2019年中考数学代数式复习题及答案
2019年江西省中考数学试卷附分析答案

A.
B.
C.
D.
4.(3 分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可
知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读 30 分钟以上的居民家庭孩子超过 50%
C.每天阅读 1 小时以上的居民家庭孩子占 20%
D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是 108°
时,求∠ABC 的大小.
(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)
第 5页(共 28页)
五、(本大题共 2 小题,每小题 9 分,共 18 分) 21.(9 分)数学活动课上,张老师引导同学进行如下探究:
如图 1,将长为 12cm 的铅笔 AB 斜靠在垂直于水平桌面 AE 的直尺 FO 的边沿上,一端 A 固定在桌面上,图 2 是示意图. 活动一 如图 3,将铅笔 AB 绕端点 A 顺时针旋转,AB 与 OF 交于点 D,当旋转至水平位置时, 铅笔 AB 的中点 C 与点 O 重合.
③抛物线 y1,y2,y3 与直线 y=1 的交点中,相邻两点之间的距离相等. 形成概念 (2)把满足 yn=﹣x2﹣nx+1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用
2019届中考数学专题提升(二)代数式的化简与求值

专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y)2呢?解:x 2+y 2=(x +y)2-2xy =32-2×1=7;(x -y)2=(x +y)2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b)2+(a -b)2=2(a 2+b 2),(a +b)2-(a -b)2=4ab ,a 2+b 2=(a +b)2-2ab =(a -b)2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n)2=8,(m +n)2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2019·重庆B 卷]计算:(x +y)2-x(2y -x).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2019·漳州]先化简(a +1)(a -1)+a(1-a)-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b)2+a(2b -a),其中a =-12, b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】 1.[2019·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2019·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a=3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b)2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .5 2.[2019·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1. 解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2019·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -yx 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.2019-2020学年数学中考模拟试卷一、选择题1.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩2.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x ,下列方程正确的是( )A .1000(1+x )2=1210B .1210(1+x )2=1000C .1000(1+2x )=1210D .1000+10001+x )+1000(1+x )2=12103.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l 与山高h 间的函数关系用图形表示是( )A. B.C. D.4.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点F ;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若3BF =, 2.5AB =,则AE 的长为( )A.2B.4C.8D.552的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 6.如图,已知抛物线y =x 2﹣2x ﹣3与x 轴相交于点A ,B ,若在抛物线上有且只有三个不同的点C 1,C 2,C 3,使得△ABC 1,△ABC 2,△ABC 3的面积都等于a ,则a 的值是( )A .6B .8C .12D .167.如图,△ABC 中,AD ⊥BC 于点D ,AD=ABC S ∆=tanC 的值为( )A .13B .12C .3D .2 8.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,则CD 的长为( )A .B .4C .D .89.水是地球上极宝贵的资源.某城市为了节约用水,实行了价格调控,限定每月每户用水量不超过6吨时,每吨价格为 2.25元;当用水量超过6吨时,超过部分每吨价格为3.25元.则按此调控价格的每户每月水费y (元)与用水量x (吨)的函数图像大致为( )A .B .C .D .10.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小11.如图,在△ABC 中,AC =BC =25,AB =30,D 是AB 上的一点(不与A 、B 重合),DE ⊥BC ,垂足是点E ,设BD =x ,四边形ACED 的周长为y ,则下列图象能大致反映y 与x 之间的函数关系的是( )A. B.C. D.12.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩ C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩ 二、填空题13.已知13a c b d ==,则a c b d++的值是_____.14.计算:13--=_____.15.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠ACE 的度数为_____.16.若a﹣2b=﹣3,则代数式1﹣a+2b的值为为_____.17.计算:(2﹣sin45°)0=_____.18.分式方程的解是_____.三、解答题19.如图,在△ACD中,DA=DC,点B是AC边上一点,以AB为直径的⊙O经过点D,点F是直径AB上一点(不与A、B重合),延长DF交圆于点E,连结EB.(1)求证:∠C=∠E;(2)若弧AE=弧BE,∠C=30°,DF,求AD的长.20.2018年,广州国际龙舟邀请赛于6月23日在中山大学北门广场至广州大桥之间的珠江河段举行.上午8时,参赛龙舟同时出发,甲、乙两队在比赛中,路程y(千米)与时间x(小时)的函数关系如图所示,甲队在上午11时30分到达终点.(1)在比赛过程中,乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?21.五星红旗作为中华民族五千年历史上第一面代表全体人民意志的民族之旗、团结之旗、胜利之旗、希望之旗、吉祥之旗,是中华人民共和国的标志和象征,某校九年级综合实践小组开展了测量学校五星红旗旗杆AB高度的活动.如图,他们在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E使得B,E,D在同一水平线上.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处分别测得旗杆顶点A的仰角为40°、平面镜E的俯角为45°,FD=1.5米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan40°≈0.84,tan50°≈1.19,tan85°≈11.4)22.如图,直线l 1 在平面直角坐标系中,直线l 1与y 轴交于点A,点B(-3,3)也在直线1上,将点B 先向右平移1个单位长度、再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上。
2019年陕西中考数学及答案解析(真题)

1 / 242019年陕西中考数学及答案解析(真题)一、选择题(共10小题,每小题3分,共30分)1. 计算:()=03- A.1 B.0 C. 3 D.31-2. 如图,是由两个正方体组成的几何体,则该几何体的俯视图为3. 如图,OC 是∠AOB 的角平分线,l //OB,若∠1=52°,则∠2的度数为A.52°B.54°C.64°D.69°4. 若正比例函数x y 2-=的图象经过点O (a -1,4),则a 的值为A. -1B.0C.1D.25. 下列计算正确的是A. 222632a a a =⋅B.()242263b a ba =- C.()222b a b a -=- D.2222a a a =+-6. 如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E 。
若DE=1,则BC 的长为2 / 24A.2+2B.32+C.2+3D.37. 在平面直角坐标系中,将函数x y 3=的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为A. (2,0)B.(-2,0)C.(6,0)D.(-6,0)8. 如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为A.1B.23 C.2 D.49. 如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是A.20°B.35°C.40°D.55°3 / 2410. 在同一平面直角坐标系中,若抛物线()42122-+-+=m x m x y 与()n x n m x y ++-=32关于y 轴对称,则符合条件的m ,n 的值为A. m=75,n=718-B.m=5,n= -6C.m= -1,n=6D.m=1,n= -2二、填空题(共4小题,每小题3分,共12分)11. 已知实数21-,0.16,3,π,25,34,其中为无理数的是 12. 若正六边形的边长为3,则其较长的一条对角线长为13. 如图,D 是矩形AOBC 的对称中心,A(0,4),B (6,0),若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为14. 如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为4 / 24三、解答题(共78分)15. (5分)计算:2321-3-127-2--⎪⎭⎫ ⎝⎛+⨯16. (5分)化简:aa a a a a a 22482222-+÷⎪⎭⎫ ⎝⎛-++-17. (5分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的高。
2019年中考数学专题整式与代数式(有答案)

2019年中考数学专题整式与代数式(有答案)一、选择题(共13题;共26分)1. ( 2分) 若代数式2x2+3y+7的值为8,那么代数式4x2+6y-2的值是()A. 0B. 2C. 1D. 122. ( 2分) 下列运算正确的是()A.3 2-2=3B.3a2+2a3=5a5C.3+=3D.-0.25ab+0.25ab=03. ( 2分) 下列各组中的两个项,不属于同类项的是().A. 与B. 与n2mC. 与D. 1与4. ( 2分) 如图,是一组技照某种程度摆放成的图案,则图6中三角形的个数是()A. 18B. 19C. 20D. 215. ( 2分) 若单项式2x2m-3y与x3y3n-2是同类项,则符合条件的m,n的值为( )A. m=2,n=3B. m=3,n=1C. m=-3,n=1D. m=3,n=-26. ( 2分) 下列运算正确的是()A.B.C.D.7. ( 2分) 若m-n=,那么-3(n-m)的值是( )A. -B.C.D.8. ( 2分) 如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 20089. ( 2分) 不论x取何值,x﹣x2﹣1的值都()A. 大于等于﹣B. 小于等于﹣C. 有最小值﹣D. 恒大于零10. ( 2分) 下列因式分解结果正确的是().A.B.C.D.11. ( 2分) 观察下列单项式的排列规律:3x,,照这样排列第10个单项式应是()A.39x10B.-39 x10C.-43 x1 0D.43 x1012. ( 2分) 下列代数式中,整式的个数是()A. 2B. 3C. 4D. 513. ( 2分) 某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题(共7题;共9分)14. ( 1分) 若x=3﹣,则代数式x2﹣6x+9的值为________.15. ( 1分) 计算:20182-2017×2019=________.16. ( 3分) 计算:-x2·x3=________;=________;×22016=________.17. ( 1分) 已知2a﹣3b=7,则8+6b﹣4a=________.18. ( 1分) 若4x2+kx+25是一个完全平方式,则k的值是________.19. ( 1分) 把多项式x3﹣9x分解因式的结果是________.20. ( 1分) 已知a+b=ab,则(a﹣1)(b﹣1)=________三、计算题(共3题;共30分)21. ( 10分) 计算:(1)(3a﹣2)- 3(a﹣5)(2)(4a2b﹣5ab2)-(3a2b﹣4ab2)22. ( 15分) 把下列各式因式分解(1)(2)(3)23. ( 5分) 先化简,在求值: ,其中四、解答题(共7题;共54分)24. ( 5分) a与b互为相反数,c与d互为倒数,x的倒数是它本身,求的值.25. ( 5分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.26. ( 5分) 甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果。
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
2019年中考数学试题汇编 整式(word版有答案解析)

整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。
江苏省徐州市2019年中考数学试题(解析版)

7.若 、 都在函数 的图象上,且 ,则( )
A. B. C. D.
【答案】A
【解析】
ቤተ መጻሕፍቲ ባይዱD. ,故选项D不合题意,
故选C.
【点睛】本题考查了合并同类项、幂的运算以及完全平方公式,熟练掌握各运算的运算法则是解答本题的关键.
3.下列长度的三条线段,能组成三角形的是( )
A. , , B. , ,12C. , , D. , ,
【答案】D
【解析】
【分析】
根据三角形三边关系,看其中较小两边的和是否大于最长边即可判断各个选项中的三条线段是否能组成三角形.
(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;
(2)补全条形统计图.
【答案】(1)扇形统计图中“9﹣10月”对应扇形的圆心角度数是 ;(2)补全的统计图见解析.
【解析】
【分析】
(1)从条形统计图中可得3﹣4月份电费 ,从扇形统计图中可知3﹣4月份电费占全年的 可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后乘以360度就能求出9﹣10月份对应扇形的圆心角的度数;
由①得,x>-2,
由②得,x≤2,
∴不等式组的解集为 .
【点睛】本题考查了解分式方程,求不等式组的解集,熟练掌握分式方程的解法以及不等式组的解法是解题的关键.注意分式方程要验根.
21.如图,甲、乙两个转盘分别被分成了 等份与 等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.
2019-2020年中考数学总复习三 代数式精练精析2

2019-2020年中考数学总复习三代数式精练精析2一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.662.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.403.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.35.当x=﹣2时,代数式x2﹣2x+1的值是()A.1 B.﹣1 C.6 D.96.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.87.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D.5a+3b=8ab8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是_________ .10.化简:2x﹣x= _________ .11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= _________ .12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为_________ .13.已知一列数2,8,26,80.…,按此规律,则第n个数是_________ .(用含n的代数式表示)14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是_________ 分.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是_________ .(n为正整数)三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= _________ ;(2)证明你猜想的结论;(3)求和:+++…+.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?数与式——代数式2参考答案与试题解析一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66考点:规律型:图形的变化类.专题:规律型.分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40考点:规律型:图形的变化类.专题:规律型.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.3.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.3考点:代数式求值.专题:整体思想.分析:把(m﹣n)看作一个整体并直接代入代数式进行计算即可得解.解答:解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n),=(﹣1)2﹣2×(﹣1),=1+2,=3.故选D.点评:本题考查了代数式求值,整体思想的利用是解题的关键.5.当x=﹣2时,代数式x2﹣2x+1的值是()A. 1 B.﹣1 C6 D.9考点:代数式求值.专题:计算题.分析:将x=﹣2代入计算即可求出代数式的值.解答:解:当x=﹣2时,原式=4+4+1=9,故选D点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.8考点:代数式求值.专题:计算题.分析:已知等式左边利用完全平方公式展开求出x2﹣2x的值,原式变形后将x2﹣2x的值代入计算即可求出值.解答:解:∵(x﹣1)2=x2﹣2x+1=2,即x2﹣2x=1,∴原式=2(x2﹣2x)+5=2+5=7.故选C点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.7.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D. 5a+3b=8ab考点:合并同类项;实数的运算;去括号与添括号.分析:根据同类项的定义,合并同类项的法则以及去括号法则对各选项分析判断后利用排除法求解.解答:解:A、应为2a2+a2=3a2,故本选项错误;B、与不能合并,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,本项正确;D、5a与3b不能合并,故本项错误,故选:C.点评:本题考查了合并同类项的法则以及去括号法则,熟练掌握运算法则是解题的关键.8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2考点:规律型:数字的变化类.分析:由数表中数据排列规律可知第n行第n列交叉点上的数正好是对角线上的数,它们分别是连续的奇数.解答:解:根据分析可知第n行第n列交叉点上的数应为2n﹣1.故选:A.点评:此题考查了数字的排列规律,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类.专题:规律型.分析:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.10.化简:2x﹣x= x .考点:合并同类项.专题:计算题.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= 552.考点:规律型:数字的变化类.专题:规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.13.已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1 .(用含n的代数式表示)考点:规律型:数字的变化类.专题:规律型.分析:根据观察等式,可发现规律,根据规律,可得答案.解答:解;已知一列数2,8,26,80.…,按此规律,则第n个数是 3n﹣1,故答案为:3n﹣1.点评:本题考查了数字的变化类,规律是第几个数就是3的几次方减1.14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336 分.考点:规律型:数字的变化类.专题:规律型.分析:根据题意可得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是.(n为正整数)考点:规律型:数字的变化类.专题:规律型.分析:根据题中所给出的数据找出规律,根据此规律即可得出结论.解答:解:∵第一个数=;第一个数1=;第三个数=;第四个数=;第五个数=;…,∴第n个数为:.故答案为:.点评:本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.考点:规律型:图形的变化类.分析:(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.解答:解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.点评:此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.考点:代数式求值.专题:整体思想.分析:先把10x﹣2x2+5变形为﹣2(x2﹣5x)+5,然后把x2﹣5x=6整体代入进行计算即可.解答:解:10x﹣2x2+5=﹣2(x2﹣5x)+5,∵x2﹣5x=6,∴原式=﹣2×6+5=﹣12+5=﹣7.点评:本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.考点:列代数式;代数式求值.分析:(1)÷m以前的式子应带小括号;(2)把m=﹣2009代入(1)中化简后的式子即可.解答:解:(1)依题意得(m2﹣m)÷m﹣2m=m﹣1﹣2m=﹣m﹣1;(2)当输入的数m=﹣2009时,输出结果为﹣m﹣1=﹣(﹣2009)﹣1=2008.点评:本题需注意÷m以前的式子应看成一个整体,带小括号.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.考点:代数式求值.专题:整体思想.分析:先根据题意列出等式3x2﹣4x+6=9,求得3x2﹣4x的值,然后求得x2﹣+6的值.解答:解:∵代数式3x2﹣4x+6值为9,∴3x2﹣4x+6=9,∴3x2﹣4x=3,∴x2﹣=1,∴x2﹣+6=1+6=7.点评:本题考查了求代数式的值,找出未知与已知的关系,然后运用整体代入的思想.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?考点:规律型:图形的变化类.专题:规律型.分析:(1)由图形可知单数层是白色瓷块,双数层是灰色地砖;第一层中白色瓷块有1×2块,第二层中灰色地砖有3×4﹣1×2块,第三层中白色瓷块有5×6﹣3×4块,…,可知第7层的地砖的块数;(2)由(1)可知第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,从这些地砖是白色的,可知正整数n是奇数.解答:解:(1)第7层是奇数层,地砖是白色的,地砖的块数是2×7×(2×7﹣1)﹣(2×7﹣2)(2×7﹣3)=182﹣132=50块;(2)第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,∵这些地砖是白色的,∴正整数n是奇数.点评:考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,抓住随着“层数”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.2019-2020年中考数学总复习三十投影与视图精练精析2 一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B. C.D.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.3.如图,从左面观察这个立体图形,能得到的平面图形是()A. B.C.D.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A. B.C.D.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是46.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图的几何体的俯视图是()A.B.C.D.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是_________ .14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有_________ 个碟子.15.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有_________ 桶.16.如图的三视图表示的物体的形状是_________ .三.解答题(共7小题)17.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.18.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)19.如图是某几何体的展开图.(1)这个几何体的名称是_________ ;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)20.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.21.如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(精确到0.1m,=1.73);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?22.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.23.如图,左边的楼高AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P位于距C 点15m处.(1)请画出从A处看地面上距点C最近的点,这个点与点C之间的距离是多少?(2)从A处能看见目标P吗,为什么?图形的变化——投影与视图2参考答案与试题解析一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边是一个竖着的长方形,右边是一个横着的长方形,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从正面看,下面是三个正方形,上面是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看得到右下角少了一部分的正方形,并且右边的边少的与剩下的差不多.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据俯视图可确定主视图的列数和小正方体的个数,即可解答.解答:解:由俯视图可得主视图有2列组成,左边一列由4个小正方体组成,右边一列由2个小正方体组成.故选:B.点评:本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12考点:由三视图判断几何体.分析:根据三视图可以判断该几何体为倒放的圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可.解答:解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×1×3=3π,故选:A.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4或5.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是 2 .考点:简单几何体的三视图;勾股定理.分析:由俯视图和主视图知道棱柱顶的正方形对角线长是2,根据勾股定理列出方程求解.解答:解:设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2.故答案为:2.点评:此题主要考查了三视图的基本知识以及长方体有关计算公式.用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有12 个碟子.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 代数式
一级训练
1.某省参加初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有
( )
A .(15+a )万人
B .(15-a )万人
C .15a 万人 D.15a 万人 2.(2018年湖南怀化)若x =1,y =12
,则x 2+4xy +4y 2的值是( ) A .2 B .4 C.32 D.12
3.(2018年湖北襄阳)若x ,y 为实数,且||x +1+y -1=0,则⎝⎛⎭⎫x y 2 011的值是( )
A .0
B .1
C .-1
D .-2 011
4.(2018年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )
A .-1
B .1
C .-5
D .5
5.(2018年浙江嘉兴)用代数式表示“a ,b 两数的平方和”,结果为__________.
6.一筐苹果的总重量为x 千克,筐本身的重量为2千克,若将苹果平均分成5份,则每份苹果的重量为________千克.
7.(2018年江苏苏州)若代数式2x +5的值为-2,则x =__________.
8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.
9.(2018年广东湛江)多项式2x 2-3x +5是________次__________项式.
10.(2018年广东广州)定义新运算“⊗”,规定:a ⊗b =13
a -4
b ,则12⊗ (-1)=______. 11.(2018年浙江宁波)先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5.
二级训练
12.如图1-3-5,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 两点间的距离是________(用含m ,n 的式子表示).
图1-3-5
13.(2018年山东枣庄)若m 2-n 2=6,且m -n =2,则m +n =________.
14.若将代数式中的任意两个字母交换后代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .
其中是完全对称式的是( )
A .①②
B .①③
C .②③
D .①②③
15.(2018年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.
三级训练
16.(2018年安徽)计算:(a +3)(a -1)+a (a -2).
17.(2018年浙江杭州)已知直四棱柱的底面是边长为a 的正方形,高为h ,体积为V ,表面积等于S .
(1)当a =2,h =3时,分别求V 和S ;
(2)当V =12,S =32时,求2a +1h
的值.
第3讲 代数式
【分层训练】
1.B 2.B 3.C 4.A 5.a 2+b 2
6.x -25
7.-72
8.5 9.二 三 10.8 11.解:原式=a 2-4+a -a 2=a -4.
当a =5时,原式=5-4=1.
12.n -m 13.3 14.A
15.解:由2x -1=3,得x =2.
又(x -3)2+2x (3+x )-7
=x 2-6x +9+6x +2x 2-7=3x 2+2,
∴当x =2时,原式=14.
16.解:原式=a ·2-a +3a -3+a 2-2a =2a 2-3.
17.解:(1)V =a 2h =12,S =4ah +2a 2=32.
(2)V =a 2h =12,S =4ah +2a 2=32.
∵S V =4a +2h =2⎝⎛⎭⎫2a +1h =3212
, ∴2a +1h =43
.。