因式分解分类练习题(经典全面)
因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a ²-9b -9b²²=2、2x 2x³³-12x -12x²²+4x =2x ( )3、-27a -27a³³=( )³)³4、2xy 2xy²²-8x -8x³³ = 2x ( )()( )5、(、(x+2y x+2y x+2y)()()(y-2x y-2x y-2x))= -(x+2y x+2y)()()( )6、x (x-y x-y))+y +y((y-x y-x))=7、a-a a-a³³= a (a+1a+1)()()( )8、1600a 1600a²²-100=100-100=100(( )()( ) 9、9a 9a²²+( )+4 =( )²)²1010、(、(、(x+2x+2x+2))x-x-2= (x+2x+2)()()( )1111、、a ³-a =a ( )()( )1212、(、(、( )x ²+4x+16 =( )²)²1313、、3a 3a³³+5a +5a²²+( )=(a+ )()( +2a-4 +2a-4)1414、(、(、( )-2y -2y²² = -2( +1)²)²1515、、x ²-6x-7=-6x-7=((x )()(x x )1616、、3xy+6y 3xy+6y²²+4x +4x²²+8xy=3y( )+4x ( )=( )()( ) 1717、、a ²+3a-10=+3a-10=((a+m a+m)()()(a+n a+n a+n),则),则m= ,n= 1818、、8a 8a³³-b -b³³=(2a-b 2a-b)()()( )1919、、xy+y xy+y²²+mx+my=+mx+my=((y ²+my +my))+( )=( )()( ) 2020、(、(、(x x ²+y +y²)²²)²²)²-4x -4x -4x²²y ²=二、选择题(共32题)1、多项式2a 2a²²+3a+1因式分解等于(因式分解等于( )A 、(、(a+1a+1a+1)()()(a-1a-1a-1))B 、(、(2a+12a+12a+1)()()(2a-12a-12a-1))C 、(、(2a+12a+12a+1)()()(a+1a+1a+1))D 、(、(2a+12a+12a+1)()()(a-1a-1a-1))2、下列各式分解因式正确的是(、下列各式分解因式正确的是( )A 、3x 3x²²+6x+3= 3(x+1x+1)²)²)²B B 、2x 2x²²+5xy-2y +5xy-2y²²=(2x+y 2x+y)()()(x+2y x+2y x+2y)) C 、2x 2x²²+6xy= (2x+32x+3)()()(x+2y x+2y x+2y)) D 、a ²-6=-6=((a-3a-3)()()(a-2a-2a-2))3、下列各式中,能有平方差公式分解因式的是(、下列各式中,能有平方差公式分解因式的是( )A 、4x 4x²²+4B 、(、(2x+32x+32x+3)²)²)² -4 -4(3x 3x²²+2+2)²)²)²C 、9x 9x²²-2xD 、a ²+b +b²²4、把多项式x ²-3x-70因式分解,得(因式分解,得( ) A 、(、(x-5x-5x-5))(x+14) B 、(、(x+5x+5x+5)()()(x-14x-14x-14))C 、(、(x-7x-7x-7)()()(x+10x+10x+10))D 、(、(x+7x+7x+7)()()(x-10x-10x-10))5、已知a+b=0a+b=0,则多项式,则多项式a ³+3a +3a²²+4ab+b +4ab+b²²+b +b³的值是(³的值是(³的值是() A 、0 B 、1 C 、 -2 D 、 26、把4a 4a²²+3a-1因式分解,得(因式分解,得() A 、(、(2a+12a+12a+1)()()(2a-12a-12a-1)) B 、(、(2a-12a-12a-1)()()(a-3a-3a-3))C 、(、(4a-14a-14a-1)()()(a+1a+1a+1))D 、(、(4a+14a+14a+1)()()(a-1a-1a-1))7、下列等式中,属于因式分解的是(、下列等式中,属于因式分解的是() A 、a (1+b 1+b))+b +b((a+1a+1))= (a+1a+1)()()(b+1b+1b+1))B 、2a 2a((b+2b+2))+b +b((a-1a-1))=2ab-4a+ab-bC 、a ²-6a+10 =a (a-6a-6))+10D 、(、(x+3x+3x+3)²)²)²-2-2-2((x+3x+3))=(x+3x+3)()()(x+1x+1x+1))8、2m 2m²²+6x+2x +6x+2x²是一个完全平方公式,则²是一个完全平方公式,则m 的值是(的值是() A 、 0 B 、 ± 32 C 、 ±52 D 、949、多项式3x 3x³³-27x 因式分解正确的是()因式分解正确的是()A 、3x 3x((x ²-9-9))B 、3x 3x((x ²+9) C 、3x 3x((x+3x+3)()()(x-3x-3x-3)) D 、3x 3x((3x-13x-1)()()(3x+13x+13x+1))1010、已知、已知x >0,且多项式x ³+4x +4x²²+x-6=0+x-6=0,则,则x 的值是(的值是( ) A 、1 B 、2 C 、3 D 、41111、多项式、多项式2a 2a²²+4ab+2b +4ab+2b²²+k 分解因式后,它的一个因式是(分解因式后,它的一个因式是(a+b-2a+b-2a+b-2),则),则k 的值是(是() A 、4 B 、-4 C 、8 D 、-81212、对、对、对 a a 4 + 4进行因式分解,所得结论正确的是(进行因式分解,所得结论正确的是() A 、 (a ²+2+2)²)²)² B B 、 (a ²+2+2)) (a ²-2-2))C 、有一个因式为(、有一个因式为(a a ²+2a+2+2a+2))D 、不能因式分解、不能因式分解1313、多项式、多项式a ²(²(m-n m-n m-n))+9+9((n-m n-m)分解因式得()分解因式得()分解因式得() A 、(、(a a ²+9+9)()()(m-n m-n m-n)) B 、(、(m-n m-n m-n)()()(a+3a+3a+3)()()(a-3a-3a-3))C 、(、(a a ²+9+9)()()(m+n m+n m+n))D 、(、(m+n m+n m+n)()()(a+3a+3a+3)²)²)²1414、多项式、多项式m 4-14m -14m²²+1分解因式的结果是(分解因式的结果是() A 、(、(m m ²+4m+1+4m+1)()()(m m ²-4m+1-4m+1)) B 、(、(m m ²+3m+1+3m+1)()()(m m ²-6m+1-6m+1))C 、(、(m m ²-m+1-m+1)()()(m m ²+m+1+m+1))D 、(、(m m ²-1-1)()()(m m ²+1+1))1515、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是() A 、-x -x²²+3x = -x (x+3x+3)) B 、x ²+xy+x=x +xy+x=x((x+y x+y))C 、2m 2m((2m-n 2m-n))+n +n((n-2m n-2m))= (2m-n 2m-n)²)²)²D D 、a ²-4a+4=-4a+4=((a+2a+2)()()(a-2a-2a-2))1616、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是( )A 、2x 2x((a-b a-b))=2ax-2bxB 、2a 2a²²+a-1=a +a-1=a((2a+12a+1))-1C 、(、(a+1a+1a+1)()()(a+2a+2a+2))= a ²+3a+2D 、3a+6a 3a+6a²²=3a =3a((2a+12a+1))1717、下列各式、下列各式、下列各式① 2m+n 和m+2n ② 3n (a-b )和-a+b③x ³+y ³ 和x ²+xy ④a ²+b ² 和a ²-b ²其中有公因式的是( )A 、① ②B 、 ② ③C 、① ④D 、 ③ ④ 1818、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是( )A 、x ²+1B 、 x ²-1C 、 x ²+5yD 、x ²-5y1919、将以下多项式分解因式,结果中不含因式、将以下多项式分解因式,结果中不含因式x-1的是(的是( )A 、1 -x ³B 、x ²-2x+1C 、x (2a+32a+3))-(3-2a 3-2a))D 、2x 2x((m+n m+n))-2-2((m+n m+n))2020、若多项式、若多项式2x 2x²²+ax 可以进行因式分解,则a 不能为(不能为( )A 、0B 、-1C 、1D 、22121、已知、已知x+y= -3,xy=2 ,则x ³y+xy y+xy³的值是(³的值是(³的值是( ) A 、 2 B 、 4 C 、10 D 、202222、、多项式x a -y a 因式分解的结果是(x ²+y +y²)²)(x+y x+y))(x-y x-y)),则a 的值是() A 、2 B 、4 C 、-2 D-42323、对、对8(a ²-2b -2b²)²)²)-a -a -a((7a+b 7a+b))+ab 进行因式分解,其结果为(进行因式分解,其结果为( )A 、(、(8a-b 8a-b 8a-b)()()(a-7b a-7b a-7b))B 、(、(2a+3b 2a+3b 2a+3b)()()(2a-3b 2a-3b 2a-3b))C 、(、(a+2b a+2b a+2b)()()(a-2b a-2b a-2b))D 、(、(a+4b a+4b a+4b)()()(a-4b a-4b a-4b))2424、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是( )A 、x ²-x-4=-x-4=((x+2x+2)()()(x-2x-2x-2))B 、2x 2x²²-3xy+y -3xy+y²² =(2x-y 2x-y)()()(x-y x-y x-y))C 、x(x-y)- y(y-x)=(x-y x-y)²)²)²D D 、4x-5x 4x-5x²²+6=+6=((2x+32x+3)()()(2x+22x+22x+2))2525、多项式、多项式a=2x a=2x²²+3x+1+3x+1,,b=4x b=4x²²-4x-3-4x-3,则,则M 和N 的公因式是(的公因式是( )A 、2x+1B 、2x-3C 、x+1D 、x+32626、多项式(、多项式(、多项式(x-2y x-2y x-2y)²)²)²+8xy +8xy 因式分解,结果为(因式分解,结果为( )A 、(、(x-2y+2x-2y+2x-2y+2)()()(x-2y+4x-2y+4x-2y+4))B 、(、(x-2y-2x-2y-2x-2y-2)()()(x-2y-4x-2y-4x-2y-4))C 、(、(x+2y x+2y x+2y)²)²)²D D 、(、(x-2y x-2y x-2y)²)²)²2727、下面多项式、下面多项式、下面多项式 ① x ²+5x-50 ②x ³-1③ x ³-4x ④3x ²-12他们因式分解后,含有三个因式的是(他们因式分解后,含有三个因式的是() A 、① ② 、 B 、③ ④ C 、 ③ D 、④28、已知、已知x= 12+1,则代数式(,则代数式(x+2x+2x+2)()()(x+4x+4x+4))+x +x²²-4的值是(的值是( ) A 、4+2 2 B 、4-2 2 C 、2 2 D 、4 22929、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的( ) A 、4x 4x²² -2 =(4x-24x-2))x ² B 、1-x 1-x²²=(1-x 1-x)²)²)² C 、x ²+2 = (x+2x+2)()()(x+1x+1x+1)) D 、x ²-1=-1=((x+1x+1)()()(x-1x-1x-1))3030、若、若x ²+7x-30与x ²-17x+42有共同的因式x+m x+m,则,则m 的值为(的值为() A 、-14 B 、-3 C 、3 D 、103131、下列因式分解中正确的个数为(、下列因式分解中正确的个数为(、下列因式分解中正确的个数为() ① x ²+y ²=(x+y )(x-y ) ② x ²-12x+32=(x-4)(x-8) ③ x ³+2xy+x=x (x ²+2y ) ④x 4-1=(x ²+1)(x ²-1)A 、1B 、2C 、3D 、43232、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是() A 、0.0 9- x ² B 、x ²+20x+100C 、 4x ²+4x+4D 、x ²-y -y²²-2xy三、因式分解(共42题)1、x ²(²(a-b a-b a-b))+(b-a b-a))2、x ³-xy -xy²²3、(、(a+1a+1a+1)²)²)²-9-9-9((a-1a-1)²)²)²4、x (xy+yz+xz xy+yz+xz))-xyz5、(、(x-1x-1x-1)()()(x-3x-3x-3))+16、a ²-4a+4-b -4a+4-b²²7、(、(x x ²-2x -2x)²)²)²+2x +2x +2x((x-2x-2))+18、(、(x+y+z x+y+z x+y+z)³)³)³-x -x -x³³-y -y³³-z -z³³9、x 4-5x -5x²²+41010、、5+75+7((x+1x+1))+2+2((x+1x+1)²)²)²1111、、a ²+b +b²²-a -a²²b ²-4ab-11212、、x 4+x +x²²+11313、、a 5-2a -2a³³-8a1414、、a ²(²(b-2b-2b-2))-a -a((2-b 2-b)) 1515、、a ²(²(x-y x-y x-y))+16+16((y-x y-x))1616、、x ²+6xy+9y +6xy+9y²²-x-3y-301717、(、(、(x x ²+y +y²²-z -z²)²²)²²)²-4x -4x -4x²²y ²1818、、xy xy²²-xz -xz²²+4xz-4x1919、、x ²(²(y-z y-z y-z))+y +y²(²(²(z-x z-x z-x))+z +z²(²(²(x-y x-y x-y))2020、、3x 3x²²-5x-1122121、、3m 3m²²x-4n x-4n²²y-3n y-3n²²x+4m x+4m²²y2222、、x ²(²(2-y 2-y 2-y))+(y-2y-2))2323、、x 4+x +x²²y ²+y 42424、、x 4-162525、(、(、(x-1x-1x-1)²)²)²--(y+1y+1)²)²)²2626、(、(、(x-2x-2x-2)()()(x-3x-3x-3))-202727、、2(x+y x+y)²)²)²-4-4-4((x+y x+y))-302828、、x ²+1-2x+4+1-2x+4((x-1x-1))2929、(、(、(a a ²+a +a)()()(a a ²+a+1+a+1))-123030、、5x+5y+x 5x+5y+x²²+2xy+y +2xy+y²²3131、、x ³+x +x²²-x-13232、、x (a+b a+b)²)²)²+x +x +x²(²(²(a+b a+b a+b))3333、(、(、(x+2x+2x+2)²)²)²-y -y -y²²-2x-33434、(、(、(x x ²-6-6)()()(x x ²-4-4))-15 3535、(、(、(x+1x+1x+1)²)²)²-2-2-2((x ²-1-1))3636、(、(、(ax+by ax+by ax+by)²)²)²++(ax-by ax-by)²)²)²-2-2-2((ax+by ax+by)()()(ax-by ax-by ax-by))3737、(、(、(a+1a+1a+1)()()(a+2a+2a+2))(a+3)(a+4)-33838、(、(、(a+1a+1a+1))4+(a+1a+1)²)²)²+1 +13939、、x 4+2x +2x³³+3x +3x²²+2x+14040、、4a 4a³³-31a+154141、、a 5+a+14242、、a ³+5a +5a²²+3a-9 四、求值(共10题)1、x+y=1x+y=1,,xy=2求x ²+y +y²²-4xy 的值的值2、x ²+x-1=0+x-1=0,求,求x 4+x +x³³+x 的值的值3、已知a (a-1a-1))-(a ²-b -b))+1=0+1=0,求,求a ²+b +b²²2-ab 的值的值 4、若(、若(x+m x+m x+m)()()(x+n x+n x+n))=x =x²²-6x+5-6x+5,求,求2mn 的值的值5、xy=1xy=1,求,求x ²+x x ²+2x+1 + y ²y ²+y 的值的值6、已知x >y >0,x-y=1x-y=1,,xy=2xy=2,求,求x ²-y -y²的值²的值²的值7、已知a= 2+1,b= 3-1,求,求ab+a-b-1的值的值8、已知x=m+1,y= -2m+1,z=m-2z=m-2,求,求x ²+y +y²²-z -z²²+2xy 的值。
因式分解分类练习题(经典全面)58409

因式分解练习题(提取公因式)8、2a b 5ab 9b 9、xy xz 2 210、24x y 12xy 28 y31、ay ax2、3mx 6my 3、24a 10ab4、215a 5a25、x y 2xy6、12xyz 2 29x y7、m x y n x y 8、x m n y m n 29、abc(m n)3ab(m n)10、12x(a b)29m(b \3a)专项训练二:禾U用乘法分配律的逆运算填空。
1、2 R 2 r (R r) 2、2 R 2 r 2 ( )3、如2 1g t22(t12t22) 4、15a225ab 2 5a (专项训练一:确定下列各多项式的公因式0)专项训练三、在下列各式左边的括号前填上“ +”或“-”,使等式成立。
11、13、1、y __(x y) 2、b a _(a b)3、y __(y z) 24、y x (x y)25、(y x)3__(x y)3& (x y)4__(y x)47、(a b)2n(b a)2n(n为自然数)8、(a b)2n1(b a)2n1(n为自然数)9、x (2 y) (1 x)(y 2) 10、1 x (2 y) (x 1)(y 2)11、2(a b) (b a) (a b)312、2(a b) (b a)4(a b)6专项训练四、把下列各式分解因式。
1、nx ny2、a2 ab 3、4x3 6x2 24、8m n 2mn7、23a y 3ay 6yc 33ma 6ma212ma312、56x yz2 214x y z 21xy15x3y25x2y 32 0x y414、16x 32x356x2专项训练五: 把下列各式分解因式1、3、5、7、9、11、x(a b) y(a b) 2、5x(x y) 2y(x y)6q(p q) 4p(p q) 4、(m n)(P q) (m n)(p q)a(a(2 aP(x(a2b) (a b) 2& x(x y) y(x y)b)(2a 3b) 3a(2a b)y) q(y x)b)(a b) (b a)10、12、x(xm(aa(xy)(x3)a)y)2(3b(ax(x y)2a)x) c(x a)5、25x2y3 15x2y2 & 12xyz 9x2y 213、33(x 1) y (1 x)3z 2 214、ab(a b) a(b a)15、mx(a b) nx(b a)17、(3a b)(3a b) (a b)(b 3a)19、x(x 2y) 2(y \3x) (y x)2(y x)2 x(x y)316、(a 2b)(2a 3b) 5a(2b a)(3b 2a)218、a(x y) b(y x)3 220、(x a) (x b) (a x) (b x)(y x)422、3(2a 3b)2n 1(3b 2a)2n(a b)(n为自然数)专项训练六、利用因式分解计算。
因式分解(分组分解法)专项练习100题及答案

因式分解(分组分解法)专项练习100题及答案(1) 2236493612672x y x y --+-(2) 22163228a b ab bc ca -+-+(3) 2291833155a b ab bc ca ++++(4) 227221272129x z xy yz zx ---+(5) 40803570xy x y --++(6) 2273554426x y xy yz zx ++++(7) 226494249x y y -+-(8) 28404260mx my nx ny -+-(9) 35152812ab a b --+(10) 70603530xy x y --++(11) 72452415mx my nx ny --+(12) 362095xy x y -+-+(13) 315735xy x y +--(14) 222415401531x z xy yz zx --++(15) 222428684921a b ab bc ca ++++(16) 581524ab a b --+(17) 222510351435x y xy yz zx ++++(18) 64248030ax ay bx by -+-(19) 27361216mx my nx ny -+-(20) 568070100xy x y +++(21) 221421237a c ab bc ca -+--(22) 222581707233m n m n -+++(23) 221681405416m n m n --++(24) 525315mn m n +++(25) 22811610828a b a b -+++(26) 40563042mn m n -+-(27) 2249259870a b a b -+-(28) 27632456xy x y +++(29) 42212412ab a b -+-(30) 203659mn m n +--(31) 49282112xy x y -+-+(32) 22821101526x z xy yz zx ++--(33) 22274984219x y xy yz zx ++++(34) 22167124258a c ab bc ca ++++(35) 1860620mn m n +++(36) 751410ab a b -+-(37) 35561524ax ay bx by +--(38) 224815181558a c ab bc ca ++--(39) 50507070xy x y --++(40) 222835243063x z xy yz zx +-+-(41) 42546381ax ay bx by --+(42) 2228249718a c ab bc ca +--+(43) 7105680xy x y +--(44) 36168136mx my nx ny -+-(45) 14561456xy x y -++-(46) 223630743563x y xy yz zx ++--(47) 22451035147a c ab bc ca --++(48) 222536307227m n m n -+--(49) 228149185615x y x y -++-(50) 609069xy x y -++-(51) 2272463646a c ab bc ca +--+(52) 3211070xy x y ----(53) 2271242444a c ab bc ca ++-- (54) 8010405ab a b +++(55) 229153262a b ab bc ca ++--(56) 22162516305a b a b -+--(57) 327327xy x y -+-(58) 22322141416x y xy yz zx -+--(59) 24304050ax ay bx by --+(60) 42302115xy x y +++(61) 22949429m n n -+- (62) 221664168021m n m n -++-(63) 2214214337a b ab bc ca -++-(64) 22156128a c ab bc ca -+++(65) 2281361267213a b a b --++(66) 81727264mn m n +++(67) 222728153575a c ab bc ca ++--(68) 224215121053a c ab bc ca +-+-(69) 22862a c ab bc ca --+-(70) 222128281637a c ab bc ca -+-+(71) 22211248414x y xy yz zx ++++ (72) 692030ab a b --+(73) 22494701216m n m n -+-+(74) 2249812814460a b a b -++-(75) 22512171525x y xy yz zx -+-+(76) 70404928ab a b -+-(77) 22164912681x y y -+-(78) 223411164x y xy yz zx ---+ (79) 40501620mn m n +--(80) 942712ax ay bx by -+-(81) 22644144877m n m n ---+(82) 351573ax ay bx by +++(83) 228141443617a b a b --+-(84) 223851010a c ab bc ca +--+(85) 35204224ab a b +++(86) 356359mn m n --+(87) 1830610ax ay bx by +++(88) 221814322127x y xy yz zx +-+-(89) 22535407a b ab bc ca ++++(90) 42491214mx my nx ny +++(91) 222426419a c ab bc ca ++--(92) 60609090xy x y --+(93) 22254202845x y x y -++-(94) 2218184615x z xy yz zx -+-- (95) 36182412ax ay bx by +++(96) 80705649mn m n +++(97) 226324975x z xy yz zx -+-+(98) 35255640xy x y -++-(99) 42544254ax ay bx by -+-(100) 72635649mx my nx ny +++因式分解(分组分解法)专项练习100题答案(1)(6712)(676)x y x y+--+(2)(8)(23)a b a b c-++(3)(3)(965)a b a b c+++(4)(97)(833)x z x y z+--(5)5(87)(2)x y--+(6)(7)(756)x y x y z+++(7)(837)(837)x y x y+--+ (8)2(23)(710)m n x y+-(9)(54)(73)a b--(10)5(21)(76)x y--+(11)3(3)(85)m n x y--(12)(41)(95)x y-+-(13)(37)(5)x y-+(14)(355)(83)x y z x z-+-(15)(847)(37)a b c a b+++(16)(3)(58)a b--(17)(52)(557)x y x y z+++(18)2(45)(83)a b x y+-(19)(94)(34)m n x y+-(20)2(45)(710)x y++(21)(23)(77)a c ab c-++ (22)(593)(5911)m n m n++-+ (23)(498)(492)m n m n+---(24)(53)(5)m n++(25)(92)(914)a b a b++-+ (26)2(43)(57)m n+-(27)(7514)(75)a b a b++-(28)(98)(37)x y++(29)3(74)(21)a b+-(30)(41)(59)m n-+(31)(73)(74)x y-+-(32)(23)(457)x z x y z-+-(33)(37)(973)x y x y z+++(34)(27)(86)a c ab c+++ (35)2(31)(310)m n++(36)(2)(75)a b+-(37)(73)(58)a b x y-+(38)(833)(65)a b c a c+--(39)10(57)(1)x y--+(40)(45)(767)x z x y z---(41)3(23)(79)a b x y--(42)(472)(7)a b c a c-++ (43)(8)(710)x y-+(44)(49)(94)m n x y+-(45)14(1)(4)x y---(46)(95)(467)x y x y z++-(47)(975)(52)a b c a c-+-(48)(569)(563)m n m n++--(49)(973)(975)x y x y+--+ (50)3(101)(23)x y---(51)(6)(764)a c ab c+-+ (52)(310)(7)x y-++(53)(6)(742)a c ab c-+-(54)5(21)(81)a b++(55)(952)(3)a b c a b+-+(56)(455)(451)a b a b++--(57)3(1)(9)x y+-(58)(87)(432)x y x y z+--(59)2(35)(45)a b x y--(60)3(21)(75)x y++(61)(373)(373)m n m n+--+(62)(483)(487)m n m n+--+(63)(27)(73)a b c a b+--(64)(32)(543)a c ab c++-(65)(9613)(961)a b a b+---(66)(98)(98)m n++(67)(37)(954)a c ab c-+-(68)(723)(65)a b c a c---(69)(86)()a b c a c-+-(70)(347)(74)a b c a c++-(71)(362)(72)x y z x y+++(72)(310)(23)a b--(73)(728)(722)m n m n++-+(74)(796)(7910)a b a b+--+ (75)(45)(53)x y z x y++-(76)(107)(74)a b+-(77)(479)(479)x y x y+--+ (78)(4)(34)x y x y z-++(79)2(52)(45)m n-+(80)(3)(94)a b x y+-(81)(827)(8211)m n m n+---(82)(5)(73)a b x y++(83)(9217)(921)a b a b+--+(84)(354)(2)a b c a c-++(85)(56)(74)a b++(86)(71)(59)m n--(87)2(3)(35)a b x y++(88)(223)(97)x y z x y---(89)(55)(7)a b c a b+++(90)(72)(67)m n x y++(91)(32)(82)a c ab c-+-(92)30(23)(1)x y--(93)(525)(529)x y x y+--+ (94)(926)(23)x y z x z++-(95)6(32)(2)a b x y++(96)(107)(87)m n++(97)(972)(7)x y z x z++-(98)(58)(75)x y---(99)6()(79)a b x y+-(100)(97)(87)m n x y++。
八年级上册因式分解分类练习题(经典全面)

因式分解练习题(提取公因式)专项训练一:确定以下各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在以下各式左边的括号前填上“+〞或“-〞,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把以下各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把以下各式分解因式。
因式分解分类练习(经典全面)

因式分解分类练习(经典全面)因式分解练习题(提取公因式)28、 a b - 5ab9b310、-24x y-12xy 28y专项训练一:确定下列各多项式的公因式1、ay ax2、3mx-6my 23、 4a 10ab3 211、-3ma 6ma - 12ma3 2 2 2 212、56x yz 14x y z- 21 xy z24、15a 5a 5、2 2 6、12xyz -9x y7、mx-y n x-y 28、x m n y m n3 2 2 2 313、15x y 5x y - 20x y4 3 214、-16x - 32x 56x39、abc(m-n) -ab(m-n) 10、12x(a-b)2-9m(b - a)3专项训练二:禾U用乘法分配律的逆运算填空。
1、2兀R+2nr= ____ (R+r)2、2兀只+ 2兀「=2兀( _)3、-gt.^-gt2^ (仁2+t22)4、15a2+25ab2 =5a( )2 2专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、x y 二__(x y)2、b -a 二__(a -b)2 23、-z y=_(y-z)4、y-x 二_____ (x-y)5、(y-x)3 =__(x-y)36、-(x - y)4 =__(y-x)47、(a—b)2n =___(b—a)2n(n为自然数)8、(a_b)2n*=___(b-a)2n4t(n为自然数9、1-x(2-y)二___(1-x)(y-2)2 3 11、(a_b) (b_a)= ____ (a_b)专项训练四、把下列各式分解因式。
1、nx -ny2、a2 ab )10、1-x (2-y)二___(x-1)(y-2)12、(a-b)2(b-a)4=___(a-b)63、4x3 -6x24、8m2n 2mn专项训练五:把下列各式分解因式I、x(a b)- y(a b)3、6q(p q)-4p(p q)25、a(a-b) (a-b)7、(2a b)(2a-3b)-3a(2a b)9、p(x-y)-q(y-x)II、(a b)(a -b) -(b a)3 313、3(x-1) y_(1_x) z2、5x(x- y) 2y(x- y)4、 (m n)(P q)- (m n)( p- q)26、x(x- y) - y(x- y)28、x(x y)(x「y)「x(x y)10、m(a-3) 2(3-a)12、 a(x-a) b(a「x)「c(x-a)2 214、 -ab(a - b) a(b -a)5、25x2y3 -15x2y26、12xyz-9x2y2 27、3a y - 3ay 6y16、(a -2b)(2a -3b)-5a(2b-a)(3b-2a)319、x(x -y)2 _2(y _x)3 _(y _x)23 220、(x「a) (x_b) (a_x) (b「x)3、证明:32002 - 4 32001 10 32000能被7整除。
初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
因式分解典型题(分类详细)

因式分解典型题一. 因式分解的概念1.下列各式从左到右的变形中,是因式分解的为( )A 、B 、C 、D 、 2﹒下列等式中,从左到右的变形是因式分解的是( )A ﹒2x 2+8x -1=2x (x +4)-1B ﹒(x +5)(x -2)=x 2+3x -10C ﹒x 2-8x +16=(x -4)2D ﹒6ab =2a ·3b二.提公因式1、232y x 与y x 612的公因式是_____________2.多项式-6ab 2+18a 2b 2-12a 3b 2c 的公因式是( )A .-6ab 2cB .-ab 2C .-6ab 2D .-6a 3b 2c3﹒多项式15m 3n 2+5m 2n -20m 2n 3的公因式是( )A ﹒5mnB ﹒5m 2n 2C ﹒5m 2nD ﹒5mn 24.多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --5.多项式m mx -2与122+-x x 的公因式为_____________;三.公式法(高次+复杂系数)1.分解因式得( )A 、 B.C 、D 、2.把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b)4D 、(a +b)2(a -b)23. (1)22)2(4)2(25x y y x ---=______________(2)811824+-x x =______________________4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。
四.因式分解综合1.把多项式分解因式等于( )A 、B 、C 、m (a -2)(m -1)D 、m (a -2)(m +1)2.下列因式分解不正确的是( )A .-2ab 2+4a 2b =2ab (-b +2a )B .3m (a -b )-9n (b -a )=3(a -b )(m +3n )C .-5ab +15a 2bx +25ab 3y =-5ab (-3ax -5b 2y );D .3ay 2-6ay -3a =3a (y 2-2y -1)bx ax b a x -=-)(222)1)(1(1y x x y x ++-=+-)1)(1(12-+=-x x x c b a x c bx ax ++=++)(14-x )1)(1(22-+x x 22)1()1(-+x x )1)(1)(1(2++-x x x 3)1)(1(+-x x )2()2(2a m a m -+-))(2(2m m a +-))(2(2m m a --3﹒下列因式分解正确的是( )A ﹒-a 2-b 2=(-a +b )(-a -b )B ﹒x 2+9=(x +3)2C ﹒1-4x 2=(1+4x )(1-4x )D ﹒a 3-4a 2=a 2(a -4)4、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -五.完全平方式(配方=配成完全平方的形式)1、()22)3(__6+=++x x x , ()22)3(9___-=++x x2、若229y k x ++是完全平方式,则k=_______。
因式分解练习题分类

因式分解练习题分类一、提取公因式类1. \( 3a^2 + 6a \)2. \( 4x^3y 2x^2y^2 + 8xy^3 \)3. \( 5m^2n 15mn^2 + 10n^3 \)4. \( 2ab^2 4a^2b + 6ab \)5. \( 9x^4y^2 12x^3y^3 + 6x^2y^4 \)二、公式法类1. \( a^2 2ab + b^2 \)2. \( x^2 + 10x + 25 \)3. \( 4y^2 12y + 9 \)4. \( 9m^2 6mn + n^2 \)5. \( 16p^2 24pq + 9q^2 \)三、分组分解法类1. \( x^3 + 2x^2 5x 10 \)2. \( 3a^3 3a^2 + a 1 \)3. \( 4b^3 8b^2 + 3b 6 \)4. \( 5m^3 + 10m^2 15m 30 \)5. \( 6n^3 12n^2 + 9n 18 \)四、十字相乘法类1. \( x^2 + 5x + 6 \)2. \( y^2 7y + 12 \)3. \( z^2 + 4z 5 \)4. \( m^2 9m + 20 \)5. \( n^2 + 8n + 16 \)五、综合运用类1. \( a^3 3a^2b + 3ab^2 b^3 \)2. \( 2x^4 5x^3 + 3x^2 x \)3. \( 4y^5 8y^4 + 6y^3 2y^2 \)4. \( 3m^4 6m^3n + 3m^2n^2 mn^3 \)5. \( 5n^6 10n^5 + 10n^4 5n^3 \)六、特殊因式分解类1. \( (x + y)^2 (x y)^2 \)2. \( (a + b)(a b) + (a + b)^2 \)3. \( (2m 3n)(3m + 2n) \)4. \( (x^2 y^2)(x^2 + y^2) \)5. \( (4p + 5q)(4p 5q) + 16p^2 \)七、多项式乘法逆运算类1. \( (x + 3)^2 9 \)2. \( (2a 4)(2a + 4) \)3. \( (3b + 5)(3b 5) \)4. \( (4c 7)(4c + 7) + 49 \)5. \( (5d + 2)(5d 2) 20d \)八、高次多项式因式分解类1. \( x^4 16 \)2. \( y^6 64 \)3. \( z^3 + 27 \)4. \( m^4 81m^2 + 100 \)5. \( n^5 32n^3 + 32n \)九、含有复杂系数的因式分解类1. \( 2x^2 5x 3 \)2. \( 3y^2 + 7y 2 \)3. \( 4z^2 11z + 6 \)4. \( 5m^2 + 13m 8 \)5. \( 6n^2 17n + 10 \)十、实际应用问题类1. 一个长方形的面积是 \( 24cm^2 \),长比宽多2cm,求长和宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解练习题(提取公因式) 平昌县得胜中学 任 璟(编)专项训练一:确定下列各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()nna b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。
1、()()x a b y a b +-+2、5()2()x x y y x y -+-3、6()4()q p q p p q +-+4、()()()()m n P q m n p q ++-+-5、2()()a a b a b -+-6、2()()x x y y x y ---7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+9、()()p x y q y x --- 10、(3)2(3)m a a -+-11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---13、333(1)(1)x y x z --- 14、22()()ab a b a b a --+-15、()()mx a b nx b a --- 16、(2)(23)5(2)(32)a b a b a b a b a -----17、(3)(3)()(3)a b a b a b b a +-+-- 18、2()()a x y b y x -+-19、232()2()()x x y y x y x ----- 20、32()()()()x a x b a x b x --+--21、234()()()y x x x y y x -+--- 22、2123(23)(32)()()n n a b b a a b n +----为自然数专项训练六、利用因式分解计算。
1、7.6199.8 4.3199.8 1.9199.8⨯+⨯-⨯2、2.186 1.237 1.237 1.186⨯-⨯3、212019(3)(3)63-+-+⨯4、198420032003200319841984⨯-⨯专项训练七:利用因式分解证明下列各题。
1、求证:当n 为整数时,2n n +必能被2整除。
2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。
3、证明:2002200120003431037-⨯+⨯能被整除。
专项训练八:利用因式分解解答列各题。
1、22已知a+b=13,ab=40, 求2a b+2ab 的值。
2、32232132a b ab +==已知,,求a b+2a b +ab 的值。
因式分解习题(二) 公式法分解因式(任璟编)专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式1、24x -2、29y -3、21a -4、224x y -5、2125b -6、222x y z -7、2240.019m b - 8、2219a x - 9、2236m n -10、2249x y - 11、220.8116a b - 12、222549p q -13、2422a x b y - 14、41x -15、4416a b - 16、44411681a b m -题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +--3、2216()9()a b a b --+4、229()4()x y x y --+5、22()()a b c a b c ++-+-6、224()a b c -+题型(三):把下列各式分解因式1、53x x -2、224ax ay -3、322ab ab -4、316x x -5、2433ax ay -6、2(25)4(52)x x x -+-7、324x xy - 8、343322x y x - 9、4416ma mb -10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+题型(四):利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。
2、计算⑴22758258- ⑵22429171- ⑶223.59 2.54⨯-⨯⑷2222211111(1)(1)(1)(1)(1)234910---⋅⋅⋅--专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因式1、221x x ++2、2441a a ++3、 2169y y -+4、214m m ++ 5、 221x x -+ 6、2816a a -+7、2144t t -+ 8、21449m m -+ 9、222121b b -+10、214y y ++ 11、2258064m m -+ 12、243681a a ++13、2242025p pq q -+ 14、224x xy y ++ 15、2244x y xy +-题型(二):把下列各式分解因式1、2()6()9x y x y ++++2、222()()a a b c b c -+++3、2412()9()x y x y --+-4、22()4()4m n m m n m ++++5、()4(1)x y x y +-+-6、22(1)4(1)4a a a a ++++题型(三):把下列各式分解因式1、222xy x y --2、22344xy x y y --3、232a a a -+-题型(四):把下列各式分解因式1、221222x xy y ++ 2、42232510x x y x y ++3、2232ax a x a ++4、22222()4x y x y +-5、2222()(34)a ab ab b +-+6、42()18()81x y x y +-++7、2222(1)4(1)4a a a a +-++ 8、42242()()a a b c b c -+++9、4224816x x y y -+ 10、2222()8()16()a b a b a b +--+-题型(五):利用因式分解解答下列各题1、已知: 2211128,22x y x xy y ==++,求代数式的值。
2、3322322a b ab +==已知,,求代数式a b+ab -2a b 的值。
3、已知:2220a b c ABC a b c ab bc ac ++---=、、为△的三边,且, 判断三角形的形状,并说明理由。
因式分解习题(三)十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同; 当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项; 常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母. 例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 13=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11 解:101132+-x x =)53)(2(--x x 练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式 例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。