初一数学代数式知识点概括

合集下载

初一数学代数式单元知识点概括

初一数学代数式单元知识点概括

代数式知识点概括知识点1代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式, 单独的一个数或一个字母也是单项式。

注意:单项式是一种特殊的式子,它包含一种运算、三种类型。

一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。

知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。

注意:(1)单项式的系数可以是整数,也可能是分数或小数。

如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。

(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, 如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。

(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。

如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

(3)单项式的指数只和字母的指数有关,与系数的指数无关。

初一上册数学代数式知识点

初一上册数学代数式知识点

初一上册数学代数式知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或者字母也是代数式。

2. 用具体的数值代替代数式中的字母,按照代数式中指明的运算计算得出的结果,叫做这个代数式的值。

二、代数式的书写1. 代数式中如果有乘号,应写在字母的前面;2. 代数式中如果有乘方,应写在外面的括号里;3. 代数式中如果是加减运算,添括号时,括号前面是加号,括号里面不变号,括号前面是减号,括号里面要变号;4. 代数式中如果是乘方运算,加括号时要注意顺序。

先写底数,再写指数。

三、代数式的值1. 用数值代替代数式中的字母,按照代数式中的运算关系计算出来的结果叫做代数式的值。

2. 求代数式的值一般有三种方法:直接代入数值求值;变形后代入求值;变形后整体代入求值。

四、代数式的计算1. 代数式的加减运算主要是合并同类项。

合并同类项时把系数相加,字母和字母的指数不变。

2. 代数式的乘法运算主要是乘法分配律的应用。

3. 代数式的除法运算主要是乘除同一数的倒数。

五、整式的加减运算1. 整式的加减运算主要是去括号和合并同类项。

去括号时要注意:括号前面是负号,去掉括号和负号,括号里的每一项都要变号。

合并同类项时要注意系数相加,字母和字母的指数不变。

2. 整式的加减运算要按照运算顺序先做符号运算,再做乘除运算,最后做加减运算。

具体的代数式初步知识如下所示:1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

初一数学竞赛系列讲座(5)代数式初步

初一数学竞赛系列讲座(5)代数式初步

初一数学竞赛系列讲座(5)代数式初步1、知识要点1、代数式定义1 用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫做代数式。

2、代数式的值定义2 用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

3、列代数式列代数式的关键是正确地分析数量关系,要掌握和、差、积、商、幂、倍、分、大、小、多、少、增加、增加到等数学概念和有关知识。

列代数式实质上是把“文字语言”翻译成“符号语言”。

4、求代数式的值代数式的值由它所含字母的取值决定,并随字母取值的改变而改变,字母取不同的值,代数式的值可能同也可能不同。

代数式中所含字母取值时,不能使代数式无意义。

求代数式的值的一般步骤是(1)代入,(2)计算。

2、例题精讲例1、轮船在静水中的速度是每小时a千米,水流速度为每小时b千米(b<a),甲乙两码头间相距S千米,则轮船在甲乙两码头间往返一趟的平均速度为每小时千米。

分析:轮船在甲乙两码头间往返一趟的平均速度应为往返一趟的总路程除以总时间。

解因为轮船在静水中的速度是每小时a千米,水流速度为每小时b千米(b<a)则轮船的顺流速度为(a+b)千米,逆流速度为(a-b)千米,所以顺流所用时间是逆流所用时间是,轮船在甲乙两码头间往返一趟的平均速度为往返路程的和除以往返所用时间的和,即评注:顺流速度=静水中的速度+水流速度;逆流速度=静水中的速度-水流速度。

例2一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长。

为了回到队尾,他在追上团长的地方等待了t2分钟。

如果他从最前头跑步回到队尾,那么要( )分钟。

A、 B、 C、 D、分析:这是行程问题中的相遇问题。

解部队的行军速度为米/分。

t1分钟内,队尾的战士比部队多走了a米,则他的速度为米/分=米/分。

他从最前头跑步回到队尾的过程中,队尾恰好与他相向而行,故所需时间应为(分) 选C例3 若a<b<c,x<y<z,则下面四个代数式的值最大的是( )A、ax+by+czB、ax+cy+bzC、bx+ay+czD、bx+cy+az分析:由于本题涉及的字母比较多,直接比较四个代数式的大小很困难。

初一下代数式知识点总结归纳

初一下代数式知识点总结归纳

初一下代数式知识点总结归纳在初中数学学习的过程中,代数是一个重要的部分。

初一下学期主要学习了代数式的基本概念和应用。

本文将对初一下代数式的相关知识进行总结归纳。

一、代数式的基本概念代数式是由数、字母和运算符号组成的符号集合,代表数与数之间的关系。

其中,数是已知的,字母是未知的。

代数式可由一个或多个代数单项式或代数多项式通过加、减、乘、除等运算符号构成。

代数式的组成部分包括系数、字母和指数。

系数表示字母的倍数,字母表示未知数,指数表示字母的幂次。

二、代数式的运算法则1. 代数式的加法法则:同类项相加,系数相加,字母部分保持不变。

2. 代数式的减法法则:减法可以转化为加法,即减去一个数等于加上它的相反数。

3. 代数式的乘法法则:每个项相乘,底数相乘,指数相加。

4. 代数式的除法法则:相同底数的幂相除,指数相减。

三、代数式的应用代数式在数学中有广泛的应用,以下是初一下学期代数式的一些常见应用:1. 代数式的简化:将代数式根据运算法则化简为最简形式,使得计算更加便捷。

2. 代数式的展开:利用乘法法则将代数式展开为多项式。

3. 代数式的因式分解:将多项式拆分为不可再分的因式的乘积形式。

4. 代数式的求值:给定字母的值,计算代数式的具体数值。

5. 方程的解:将代数式与零相等,找出字母的值,即为方程的解。

四、常见的代数式类型初一下学期学习的代数式类型较为简单,主要包括:1. 单项式:只有一个项的代数式,形如ax^n(a≠0,n为非负整数)。

2. 多项式:由多个单项式相加或相减构成的代数式,形如f(x)=ax^n+bx^m+...+c(a、b、c为常数,x为字母)。

3. 等式:由两个代数式相等构成的表达式,形如f(x)=g(x)。

4. 不等式:由两个代数式大小关系构成的表达式,形如f(x)≥g(x)或f(x)<g(x)。

5. 分式:由多项式作为分子和分母的比构成的代数式,形如f(x)=p(x)/q(x)(p(x)和q(x)为多项式)。

初一数学代数式知识点归纳总结

初一数学代数式知识点归纳总结

初一数学代数式知识点归纳总结数学作为一门基础学科,是培养学生分析问题能力、逻辑思维能力和创新思维能力的重要工具。

其中,代数式作为数学的一个重要分支,首次出现在初一阶段的数学教育中。

代数式的学习对于学生培养逻辑思维、抽象思维和解决问题的能力非常重要。

本文将对初一数学代数式知识点进行归纳总结,帮助学生理解和掌握代数式的基本概念和运算方法。

一、代数式的基本概念代数式是由数、字母和运算符号组成的式子。

其中,数可以是实数或虚数,字母代表未知数,运算符号包括加减乘除以及括号等符号。

代数式可以通过运算得到一个具体的数值。

二、代数式的分类1. 单项式:只包含一个字母和一个常数的代数式。

例如:3a、-2x 等。

2. 二项式:由两个单项式相加(或惩罚)而成的代数式。

例如:2x+3y、-4a^2-5b等。

3. 多项式:由两个以上的单项式相加(或相减)而成的代数式。

例如:2x+3y-4z、-4a^2-5b+6c等。

三、代数式的运算法则1. 合并同类项:将具有相同字母和指数的项合并为一项。

例如:2x+3x=5x,-4a^2-5a^2=-9a^2。

2. 分配律:对于两个单项式相加(或相减)和一个多项式相乘的情况,可以运用分配律进行运算。

例如:2(x+y)=2x+2y,3(2x-1)=6x-3。

3. 去括号:将括号内的单项式根据括号前的符号进行乘法运算。

例如:2(3x+4)=6x+8,-3(-4x+5)=-12x-15。

4. 整式的乘法:将整式中的每一项分别相乘并按照规定的次序相加。

例如:(2x+3)(4x+5)=8x^2+22x+15。

5. 整式的除法:将除法的过程转化为乘法的过程进行计算。

例如:(2x^2+5x+3)÷(x+1)=2x+3。

四、代数式的应用代数式作为一种抽象表达方式,广泛应用于数学和实际问题中。

通过代数式,我们可以表达和解决各个领域的问题,例如数学建模、物理学中力的平衡和运动问题、经济学中的成本和收益问题等。

初中 数学代数知识点总结

初中 数学代数知识点总结

初中数学代数知识点总结一、代数式代数式是由数字、字母和运算符号组成的表达式。

代数式中的字母代表数,称为未知数或变量,代数式的值随着变量的取值而变化。

代数式包括单项式、多项式、等式和不等式等。

1. 单项式:由一个项组成的代数式,例如3x、5y、-7等都是单项式。

2. 多项式:由多个项相加(或相减)而成的代数式,例如3x+5y、2x²+3x+7等都是多项式。

3. 等式和不等式:包含等号或不等号的代数式,例如2x+3=7、4x-5≥3等都是等式和不等式。

二、代数运算代数运算是对代数式进行加法、减法、乘法、除法、乘方等运算的过程。

了解代数运算规律,可以帮助我们解决各种数学问题。

1. 加法:将两个或多个代数式相加,例如a+b、x+y+z等。

2. 减法:将一个代数式减去另一个代数式,例如a-b、x-y等。

3. 乘法:将两个或多个代数式相乘,例如a×b、x×y×z等。

4. 除法:将一个代数式除以另一个非零的代数式,例如a÷b、x÷y等。

5. 乘方:将一个数或一个代数式自己相乘若干次,例如a²、x³等。

三、方程与不等式方程和不等式是数学中常见的问题类型,通过代数表达式的运算得到的等式或不等式称为方程或不等式。

解方程和不等式是我们学习代数知识的重要内容。

1. 一元一次方程:形式为ax+b=0的方程,其中a、b为已知数,x为未知数,a≠0。

2. 一元二次方程:形式为ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数,a≠0。

3. 一元一次不等式:形式为ax+b>0、ax+b≥0、ax+b<0、ax+b≤0的不等式,其中a、b为已知数,x为未知数,a≠0。

4. 一元二次不等式:形式为ax²+bx+c>0、ax²+bx+c≥0、ax²+bx+c<0、ax²+bx+c≤0的不等式,其中a、b、c为已知数,x为未知数,a≠0。

初一数学第三章《代数式》知识点及测试题

初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由或的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5 a。

·单项式的系数:单式项中的叫做单项式的系数。

·单项式的次数:单项式中叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例:232a b-的系数是________,次数是_______。

②多项式:几个的和叫做多项式。

其中,每个单项式叫做多项式的,不含字母的项叫做。

·多项式的次数:多项式里的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n-+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

初一数学代数式知识点概括

初一数学代数式知识点概括

第四章代数式用字母表示数的规范格式:1.数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

2. 当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或100•a,na或n•a。

3. 后面接单位的相加式子要用括号括起来。

如:(5s )时4. 除法运算写成分数形式5. 带分数与字母相乘时,带分数要写成假分数的形式。

面积公式:正方形面积=边长X 边长长方形面积=长X宽三角形面积=圆形面积=周长公式:三角形周长=三边之和正方形周长=边长×4长方形周长=(长+宽)×2圆的周长=行程问题路程=时间×速度速度=路程÷时间时间=路程÷速度价格问题总价=单价×数量单价=总价÷数量数量=总价÷单价代数式:由数和表示数的字母,同运算符号连接而成的数学表达式——代数式(单个字母和数字也是代数式)列代数式时要注意(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”“倍”“几分之几”等词语与代数式中的运算符号之间的关系.(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等(3)在同一问题中,不同的数量必须用不同的字母表示.代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a-L单项式的系数:单项式中的数字因数叫做这个单项式的系数;单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数;多项式:由几个单项式相加组成的代数式叫做多项式;多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;多项式的次数:次数最高的项的次数就是这个多项式的次数;整式:单项式、多项式统称为整式。

注意:特别强调1,x yx x y-+等分母含有字母的代数式不是整式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章代数式
用字母表示数的规范格式:
1.数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

2. 当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或100•a,na或n•a。

3. 后面接单位的相加式子要用括号括起来。

如:(5s )时
4. 除法运算写成分数形式
5. 带分数与字母相乘时,带分数要写成假分数的形式。

面积公式:
正方形面积=边长X 边长
长方形面积=长X宽
三角形面积=
圆形面积=
周长公式:
三角形周长=三边之和
正方形周长=边长×4
长方形周长=(长+宽)×2
圆的周长=
行程问题
路程=时间×速度
速度=路程÷时间
时间=路程÷速度
价格问题
总价=单价×数量
单价=总价÷数量
数量=总价÷单价
代数式:由数和表示数的字母,同运算符号连接而成的数学表达式——代数式(单个字母和数字也是代数式)
列代数式时要注意
(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”
“倍”“几分之几”等词语与代数式中的运算符号之间的关系.
(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等
(3)在同一问题中,不同的数量必须用不同的字母表示.
代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值
单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a
-
单项式的系数:单项式中的数字因数叫做这个单项式的系数;
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数;
多项式:由几个单项式相加组成的代数式叫做多项式;
多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;
多项式的次数:次数最高的项的次数就是这个多项式的次数;
整式:单项式、多项式统称为整式。

注意:特别强调1
,
x y
x x y
-
+
等分母含有字母的代数式不是整式。

同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项
合并同类项法则:
把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号,括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

相关文档
最新文档