中考数学代数式知识点汇总讲解学习

合集下载

中考数学知识点总结 代数式 (5大知识点+例题) 新人教版

中考数学知识点总结 代数式 (5大知识点+例题) 新人教版

中考数学知识点总结 代数式 (5大知识点+例题) 新人教版基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。

2024年中考数学一轮复习+课件+第2讲 代数式与整式

2024年中考数学一轮复习+课件+第2讲 代数式与整式

3a2
.
6.(2023凉山)已知y2-my+1是完全平方式,则m的值是
±2
.
7.(2023凉山)已知x2-2x-1=0,则3x3-10x2+5x+2 027的值等于 2 023 .
8.因式分解:
(1)(2022自贡)m2+m= m(m+1) ;
(2)(2023德阳)ax2-4ay2= a(x+2y)(x-2y) .
ma+mb+mc
ma+mb+na+nb
乘法
公式
常用
公式
变形
平方差
公式
(a+b)(a-b)=
完全平
方公式
(a±b)2=
a2-b2
a2±2ab+b2
(a+b)2-2ab = (a-b)2+2ab
(2)(a-b)2= (a+b)2 -4ab
(1)a2+b2=
因式分解(常考点)
1.概念
积 的形式,像这样的式子变形叫做
A.2ab-2a=b
B.a2·a3=a6
C.3a2b÷a=3a
D.(a+2)(2-a)=4-a2
整式的运算
2
[例 5] (2023 凉山)先化简,再求值:(2x+y) -(2x+y)(2x-y)-2y(x+y),其

中 x=( )
2 023
,y=2

2 022
.
2
解:(2x+y) -(2x+y)(2x-y)-2y(x+y)
这个多项式的因式分解,因式分解与 整式乘法 是方向相反的变形.

中考数学代数知识点总结

中考数学代数知识点总结

中考数学代数知识点总结一、基本代数运算1. 加减乘除加减乘除是代数运算的基本内容,也是中考考查的重点。

在加减乘除的运算中,学生需要掌握整数、分数、小数等相关概念,以及它们在运算中的应用。

2. 整式的加减乘除整式是由字母和数字及其运算符号组成的代数式,整式的加减乘除是中考代数题中的必考内容,需要学生掌握整式的加减乘除法则,例如同类项相加、互化成法等方法。

3. 代数式的计算在代数式的计算中,学生需要掌握二项式和多项式的加减乘除法则,以及含有方程式的复合运算等内容。

二、一元一次方程1. 一元一次方程的概念一元一次方程是解决实际问题中常见的代数问题,学生需要掌握一元一次方程的定义、解法以及应用。

2. 一元一次方程的解法一元一次方程的解法包括整式移项、合并同类项、去括号、去分母、得到等价方程、方程变形、化简、合并同类项、移项、通分、求解等步骤。

3. 一元一次方程的应用一元一次方程是一种常用的数学模型,学生需要学会将实际问题转化为代数方程,并求解出方程的未知数的值。

三、一元一次不等式1. 一元一次不等式的概念一元一次不等式是一元一次方程的推广,学生需要掌握不等式的概念、性质以及解法。

2. 一元一次不等式的解法解一元一次不等式的方法包括整式移项、合并同类项、去括号、去分母、得到等价不等式、不等式变形、化简、合并同类项、移项、通分、求解等步骤。

四、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个关于同两个未知数的一次方程组成的代数方程组,解二元一次方程组需要用到方程相加消元的方法。

2. 二元一次方程组的解法解二元一次方程组的方法包括加法、减法、代入法等,学生需要掌握这些解法,并且能够根据实际问题将其转化为方程组进行求解。

五、一元二次方程1. 一元二次方程的概念一元二次方程是一元二次多项式的零点集合,学生需要掌握一元二次方程的定义、性质以及应用。

2. 一元二次方程的解法解一元二次方程的方法包括配方法、因式分解、公式法、求判别式、根的关系、三种情况等。

中考数学专题训练第2讲整式(知识点梳理)

中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。

单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。

2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。

(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。

(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。

3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。

(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。

(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。

(4)运算时,要注意运算顺序。

(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。

2.单项式中不能含有加减法运算,但可以含有除法运算。

3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。

2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第二讲  代数式(含答案)(全国通用版)

第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。

中考数学总复习知识点总结:第二章 代数式

中考数学总复习知识点总结:第二章  代数式

第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2.单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如是6次单项式。

考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数, 叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。

注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。

(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。

2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。

(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。

4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。

初中数学中考必考知识点汇总盘点

初中数学中考必考知识点汇总盘点

初中数学中考必考知识点汇总盘点一、代数部分1 .科学记数法:设N>0,则N=aX10"(比中lWa<10, n 为整数)。

2、有效数字:,个近似数,从左边第•个不是0的数.到精确到的数位为止,所仃的数字.叫做这个数的仃效数 字。

格确度的形式1两种:⑴精确到那字:(2)保印几个有效数字,3、代数式的分类:无理式4、整式的乘除:系的运算法则:其中m 、n 都是正整数 同底数州相乘:代数式有理式整代分式单项式多项式 席的乘方: ST =L 积的乘力:5、乘法公式: 平方差公式:(a + b)(a -b) = a 2 -b 2:完全平方公式:(a + b)2=a 2+2ab+b\ (a-b)2 =a 2-2ab + b 26,因式分解的股步骤:(1)如果多项式的各项有公因式,那么先提公因式:(2)提出公因式或无公因式可提,再号虑可否运用公式或卜字相乘法:7、分式定义:形呜的式门叫分式,其中A 、B 是脍式,II.R 中含勺字明<1)分式无意义:B=”时,分式无意义:BWO 时,分式仃意义. (2)分式的值为0: A=0, BWO 时,分式的值等「00 X 、分式的基本性质:<1)人=土也也是W (购整式):(2)B B • M从二次根式的性质:13(M 是关。

的箱式)(1) (4a)2 =a(a>0);(3) 7ab = & , b ya2O, b 》O); 10、二次根式的运算:(1) .次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根(2)二次根式的乘法:yjTi - \ib = 4ab (a^O, b>0)o(3):次根式的除法:二产= 4h二次根式运算的最终结果如果是根式,要化成坡简二次根式”11、一元一次方程(1)•儿,次方程的标准形式:ax+b=O (其中x)未知数,a、b是已知数,aWO)(2)•元•次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,,壬0)12、一元二次方程(3)•几二次方程的般形式:ax2 + bx + c = 0 ( 11:中x是未知数,a、b、c是已知数,a^O)(4)•元.次力程的解法:■按开平方法、配方法、公式法、因式分解法(5)一元(次方界解法的选择顺序是:先特殊后一般,如没有要求.一般不用配方法。

中考数学专题02 代数式【考点巩固】(解析版)

中考数学专题02 代数式【考点巩固】(解析版)

专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学代数式知识点汇总
一、代数式
1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:
⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式
多项式单项式整式有理式代数式
二、整式的有关概念及运算 1、概念
(1)单项式:像x 、7、
y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫
常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算
(1)整式的加减:
合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:
幂的运算法则:其中m 、n 都是正整数
同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:
mn n m a a =)(积的乘方:n n n b a ab =)(。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的
和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式:
平方差公式:22))((b a b a b a -=-+;
完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-
三、因式分解
1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:
(1)提取公因式法:)(c b a m mc mb ma ++=++
(2)运用公式法:
平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±
(3)十字相乘法:
))(()(2b x a x ab x b a x ++=+++ (4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若
)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有: ))((212x x x x a c bx ax --=++
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提公因式;
(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;
(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式
1、分式定义:形如B A
的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:
(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M M B M A B A
(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式
1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽
方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)
2、二次根式的性质:
(1) )0()(2≥=a a a ;(2)
⎩⎨⎧<-≥==)0()0(2a a a a a a ;(3)b a ab ⋅=(a
≥0,b ≥0);(4))0,0(≥≥=b a b a b a
3、运算: (1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。

(3)二次根式的除法:)0,0(≥≥=b a b a b a
二次根式运算的最终结果如果是根式,要化成最简二次根式。

例题:
一、因式分解:
1、提公因式法:
例1、
)(6)(2422x y b y x a -+- 分析:先提公因式,后用平方差公式
解:略
[规律总结]因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。

2、十字相乘法:
例2、(1)36524--x x ;(2)
12)(4)(2-+-+y x y x 分析:可看成是2
x 和(x+y)的二次三项式,先用十字相乘法,初步分解。

解:略
[规律总结]应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。

3、分组分解法:
例3、2223--+x x x
分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。

解:略
[规律总结]对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。

4、求根公式法:
例4、552++x x
解:略
二、式的运算
巧用公式
例5、计算:22)11()11(b a b a -+---
分析:运用平方差公式因式分解,使分式运算简单化。

解:略
[规律总结]抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。

2、化简求值:
例6、先化简,再求值:
)74()53(52222xy y x x x +++-,其中x= – 1 y =21- 解:略
[规律总结]一定要先化到最简再代入求值,注意去括号的法则。

3、分式的计算:
例7、化简)3316(625---÷--a a a a
分析:– 3-a 可看成392---a a
解:略
[规律总结]分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号
4、根式计算
例8、已知最简二次根式12+b 和b -7是同类二次根式,求b 的值。

分析:根据同类二次根式定义可得:2b+1=7–b 。

解:略
[规律总结]二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。

相关文档
最新文档