1x-1))2929、(、(、(a a ²+a +a)()()(a a ²+a+1+a+1))-123030、、5x+5y+x 5x+5y+x²²+2xy+y +2xy+y²²3131、、x ³+x +x²²-x-13232、、x (a+b a+b)²)²)²+x +x +x²(²(²(a+b a+b a+b))3333、(、(、(x+2x+2x+2)²)²)²-y -y -y²²-2x-33434、(、(、(x x ²-6-6)()()(x x ²-4-4))-15 3535、(、(、(x+1x+1x+1)²)²)²-2-2-2((x ²-1-1))3636、(、(、(ax+by ax+by ax+by)²)²)²++(ax-by ax-by)²)²)²-2-2-2((ax+by ax+by)()()(ax-by ax-by ax-by))3737、(、(、(a+1a+1a+1)()()(a+2a+2a+2))(a+3)(a+4)-33838、(、(、(a+1a+1a+1))4+(a+1a+1)²)²)²+1 +13939、、x 4+2x +2x³³+3x +3x²²+2x+14040、、4a 4a³³-31a+154141、、a 5+a+14242、、a ³+5a +5a²²+3a-9 四、求值(共10题)1、x+y=1x+y=1,,xy=2求x ²+y +y²²-4xy 的值的值2、x ²+x-1=0+x-1=0,求,求x 4+x +x³³+x 的值的值3、已知a (a-1a-1))-(a ²-b -b))+1=0+1=0,求,求a ²+b +b²²2-ab 的值的值 4、若(、若(x+m x+m x+m)()()(x+n x+n x+n))=x =x²²-6x+5-6x+5,求,求2mn 的值的值5、xy=1xy=1,求,求x ²+x x ²+2x+1 + y ²y ²+y 的值的值6、已知x >y >0,x-y=1x-y=1,,xy=2xy=2,求,求x ²-y -y²的值²的值²的值7、已知a= 2+1,b= 3-1,求,求ab+a-b-1的值的值8、已知x=m+1,y= -2m+1,z=m-2z=m-2,求,求x ²+y +y²²-z -z²²+2xy 的值。
初中数学因式分解专题训练及答案解析

七年级下数学因式分解专题训练一.选择题(共13小题)223.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是210.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一20062005232二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=_________.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是_________.16.因式分解:ax2y+axy2=_________.17.计算:9xy•(﹣x2y)=_________;分解因式:2x(a﹣2)+3y(2﹣a)=_________.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为_________.19.因式分解:(2x+1)2﹣x2=_________.20.分解因式:a3﹣ab2=_________.21.分解因式:a3﹣10a2+25a=_________.22.因式分解:9x2﹣y2﹣4y﹣4=_________.23.在实数范围内分解因式:x2+x﹣1=_________.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为_________.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:_________(写出一个即可).三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).28.在实数范围内分解因式:.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.七年级下数学因式分解专题训练参考答案与试题解析一.选择题(共13小题)223.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是4.下列各式由左边到右边的变形中,是分解因式的为()210.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一是正确的;=,故(,故(=20062005232二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=2.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.16.因式分解:ax2y+axy2=axy(x+y).17.计算:9xy•(﹣x2y)=﹣3x3y2;分解因式:2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y).x﹣18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为(2x+5y)(2x﹣5y).﹣,19.因式分解:(2x+1)2﹣x2=(3x+1)(x+1).20.分解因式:a3﹣ab2=a(a+b)(a﹣b).21.分解因式:a3﹣10a2+25a=a(a﹣5)2.22.因式分解:9x2﹣y2﹣4y﹣4=(3x+y+2)(3x﹣y﹣2).23.在实数范围内分解因式:x2+x﹣1=(x++)(x+).+x+)﹣)﹣()﹣]+)24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为2.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).28.在实数范围内分解因式:.x+))﹣x+)﹣29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.﹣,所以第()(),,所以﹣。
因式分解专项练习题及答案参考

因式分解专项练习题及答案参考因式分解专项练习题及答案参考一、填空题(10×3'=30')1、计算3×103-104=_________2、分解因式 x3y-x2y2+2xy3=xy(_________)3、分解因式–9a2+ =________4、分解因式 4x2-4xy+y2=_________5、分解因式 x2-5y+xy-5x=__________6、当k=_______时,二次三项式x2-kx+12分解因式的结果是(x-4)(x-3)7、分解因式 x2+3x-4=________8、已知矩形一边长是x+5,面积为x2+12x+35,则另一边长是_________9、若a+b=-4,ab= ,则a2+b2=_________10、化简1+x+x(1+x)+x(1+x)2+…+x(1+x)1995=________二、选择题(12×3'=36')1、下列各式从左到右的变形,是因式分解的是( )A、m(a+b)=ma+mbB、ma+mb+1=m(a+b)+1C、(a+3)(a-2)=a2+a-6D、x2-1=(x+1)(x-1)2、若y2-2my+1是一个完全平方式,则m的值是( )A、m=1B、m=-1C、m=0D、m=±13、把-a(x-y)-b(y-x)+c(x-y)分解因式正确的结果是( )A、(x-y)(-a-b+c)B、(y-x)(a-b-c)C、-(x-y)(a+b-c)D、-(y-x)(a+b-c)4、-(2x-y)(2x+y)是下列哪一个多项式分解因式后所得的答案( )A、4x2-y2B、4x2+y2C、-4x2-y2D、-4x2+y25、m-n+ 是下列哪个多项式的一个因式( )A、(m-n)2+ (m-n)+B、(m-n)2+ (m-n)+C、(m-n)2- (m-n)+D、(m-n)2- (m-n)+6、分解因式a4-2a2b2+b4的结果是( )A、a2(a2-2b2)+b4B、(a-b)2C、(a-b)4D、(a+b)2(a-b)27、下列多项式(1) a2+b2 (2)a2-ab+b2 (3)(x2+y2)2-x2y2(4)x2-9 (5)2x2+8xy+8y2,其中能用公式法分解因式的个数有( )A、2个B、3个C、4个D、5个8、把多项式4x2-2x-y2-y用分组分解法分解因式,正确的分组方法应该是( )A、(4x2-y)-(2x+y2)B、(4x2-y2)-(2x+y)C、4x2-(2x+y2+y)D、(4x2-2x)-(y2+y)9、下列多项式已经进行了分组,能接下去分解因式的有( )(1) (m3+m2-m)-1 (2) –4b2+(9a2-6ac+c2)(3) (5x2+6y)+(15x+2xy) (4)(x2-y2)+(mx+my)A、1个B、2个C、3个D、4个10、将x2-10x-24分解因式,其中正确的是( )A (x+2)(x-12) B(x+4)(x-6)C(x-4)(x-6) D(x-2)(x+12)11、将x2-5x+m有一个因式是(x+1),则m的值是( )A、6B、-6C、4D、-412、已知x2+ax-12能分解成两个整系数的'一次因式的乘积,则符合条件的整数a的个数是( )A、3个B、4个C、6个D、8个三、分解因式(6×5'=30')1、x-xy22、3、x3+x2y-xy2-y34、1-m2-n2+2mn5、(x2+x)2-8(x2+x)+126、x4+x2y2+y4四、已知长方形周长为300厘米,两邻边分别为x厘米、y厘米,且x3+x2y-4xy2-4y3=0,求长方形的面积。
《因式分解专题训练》有答案

因式分解专题训练一、整式有关概念:1.单项式(单个字母或数)(次数,系数);2.多项式(次数,项数)3.同类项与合并同类项二、幂的运算性质:1. n m n m aa a +=⋅ 2. ()mn n m a a = 3. ()n n nb a ab = 4. n n n b a b a =⎪⎭⎫ ⎝⎛ 5. n m n m a a a -=÷ 6. 10=a 7.p p a a 1=- 8. pp b a a b ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛- 三、整式的运算:加、减、乘、除(乘方、开方) 1. m (a+b+c )=ma+mb+mc 2. (a+b )(m+n )=am+an+bm+bn3. (a+b )(a-b )=22b a -4. ()2222a b ab a b +±=± 5. ()ca bc ab c b a c b a 2222222+++++=++ 6.()()3322b a b ab a b a ±=+± 7. ()()()ca bc ab c b a a c c b b a 222222222222+++++=+++++ 四、因式分解:1.把一个多项式化成几个整式的积的形式. 2.方法(一提二套三分组) (套公式包括十字相乘法)五、方法·规律·技巧:1.性质、公式的逆向使用;2.整体代入(配方、换元)3.非负数 的运用(配方)六、实际运用1.下列变形中,正确的是( )A. ()123422+-=+-x x xB. ()112+=+÷xx x x C. ()()22y x y x y x -=+--- D. xx x x -=-11 2.若n m n m b b a ++-224a 52与可以合并成一项,则nm 的值是( ) A. 2 B. 0 C. -1 D. 13.若22=+b a ,ab =2,则22b a +的值为( ) A. 6 B. 4 C. 23 D. 324.把多项式x x x 1212323+-分解因式,结果正解的是( )A. ()4432+-x x x B. ()243-x x C. ()()223-+x x x D. ()223-x x 5.已知0322=--x x ,则x x 422-的值为( )A. -6B. 6C. -2或6D. -2或306.下列等式从左到右的的变形,属于因式分解的是( )A. a (x-y )=ax-ayB.()12122++=++x x x xC. ()()34312++=++x x x xD. ()()11x 3-+=-x x x x7.因式分解:()()21622---x x x = .8.分解因式:(a-b )(a-4b )+ab = .9.分解因式:()9332--+x x x = . 10.分解因式:22my mx -= .11.多项式4x 2+1加上一个单项式后能成为一个完全平方式,请你写出符合条件的所有的单 项式: .12.计算:()20172016201642125.0⨯⨯-= . 13.已知===-n m n m a a a 4323,16,64则 .14.已知=+-=+-634x 964322x x x ,则 . 15.若()()222222,121y x y x y x +=-++= . 16、将下列各式分解因式:(1)x ax x 2842+-- (2)xy xy y x 2712322-+-(3)()b a b a +--22 (4)()()321612-+-x a x 17.将下列各式分解因式:(1)42161259y x - (2) 3394xy y x - (3)()()221162-++-x x (4)()()222516b a b a +--(5)2244y xy x -+- (6)22363ay axy ax ++(7)172x 4912+-x (8)()()9326322++-+y x y x (9)()()()()222510b a b a b a b a -+-+++ (10)()()1222222+-+-x x x x18.将下列各式分解因式: (1)232+-x x (2)1322++x x(3)22144y xy x -- (4)()()()32212-+-+-m x m x m 19.将下列各式分解因式:(1)()()a b y b a x -+-2249 (2)212+++-n n n x x x(3)()()xy y x41122--- (4)()133********-+-+-x x x x (5)()()15222222--+-x x x x (6)(x+1)(x+2)(x+3)(x+4)-12020.将下列各式分解因式:(1)9622-++-y x x (2)ab b a 44422-+-(3)2212b a a +--- (4)3223y xy y x x --+21.简便计算:(1)1323.16523.14823.1⨯⨯+⨯- (2)814.13125.06.18⨯+⨯ (3)2.48.1425.042.032⨯+⨯+⨯ (4)7582-2582 (5)99992+19998+1 (6)20162-2015×2017 (7)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222201611411311211 (8)420172014201320132016201420142016222-⨯-⨯-+ 22.已知()()()()137373212-----x x x x 可分解因式为()()b x a x ++3,其中a 、b 都是整数,求a+3b 的值.23.已知2222912x 4,010644y xy y x y x +-=++-+求的值.24.已知13,022232++=-+x x x x 求的值.25.已知n 为正整数,试说明n n 332-+能被24整除. 26.若()5522,,1,1n m n m n n m m +≠+=+=求的值.27.设()()222222211212,...,35,13--+=-=-=n n a a a n (n 是大于0的自然数)。
因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a²-9b²=2、2x³-12x²+4x =2x()3、-27a³=()³4、2xy²-8x³ = 2x()()5、(x+2y)(y-2x)= -(x+2y)()6、x(x-y)+y(y-x)=7、a-a³= a(a+1)()8、1600a²-100=100()()9、9a²+()+4 =()²10、(x+2)x-x-2= (x+2)()11、a³-a =a()()12、()x²+4x+16 =()²13、3a³+5a²+()=(a+ )( +2a-4)14、()-2y² = -2( +1)²15、x²-6x-7=(x )(x )16、3xy+6y²+4x²+8xy=3y( )+4x()=()()17、a²+3a-10=(a+m)(a+n),则m= ,n=18、8a³-b³=(2a-b)()19、xy+y²+mx+my=(y²+my)+()=()()20、(x²+y²)²-4x²y²=二、选择题(共32题)1、多项式2a²+3a+1因式分解等于()A、(a+1)(a-1)B、(2a+1)(2a-1)C、(2a+1)(a+1)D、(2a+1)(a-1)2、下列各式分解因式正确的是()A、3x²+6x+3= 3(x+1)²B、2x²+5xy-2y²=(2x+y)(x+2y)C、2x²+6xy= (2x+3)(x+2y)D、a²-6=(a-3)(a-2)3、下列各式中,能有平方差公式分解因式的是()A、4x²+4B、(2x+3)² -4(3x²+2)²C、9x²-2xD、a²+b²4、把多项式x²-3x-70因式分解,得()A、(x-5)(x+14)B、(x+5)(x-14)C、(x-7)(x+10)D、(x+7)(x-10)5、已知a+b=0,则多项式a³+3a²+4ab+b²+b³的值是()A、0B、1C、 -2D、 26、把4a²+3a-1因式分解,得()A、(2a+1)(2a-1)B、(2a-1)(a-3)C、(4a-1)(a+1)D、(4a+1)(a-1)7、下列等式中,属于因式分解的是()A、a(1+b)+b(a+1)= (a+1)(b+1)B、2a(b+2)+b(a-1)=2ab-4a+ab-bC、a²-6a+10 =a(a-6)+10D、(x+3)²-2(x+3)=(x+3)(x+1)8、2m²+6x+2x²是一个完全平方公式,则m的值是()A、 0B、±32C、±52D、949、多项式3x³-27x 因式分解正确的是()A、3x(x²-9)B、3x(x²+9 )C、3x(x+3)(x-3)D、3x(3x-1)(3x+1)10、已知x>0,且多项式x³+4x²+x-6=0,则x的值是()A、1B、2C、3D、411、多项式2a²+4ab+2b²+k分解因式后,它的一个因式是(a+b-2),则k的值是()A、4B、-4C、8D、-812、对 a4 + 4进行因式分解,所得结论正确的是()A、(a²+2)²B、(a²+2)(a²-2)C、有一个因式为(a²+2a+2)D、不能因式分解13、多项式a²(m-n)+9(n-m)分解因式得()A、(a²+9)(m-n)B、(m-n)(a+3)(a-3)C、(a²+9)(m+n)D、(m+n)(a+3)²14、多项式m4-14m²+1分解因式的结果是()A、(m²+4m+1)(m²-4m+1)B、(m²+3m+1)(m²-6m+1)C、(m²-m+1)(m²+m+1)D、(m²-1)(m²+1)15、下列分解因式正确的是()A、-x²+3x = -x(x+3)B、x²+xy+x=x(x+y)C、2m(2m-n)+n(n-2m)= (2m-n)²D、a²-4a+4=(a+2)(a-2)16、下列等式从左到右的变形,属于因式分解的是()A、2x(a-b)=2ax-2bxB、2a²+a-1=a(2a+1)-1C、(a+1)(a+2)= a²+3a+2D、3a+6a²=3a(2a+1)17、下列各式① 2m+n 和m+2n ② 3n(a-b)和-a+b③x³+y³和x²+xy ④a²+b²和a²-b²其中有公因式的是()A、①②B、②③C、①④D、③④18、下列四个多项式中,能因式分解的是()A、x²+1B、 x²-1C、 x²+5yD、x²-5y19、将以下多项式分解因式,结果中不含因式x-1的是()A、1 -x³B、x²-2x+1C、x(2a+3)-(3-2a) D 、2x(m+n)-2(m+n)20、若多项式2x²+ax可以进行因式分解,则a不能为()A、0B、-1C、1D、221、已知x+y= -3,xy=2 ,则x³y+xy³的值是()A、 2B、 4C、10D、2022、多项式x a-y a因式分解的结果是(x²+y²)(x+y)(x-y),则a的值是()A、2B、4C、-2 D-423、对8(a²-2b²)-a(7a+b)+ab 进行因式分解,其结果为()A、(8a-b)(a-7b)B、(2a+3b)(2a-3b)C、(a+2b)(a-2b)D、(a+4b)(a-4b)24、下列分解因式正确的是()A、x²-x-4=(x+2)(x-2)B、2x²-3xy+y² =(2x-y)(x-y)C、x(x-y)- y(y-x)=(x-y)²D、4x-5x²+6=(2x+3)(2x+2)25、多项式a=2x²+3x+1,b=4x²-4x-3,则M和N的公因式是()A、2x+1B、2x-3C、x+1D、x+326、多项式(x-2y)²+8xy因式分解,结果为()A、(x-2y+2)(x-2y+4)B、(x-2y-2)(x-2y-4)C、(x+2y)²D、(x-2y)²27、下面多项式① x²+5x-50 ②x³-1③ x³-4x ④3x²-12他们因式分解后,含有三个因式的是()A、①②、B、③④C、③ D 、④28、已知x= 12+1,则代数式(x+2)(x+4)+x²-4的值是()A、4+2 2B、4-2 2C、2 2D、4 229、下列各多项式中,因式分解正确的()A、4x² -2 =(4x-2)x²B、1-x²=(1-x)²C、x²+2 = (x+2)(x+1)D、x²-1=(x+1)(x-1)30、若x²+7x-30与x²-17x+42有共同的因式x+m,则m的值为()A、-14B、-3C、3D、1031、下列因式分解中正确的个数为()① x²+y²=(x+y)(x-y)② x²-12x+32=(x-4)(x-8)③ x³+2xy+x=x(x²+2y)④x4-1=(x²+1)(x²-1)A、1B、2C、3D、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x²B、x²+20x+100C、 4x²+4x+4D、x²-y²-2xy三、因式分解(共42题)1、x²(a-b)+(b-a)2、x³-xy²3、(a+1)²-9(a-1)²4、x(xy+yz+xz)-xyz5、(x-1)(x-3)+16、a²-4a+4-b²7、(x²-2x)²+2x(x-2)+18、(x+y+z)³-x³-y³-z³9、x4-5x²+410、5+7(x+1)+2(x+1)²11、a²+b²-a²b²-4ab-112、x4+x²+113、a5-2a³-8a14、a²(b-2)-a(2-b)15、a²(x-y)+16(y-x)16、x²+6xy+9y²-x-3y-3017、(x²+y²-z²)²-4x²y²18、xy²-xz²+4xz-4x19、x²(y-z)+y²(z-x)+z²(x-y)20、3x²-5x-11221、3m²x-4n²y-3n²x+4m²y22、x²(2-y)+(y-2)23、x4+x²y²+y424、x4-1625、(x-1)²-(y+1)²26、(x-2)(x-3)-2027、2(x+y)²-4(x+y)-3028、x²+1-2x+4(x-1)29、(a²+a)(a²+a+1)-1230、5x+5y+x²+2xy+y²31、x³+x²-x-132、x(a+b)²+x²(a+b)33、(x+2)²-y²-2x-334、(x²-6)(x²-4)-1535、(x+1)²-2(x²-1)36、(ax+by)²+(ax-by)²-2(ax+by)(ax-by)37、(a+1)(a+2)(a+3)(a+4)-338、(a+1)4+(a+1)²+139、x4+2x³+3x²+2x+140、4a³-31a+1541、a5+a+142、a³+5a²+3a-9四、求值(共10题)1、x+y=1,xy=2求x²+y²-4xy的值2、x²+x-1=0,求x4+x³+x的值3、已知a(a-1)-(a²-b)+1=0,求a²+b²2-ab的值4、若(x+m)(x+n)=x²-6x+5,求2mn的值5、xy=1,求x²+xx²+2x+1+y²y²+y的值6、已知x>y>0,x-y=1,xy=2,求x²-y²的值7、已知a= 2+1,b= 3-1,求ab+a-b-1的值8、已知x=m+1,y= -2m+1,z=m-2,求x²+y²-z²+2xy的值。
【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。
人教版九年级数学上学期(第一学期)《因式分解法》专题练习及答案.docx

新人教版数学九年级上册第二十一章第二节因式分解法同步训练一、选择题1、方程的解是()A、B、C、D、2、方程的正确解法是()A、化为B、C、化为D、化为3、方程正确解法是()A、直接开方得B、化为一般形式C、分解因式得D、直接得或4、经计算整式与的积为,则的所有根为()A、B、C、D、5、关于的一元二次方程的两实根都是整数,则整数的取值可以有()A、2个B、4个C、6个D、无数个6、若关于x的多项式含有因式x-3,则实数p的值为()A、-5B、5C、-1D、17、关于x的一元二次方程有一根为0,则m的值为()A、1B、-1C、1或-1D、8、三角形一边长为,另两边长是方程的两实根,则这是一个().A、直角三角形B、锐角三角形C、钝角三角形D、任意三角形9、将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为().A、B、C、D、210、若,则的值为().A、-3B、-1或4C、4D、无法计算11、因式分解结果为()A、B、C、D、12、一元二次方程的解是()A、1或-1B、2C、0或2D、013、若关于的方程的一个根是0,则另一个根是()A、1B、-1C、5D、14、下面一元二次方程的解法中,正确的是().A、,∴,∴B、,∴,∴C、,∴D、两边同除以x,得x=115、下列命题:①关于x的方程是一元二次方程;②与方程是同解方程;③方程与方程是同解方程;④由可得或.其中正确的命题有().A、0个B、1个C、2个D、3个二、填空题16、因式分解结果为________,方程的根为________.17、小华在解一元二次方程时,只得出一个根是x=4,则被他漏掉的一个根是x=________.18、方程的解是________.19、方程的解是________.20、三角形的每条边的长都是方程的根,则三角形的周长是________.三、解答题21、用适当的方法解方程.22、用因式分解法解下列方程:(1);(2);(3);(4).23、如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.24、把小圆形场地的半径增加5m得到大圆形场地,场地面积是小圆形场地的4倍,求小圆形场地的半径.25、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.(1)用,,表示纸片剩余部分的面积;(2)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求剪去的正方形的边长.答案解析部分一、选择题1、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】如果两个因式的积为0,那么至少有一个因式为0.【分析】本题考查直接利用因式分解法的求解.2、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,以x+1为整体提取公因式即可得C.【分析】将x+1看作整体进行提公因式可以简化计算.3、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解.【分析】公式法中常利用的公式有:平方差公式,与完全平方公式.4、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】整式x+1与x-4的积为,则为,∴.【分析】本题考查直接利用因式分解法的求解.【考点】解一元二次方程-因式分解法【解析】【解答】因为-5可以写成无数对整数的和,将其中一对整数相乘即可得到p的值得,所以p的值有无数个.【分析】本题考查因式分解法的逆向使用.6、【答案】D【考点】解一元二次方程-因式分解法【解析】【解答】因为关于x的多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解,将x=3代入得,解得p=1.【分析】本题的关键是多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解.7、【答案】B【考点】一元二次方程的定义,一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得,∴,∴,又∵关于x的方程为一元二次方程,∴m-1≠0即m≠1,∴m=-1.【分析】本题先根据0为方程的根列关于出m的方程,解所得的方程求得m的值,再根据一元二次方程的定义将m=1的情况排除即可.8、【答案】A【考点】解一元二次方程-因式分解法,勾股定理的逆定理【解析】【解答】在方程中,∵,∴,∴这个三角形的三边长分别为6,8,10,且,∴这个三角形为直角三角形.【分析】先解方程求得三角形的另两条边,再利用勾股定理的逆定理可知该三角形为直角三角形.【考点】完全平方公式,解一元二次方程-因式分解法,定义新运算【解析】【解答】根据题意有,∴,∴,∴,∴,∴.【分析】对于定义新运算的试题,我们可以将字母换成相应位置的式子或数,如在本题中可以认为a=x +1等.10、【答案】C【考点】解一元二次方程-因式分解法,平方的非负性【解析】【解答】在方程中,∴,又∵,∴.【分析】本题的关键在于将看作整体.11、【答案】D【考点】因式分解-提公因式法【解析】【解答】将多项式提公因式x-3得.【分析】本题考查因式分解中的提公因式法.12、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】对所给方程移项得,提公因式x得,∴.【分析】利用提公因式进行因式分解可以简化求解过程.13、【答案】C【考点】一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得k=0,∴所给方程为,∴,∴,∴方程的另一个根为5.【分析】先利用0为方程的一个根求得k的值,进而得到原方程,解方程即可求得另一个根.14、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】A中方程没有化成积为0的两个因式,所以错误;C中没有化成两个因式的积的形式,所以错误;D中同时除以x ,将x为0的解漏掉了,所以错误;B将方程化成了两个因式的积为0的形式,所以说法正确.【分析】用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.15、【答案】A【考点】一元二次方程的定义,解一元二次方程-因式分解法【解析】【解答】①中方程当k=0时不是一元二次方程;②中x=1比方程x2=1少一个解x=-1;③中方程x2=x比方程x=1多一个解x=0;④中由不能必然地得到x+1=3或x-1=3,因此没有正确的命题.【分析】同解方程有完全相同的解.二、填空题16、【答案】(x+24)(x-4);x1=-24 ,x2=4【考点】解一元二次方程-因式分解法,因式分解-十字相乘法【解析】【解答】用十字相乘法得,∴方程可以变为(x+24)(x-4) ,∴方程的根为x1=-24,x2=4.【分析】可以利用十字相乘进行因式分解,进而解方程.17、【答案】0【考点】解一元二次方程-因式分解法【解析】【解答】在方程中,∴,∴,∴被他漏掉的一个根是x=0.【分析】可以利用提公因式的方法进行因式分解.18、【答案】【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,提取公因式x+2得,∴方程的解为.【分析】考查提取公因式法的求解,且以x+2为整体提取公因式.19、【答案】【考点】解一元二次方程-直接开平方法【解析】【解答】∵,∴,∴,∴方程的解为.【分析】将256看作16的平方,利用平方差进行因式分解求方程解.20、【答案】6或10或12【考点】解一元二次方程-因式分解法,三角形三边关系【解析】【解答】将所给方程十字相乘进行因式分解得,∴方程的实数根为,当组成的三角形为等边三角形时:边长为2则周长为6,边长为4则周长为12;当组成的三角形为等腰三角形时,只能为:腰长为4,底边为2,那么周长为10,∴三角形的周长为6或10或12.【分析】一定要依据三角形的三边关系检验能否构成三角形.三、解答题21、【答案】解:,∴,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】以2t+3为整体提取公因式.22、【答案】(1)解:,∴,∴;(2)解:,∴,∴,∴;(3)解:,∴,∴,∴,∴;(4)解:,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】(1)利用十字相乘法进行因式分解;(2)将看作整体进行提公因式进行因式分解;(3)利用平方差公式进行因式分解;(4)将看作整体进行因式分解.23、【答案】解:将代入两个方程得,解得:,∴;将代入方程得,∴,∴,∴该方程的另一个根为-2;将代入方程得,∴,∴,∴该方程的另一个根为-5.【考点】解二元一次方程组,一元二次方程的解,解一元二次方程-因式分解法【解析】【分析】先根据题意列出关于的二元一次方程组,求得的值,再将其代入所给方程利用因式分解进行求解即可.24、【答案】解:设小圆形场地的半径为r ,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m .【考点】解一元二次方程-因式分解法,一元二次方程的应用【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.25、【答案】(1)解:纸片剩余部分的面积为:,(2)解:当a=6,b=4时,根据题意有:,∴,∴即,∴剪去的正方形的边长.【考点】解一元二次方程-因式分解法【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解专题训练》有答案————————————————————————————————作者:————————————————————————————————日期:因式分解专题训练一、整式有关概念:1.单项式(单个字母或数)(次数,系数);2.多项式(次数,项数) 3.同类项与合并同类项 二、幂的运算性质:1. nm nmaa a +=⋅ 2. ()mn nma a = 3. ()n n nb a ab =4. n n nb a b a =⎪⎭⎫ ⎝⎛ 5. n m n m a a a -=÷ 6. 10=a 7.p pa a 1=- 8.ppb a a b ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛- 三、整式的运算:加、减、乘、除(乘方、开方) 1. m (a+b+c )=ma+mb+mc 2. (a+b )(m+n )=am+an+bm+bn3. (a+b )(a-b )=22b a -4. ()2222a b ab a b +±=±5. ()ca bc ab c b a c b a 2222222+++++=++ 6.()()3322b a b ab a b a ±=+±μ7. ()()()ca bc ab c b a a c c b b a 222222222222+++++=+++++四、因式分解:1.把一个多项式化成几个整式的积的形式. 2.方法(一提二套三分组) (套公式包括十字相乘法)五、方法·规律·技巧:1.性质、公式的逆向使用;2.整体代入(配方、换元)3.非负数 的运用(配方) 六、实际运用1.下列变形中,正确的是( )A. ()123422+-=+-x x x B. ()112+=+÷xx x x C. ()()22y x y x y x -=+--- D.xx x x -=-11 2.若nm n m b b a ++-224a52与可以合并成一项,则nm 的值是( )A. 2B. 0C. -1D. 13.若22=+b a ,ab =2,则22b a +的值为( ) A. 6 B. 4 C. 23 D. 324.把多项式x x x 1212323+-分解因式,结果正解的是( )A. ()4432+-x x x B. ()243-x x C. ()()223-+x x x D. ()223-x x5.已知0322=--x x ,则x x 422-的值为( ) A. -6 B. 6 C. -2或6 D. -2或30 6.下列等式从左到右的的变形,属于因式分解的是( )A. a (x-y )=ax-ayB.()12122++=++x x x xC. ()()34312++=++x x x x D. ()()11x 3-+=-x x x x7.因式分解:()()21622---x x x = .8.分解因式:(a-b )(a-4b )+ab = . 9.分解因式:()9332--+x x x = .10.分解因式:22my mx -= .11.多项式4x 2+1加上一个单项式后能成为一个完全平方式,请你写出符合条件的所有的单 项式: . 12.计算:()20172016201642125.0⨯⨯-= .13.已知===-n m n ma a a4323,16,64则 .14.已知=+-=+-634x 964322x x x ,则 . 15.若()()222222,121y x y xyx +=-++= .16、将下列各式分解因式:(1)x ax x 2842+-- (2)xy xy y x 2712322-+-(3)()b a b a +--22 (4)()()321612-+-x a x17.将下列各式分解因式: (1)42161259y x - (2) 3394xy y x -(3)()()221162-++-x x (4)()()222516b a b a +--(5)2244y xy x -+- (6)22363ay axy ax ++ (7)172x 4912+-x (8)()()9326322++-+y x y x(9)()()()()222510b a b a b a b a -+-+++ (10)()()1222222+-+-x x x x18.将下列各式分解因式:(1)232+-x x (2)1322++x x(3)22144y xy x -- (4)()()()32212-+-+-m x m x m19.将下列各式分解因式:(1)()()a b y b a x -+-2249 (2)212+++-n n n x x x(3)()()xy y x 41122--- (4)()13322132222-+-+-x x x x(5)()()15222222--+-x x x x (6)(x+1)(x+2)(x+3)(x+4)-12020.将下列各式分解因式:(1)9622-++-y x x (2)ab b a 44422-+-(3)2212b a a +--- (4)3223y xy y x x --+21.简便计算:(1)1323.16523.14823.1⨯⨯+⨯- (2)814.13125.06.18⨯+⨯(3)2.48.1425.042.032⨯+⨯+⨯ (4)7582-2582(5)99992+19998+1 (6)20162-2015×2017(7)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222201611411311211Λ (8)420172014201320132016201420142016222-⨯-⨯-+22.已知()()()()137373212-----x x x x 可分解因式为()()b x a x ++3,其中a 、b 都是整数,求a+3b 的值.23.已知2222912x 4,010644y xy y x y x +-=++-+求的值.24.已知13,022232++=-+x x x x 求的值.25.已知n 为正整数,试说明n n 332-+能被24整除.26.若()5522,,1,1n m n m n n m m +≠+=+=求的值.27.设()()222222211212,...,35,13--+=-=-=n n a a a n (n 是大于0的自然数)。
(1)探究a n 是否为8的倍数,并用文字语言表达你所获得的结论;(2)试找出n a a a ,...,,21,这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,a n 是完全平方数(不必说明理由).因式分解专题训练答案 CDB DBD 7、(x -2)(x+4)(x -4) 8、(a -2b )2 9、(x -3)(4x+3) 10、m (x+y )(x -y ) 11、4x ,-4x ,4x 4 12、4 13、1/4 14、7 15、4 (负值舍去)16、(1)-2x (2x+4a -1) (2)-3xy (x-4y+9) (3)(a -b )(2a -2b -1) (4)2(x -1)2(1+3ax -3a )17、(1)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+2241534153y x y x (2)xy (2x+3y )(2x -3y ) (3)3(x -2)(5x -2) (4)-(9a+b )(a+9b ) (5)-(x -2y )2 (6)3a (x+y )2(7)(71x -1)2 (8)(2x+3y -3)2 (9)4(3a -2b )2 (10)(x -1)4 18、(1)(x -1)(x -2) (2)(2x+1)(x+1) (3)(x -2y )(4x+7y ) (4)(x+1)[(m -1)x+(m+1)] 19、(1)(a -b )(3x+2y )(3x -2y ) (2)x n (1-x )2 (3)(xy -1+x+y )(xy -1-x -y ) (4)x (2x -3)(x -3)(2x+3) (5)(x+1)(x -3)(x 2-2x+5) (6)(x -1)(x+6)(x 2+5x+6) 20、(1)(y+x -3)(y -x+3) (2)(a -2b+2)(a -2b -2) (3)(b+a+1)(b -a -1) (4)(x+y )2(x -y )21、(1)123 (2)4 (3)42 (4)508000 (5)10 8 (6)1(7)()()()()()141233222016)8(;40322017222=-+----⨯---+x x x x x x x x x ,则原式==设22、a =-7,b =-34;=-109 23、(2x -1)2+(y+3)2=0,=100 24、=3 25、=8×326、m 5=m 3×m 2=m 3(m+1)=m 4+m 3=(m 2)2+m (m+1)=(m+1)2+m 2+m=5m+3 同理:n 5=5n+3 ∴m 5+n 5=5(m+n )+6; 又∵m 2-n 2=m -n ∴m+n =1 ∴m 5+n 5=1127、(1)a n =(2n+1+2n -1)(2n+1-2n+1)=8n (2)a 1=8,a 2=16,...,a 8=64,...,a 32=32×8,...,a 128=128×8∴当n 为2的奇次方时,是a n 完全平方数,即n =22k-1时(k 为正整数)。