电磁感应的综合应用
高考物理三轮冲刺:电磁感应综合应用+教案

电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
电磁感应的综合应用

电磁感应的综合应用制作:张宝峰 审核:解鑫品 时间:1.19学习目标1.能认识电磁感应现象中的电路结构,并能计算电动势、电压、电流、电功等.2.会分析计算电磁感应中的安培力参与的导体的运动及平衡问题..3.会分析计算电磁感应中能量的转化与转移..4.能由给定的电磁感应过程判断或画出正确的图象或由给定的有关图象分析电磁感应过程,求解相应的物理量.一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源.如:切割磁感线的导体棒、内有磁通量变化的线圈等.这种电源将其他形式能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类(1)确定等效电源的正负极、感应电流的方向、电势高低、电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻、路端电压、电功率等问题.(3)根据电磁感应的平均感应电动势求解电路中通过的电荷量:E =n ΔΦΔt ,I =E R 总,q =I Δt =n ΔΦR 总.特别提醒 1.判断感应电流和感应电动势的方向,都是利用“相当于电源”的部分根据右手定则或楞次定律判定的.实际问题中应注意外电路电流由高电势流向低电势,而内电路则相反.4.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路 端电压,而不等于感应电动势.例1 如图1(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.二电磁感应中的动力学问题分析导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析例2 如图6所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6.(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R的阻值;(3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t.三电磁感应中的能量问题分析1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例3 电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上 端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的 匀强磁场垂直轨道平面向上,如图9所示.阻值r =0.5Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求: (1)金属棒在此过程中克服安培力的功W 安; (2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m ,.由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解.四 电磁感应中的图象问题 1问题概括图象 类型(1)随时间变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象(2)随位移x 变化的图象如E -x 图象和i -x 图象问题类型(1)由给定的电磁感应过程判断或画出正确的图象(画图象) (2)由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象) 1应用知识左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律、函数图象知识等图62.思路导图3.分析方法对图象的分析,应做到“四明确一理解”:(1)明确图象所描述的物理意义;明确各种“+”、“-”的含义;明确斜率的含义;明确图象和电磁感应过程之间的对应关系.(2)理解三个相似关系及其各自的物理意义:v -Δv -Δv Δt ,B -ΔB -ΔB Δt ,Φ-ΔΦ-ΔΦΔt .解决图象问题的一般步骤:(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者E -t 图象、i -t 图象等. (2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式. (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画图象或判断图象.例4 如图6所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建 立坐标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为 a .矩形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方 向为电流的正方向)图10强化练习1.用相同导线绕制的边长为l 或2l 的四个闭合导体线框a 、b 、c 、d ,以相同的速度匀速进入右侧匀强磁场,如图9所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是A.U a <U b <U c <U dB.U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c2.如图10所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出 磁场的两过程中 ( ) A .导体框中产生的感应电流方向相同 B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )4 如图4所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR5 两根平行的长直金属导轨,其电阻不计,导线ab、cd跨在导轨上且与导轨接触良好,如图9所示,ab的电阻大于cd的电阻,当cd 在外力F1(大小)的作用下,匀速向右运动时,ab在外力F2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab、U cd是导线与导轨接触间的电势差) ()A.F1>F2,U ab>U cd B.F1<F2,U ab=U cdC.F1=F2,U ab>U cd D.F1=F2,U ab=U cd6如图3,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是()图37 如图4甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.t=0时对金属棒施加一平行于导轨的外力F,金属棒由静止开始沿导轨向上运动,通过R的感应电流I随时间t变化的关系如图乙所示.下列关于穿过回路abPMa的磁通量Φ和磁通量的瞬时变化率ΔΦΔt以及a、b两端的电势差U ab和通过金属棒的电荷量q随时间t变化的图象中,正确的是()8如图5所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从开始进入到完全离开磁场的过程中,线框中的感应电流(以逆时针方向为正)的变化的是()9在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆线圈,规定线圈中感应电流的正方向如图11甲所示,取线圈中磁场B的方向向上为正,当磁场中的磁感应强度B随时间t如图乙变化时,下列图中能正确表示线圈中感应电流变化的是()10 .一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图2甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是11 A和B是两个大小相同的环形线圈,将两线圈平行共轴放置,如图3(a)所示,当线圈A中的电流i1随时间变化的图象如图(b)所示时,若规定两电流方向如图(a)所示的方向为正方向,则线圈B中的电流i2随时间t变化的图象是图中的()(a)(b)12 如图5甲所示,正三角形导线框abc放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度的方向垂直纸面向里.下列选项中能表示线框的ab边受到的磁场力F随时间t的变化关系的是(规定水平向左为力的正方向)13 如图7所示, 电阻R =1 Ω、半径r 1=0.2 m 的单匝圆形导线框P 内有一个与P 共面的圆形磁场区域Q ,P 、Q 的圆心相同,Q 的半径r 2 =0.1 m .t =0时刻,Q 内存在着垂直于圆面向里的磁场,磁感应 强度B 随时间t 变化的关系是B =2-t T .若规定逆时针方向为电流 的正方向,则线框P 中感应电流I 随时间t 变化的关系图象应该是下 列选项中的14 如图8所示,有一个等腰直角三角形的匀强磁场区域.直角边长为L ,磁感应强度大小为B ,方向垂直纸面向外, 一边长为L 、总电阻为R 的正方形闭合导线框abcd ,从图示位置开始沿x 轴正方向以速度v 垂直磁场匀速穿过磁场区域.取电流沿a →b →c →d →a的方向为正,则图中表示线框中感应电流i 随bc 边位置坐标x 变化的图象正确的是 ( )15如图1所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12m v 2D .在导轨的a 、c 两端用导线连接一个电容器16.(2011·福建理综·17)如图2所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( )A .运动的平均速度大小为12vB .下滑的位移大小为qRBL C .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2vR sin θ17.如图5所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 A .若B 2=B 1,金属棒进入B 2区域后将加速下滑 B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑 C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑 D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑。
电磁感应综合力学问题

最初一段时间是匀速的, 线和gh线的距离s gh线的距离 m(取 最初一段时间是匀速的,ef 线和gh线的距离s=11.4 m(取g=10 ).求 m/s2).求: (1)线框进入磁场时匀速运动的速度 线框进入磁场时匀速运动的速度v (1)线框进入磁场时匀速运动的速度v. (2)ab边由静止开始运动到gh线所用的时间t (2)ab边由静止开始运动到gh线所用的时间t. ab边由静止开始运动到gh线所用的时间 线框的运动可分为进入磁场前、 思路点拨 线框的运动可分为进入磁场前、 进入磁场中、完全进入磁场后三个阶段 分 进入磁场中、完全进入磁场后三个阶段,分 析每个阶段的受力,确定运动情况 确定运动情况. 析每个阶段的受力 确定运动情况
(1)导体处于平衡态 导体处于平衡态——静止或匀速直线运动状态. 静止或匀速直线运动状态. 导体处于平衡态 静止或匀速直线运动状态 处理方法:根据平衡条件 合外力等于零列式分析. 处理方法:根据平衡条件——合外力等于零列式分析. 合外力等于零列式分析 (2)导体处于非平衡态 导体处于非平衡态——加速度不等于零. 加速度不等于零. 导体处于非平衡态 加速度不等于零 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析. 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析.
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率
电磁感应定律的综合应用——杆模型

2、已知轨道 NMPQ 水平放置,间距为 l,电阻不计,磁感应 强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab 质量为 m,电阻为 r,在恒力 F 作用下由静止开始运动。摩 擦不计,接触良好。求: (1)、杆做什么运动?并画 v-t 图像。 (2)、写出 a 与 v 的关系式,画出 a-v 图像。 (3)、杆 ab 最大速度。 (4) 、若杆 ab 在加速阶段的时间为 t0,则通过 R 电量, 杆 ab 的位移分别为多少。
模 型 三 双杆
栏目导航
5.如图所示,两根质量均为 m=2 kg 的金属棒垂直放在光滑的水 平导轨上,左右两部分导轨间距之比为 1∶2,导轨间有大小相等 但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比, 不计导轨电阻。现用 250 N 的水平拉力 F 向右拉 CD 棒,CD 棒运 动 s=0.5 m 时其上产生的焦耳热为 Q2=30 J,此时两棒速率之比 为 vA∶vC=1∶2,现立即撤去拉力 F,设导轨足够长且两棒始终 在不同磁场中运动,求: (1)在 CD 棒运动 0.5 m 的过程中,AB 棒上产生的焦耳热; (2)撤去拉力 F 瞬间,两棒的速度大小 vA 和 vC; (3)撤去拉力 F 后,两棒最终匀速运动的速度大小 vA′和 vC′。
强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab
V0
质量为 m,电阻为 r,以初速度 V0 向右沿轨道运动,摩擦
不计,接触良好。求:
(1)、杆做什么运动?并画 v-t 图像。
(2)、写出 a 与 v 的关系式,画出 a-v 图像。
(3)、通过 R 的电量。
(4)、杆 ab 的位移。
(5) 、杆 ab 产生的热量。
栏目导航
高考热点 分层突破
电磁感应综合应用2

电磁感应综合应用21.如图示,两根光滑的平行金属导轨MN,PQ处于同一水平面上,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆如,质量m=0.2kg,整个装置放在竖直向下的匀强磁场中,磁感应强度B=2T,现对金属杆施加水平向右的拉力F=2N,使它由静止开始运动.求:(1)金属杆的速度达到最大时,a、b两端电压多大?此时拉力的瞬时功率多大?(2)若已知金属杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的热量,此过程持续的时间多长?(3)若金属杆达到最大速度后撤去拉力,其向前冲的距离会有多大?2.如图示,在方向竖直向上的磁感应强度为B的匀强磁场中有两条光滑固定的平行金属导轨MN、PQ,导轨足够长,间距为L,其电阻不计,导轨平面与磁场垂直,ab、cd为两根垂直于导轨水平放置的金属棒,其接入回路中的电阻均为R,质量均为m,与金属导轨平行的水平细线一端固定,另一端与cd棒的中点连接,细线能承受的最大拉力为T,开始细线处于伸直状态,ab棒在平行导轨的水平拉力F的作用下由静止向右做加速直线运动,两根金属棒运动时始终与导轨接触且与导轨相垂直.(1)若ab是以恒定加速度a向右运动的,求经多长时间细线被拉断?(2)若在细线被拉断瞬间撤去拉力F,求两根金属棒之间距离增量△x的最大值是多少?(3)若ab棒的运动速度满足v=v o sinωt,当ab棒速度第一次达到V O时,拉力F做了多少功?3.如图示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=1.0Ω,有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿平行于轨道的方向拉杆,使杆做匀加速直线运动,测得力F与时间t的关系如图所示.求导体杆的质量m和加速度a.4.如图甲所示,M1M4、N1N4为平行放置的水平金属轨道,M4P、N4Q为相同半径、平行放置的竖直半圆形金属轨道,M4、N4为切点,P、Q为半圆轨道的最高点,轨道间距L=1.0m,圆轨道半径r=0.32m,整个装置左端接有阻值R=0.5Ω的定值电阻。
§4 电磁感应与力学规律的综合应用

§4 电磁感应与力学规律的综合应用教学目标:1.综合应用电磁感应等电学知识解决力、电综合问题; 2.培养学生分析解决综合问题的能力 教学重点:力、电综合问题的解法教学难点:电磁感应等电学知识和力学知识的综合应用,主要有1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题2、应用牛顿第二定律解决导体切割磁感线运动的问题。
3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。
4、应用能的转化和守恒定律解决电磁感应问题。
教学方法:讲练结合,计算机辅助教学 教学过程:一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。
F=BIL 界状态v与a方向关系运动状态的分析a 变化情况 F=ma 合外力 感应电流 确定电源(E ,r ) r R EI +=解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑ab 下滑时因切割磁感线,要产生感应电动势,根据电磁感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定律: I=E/R ②据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为: F 安=BIL ③取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有: F N = mg cos θ F f = μmg cos θ由①②③可得RvL B F 22=安以ab 为研究对象,根据牛顿第二定律应有:mg sin θ –μmg cos θ-RvL B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大 因此,ab 达到v m 时应有:mg sin θ –μmg cos θ-RvL B 22=0 ④ 由④式可解得()22cos sin LB Rmg v m θμθ-=注意:(1)电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习

4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
高三物理电磁感应的综合应用

D
图9-3-2 B.
A.
C.
D.
热点二
电磁感应中的动态分析问题
【例2】[2009年高考福建理综卷]如图9-3-3所示,固定放置在同一水平面内的两根平行长直金属导轨的间距 为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。 现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离l时,速度恰好达到最大(运动过程中 杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。则此过程( B D) A.杆的速度最大值为(F-μmg)R/(B2d2) B.流过电阻R的电量为Bdl/(R+r) C.恒力F做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F做的功与安培力做的功之和大于杆动能的变化量
【解析】本题考查受力分析、电磁感应、能量守恒等知识, 主要考查学生理解、推理能力。当v最大时有F=f+F安,即 图9-3-3 F=μmg+B2d2v/(R+r),v=(F-μmg)(R+r)/(B2d2);通过电阻R的电量 q=ΔΦ/(R+r)=Bdl/(R+r);由动能定理有WF+Wf+WF安=ΔEk,其Wf<0,WF安<0,故B、D对。 【名师支招】解决动态问题的基本方法: 受力分析→运动分析(确定运动过程和最终的稳定状态)→由牛顿第二定律列方程求解。 运动的动态结构:
3B 2 r 2 v1 9m 2 gR 2 v2 2 【答案】(1) g (2) 4 4 4mR 32 B r 2g
4 B 2 r 2a 4 B 2 r 2 v3 (3) F t ma mg 3R 3R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)能量转化特点: 其它能(如:机械能)
安培力做负功
电能
电流做功
内能(焦耳热)或其它形式的能
足够长的光滑金属导轨E F,P Q水平放置,质量 为m电阻为R的相同金属棒ab,cd与导轨垂直且接触良 好,磁感强度为B的匀强磁场垂直导轨平面向里如图所 示。现用恒力F作用于ab棒上,使它向右运动。 A.安培力对cd做正功使它向右加速运动 B.外力F 做的功等于克服ab棒上安培力的功 C.外力作的功等于回路产生的总热量和系统的动能 D.回路电动势先增后减两棒共速时为零
电磁感应中的图象问题
如图所示,一宽40cm的匀强磁场区域,磁场方向垂直纸 面向里.一边长为20cm的正方形导线框位于纸面内,以 垂直于磁场边界的恒定速度v=20cm/s通过磁场区域, 在运动过程中,线框有一边始终与磁场区域的边界平 行.取它刚进入磁场的时刻t=0. 在下列图线中,正确 反映感应电流随时间变化规律的是
1、电磁感应中的电路问题 2、电磁感应中的力学问题 3、电磁感应中的能量问题 4、电磁感应中的图象问题
电磁感应中的电路问题
基本方法:
(1)、用法拉第电磁感应定律和楞次定律 确定感应电动势的大小和方向。 (2)、画等效电路
(3)、运用闭合电路欧姆定律,串并联
电路性质,电功率等公式联立求解。
在光滑绝缘水平面上,一边长为10厘米、电阻1Ω、 质量0.1千克的正方形金属框abcd以 6 2m / s 的速度向 一有界的匀强磁场滑去,磁场方向与线框面垂直, B=0.5T,当线框全部进入磁场时,线框中已放出了1.8焦 耳的热量,则当线框ab边刚穿出磁场的瞬间,求: (1)ab两端的电压,线框中电流的瞬时功率 (2)加速度大小 (3)当线框全部穿出磁场时,线框的速度大于还是等于 零
如图所示,在水平面上有两条平行导电导轨MN、PQ, 导轨间距离为L。匀强磁场垂直于导轨所在平面(纸 面)向里,磁感应强度的大小为B。两根金属杆1、2 摆在导轨上,与导轨垂直,它们的质量和电阻分别为 m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的 动摩擦因数为μ。已知:杆1被外力拖动,以恒定的 速度v0沿导轨运动,达到稳定状态时,杆2也以恒定 速度沿导轨运动,导轨的电阻可忽略。求此时杆 2克 服摩擦力做功的功率。
感应电流I
如右图所示,两根平行金属导端点P、Q用电阻 可忽略的导线相连,两导轨间的距离l=0.20 m.有随 时间变化的匀强磁场垂直于桌面,已知磁感应强度 B 与时间t的关系为B=kt,比例系数k=0.020 T/s.一 电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动 过程中保持与导轨垂直.在t=0时刻,轨固定在水平 桌面上,每根导轨每m的电阻为r0=0.10Ω/m,导轨 的金属杆紧靠在P、Q端,在外力作用下,杆恒定的加 速度从静止开始向导轨的另一端滑动,求在 t=6.0 s 时金属杆所受的安培力.
两根足够长的固定的平行金属导轨位于同一水平面 内,两导轨间的距离为l。导轨上面横放着两根导体 棒ab和cd,构成矩形回路,如图所示.两根导体棒 的质量皆为m,电阻皆为R,回路中其余部分的电阻 可不计.在整个导轨平面内都有竖直向上的匀强磁 场,磁感应强度为B.设两导体棒均可沿导轨无摩擦 地滑行。开始时,棒cd静止,棒ab有指向棒cd的初 速度v.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少? (2)当棒ab的速度变为初速度的3/4时,cd棒 的加速度是多少?
B a
F
b θ
如图所示,OACO为置于水平面内的光滑闭合金属 导轨,O、C处分别接有短电阻丝(图中粗线表法), R1= 4Ω、R2=8Ω(in(πx/3)(单位: m).磁 感强度B=0.2T的匀强磁场方向垂直于导轨平面.一足 够长的金属棒在水平外力F作用下,以恒定的速率 v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导 轨接触良好且始终保持与OC导轨垂直,不计棒的电 阻.求: (1)外力F的最大值; (2)金属棒在导轨上运动时电 阻丝R1上消耗的最大功率; (3)在滑动过程中通过金属棒 的电流I与时间t的关系.
如图所示中a1b1c1d1和a2b2c2d2为在同一竖直平面 内的金属导轨,处在磁感应强度为B的匀强磁场中, 磁场方向垂直导轨所在的平面(纸面)向里。导轨 的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与 c2d2段也是竖直的,距离为l2。x1y1和x2y2为两根用 不可伸长的绝缘轻线相连的金属细杆,质量分别为 m1和m2,它们都垂直于导轨并与导轨保持光滑接触。 两杆与导轨构成的回路的总电阻为R。F为作用于金 属杆x1y1上的竖直向上的恒力。已知两杆运动到图 示位置时,已匀速向上运动,求此时作用于两杆的 重力的功率的大小和回路上的热功率。
两根相距d=0.2m的平行金属长导轨固定在同一水平 面内,并处于竖直方向的匀强磁场中,磁场的磁感应 强度B=0.2T,导轨上面横放着两条金属细杆,构成矩 形回路,每条金属细杆的电阻为r=0.25Ω,回路中其 余部分的电阻可不计.已知两金属细杆在平行于导 轨的拉力的作用下沿导轨朝相反方向匀速平移,速 度大小都是v=5.0m/s,如图所示.不计导轨上的摩擦. (1)求作用于每条金属细杆的拉力的大小. (2)求两金属细杆在间距增加0.4m的滑动过程中共 产生的热量
3k 2 l 2 F t 2r0
如图所示,处于匀强磁场中的两根足够长、电阻不 计的平行金属导轨相距1m,导轨平面与水平面成 θ=370角,下端连接阻值为R的电阻。匀强磁场的方 向与导轨平面垂直。质量为0.2㎏、电阻不计的导体 棒放在两导轨上,棒与导轨垂直并且接触良好,它 们间的动摩擦因数为0.25。 (1)金属棒沿导轨由静止开始下滑时的加速度大小。 (2)当金属棒下滑速度达到稳定时,电阻R消耗的 功率为8W,求该速度的大小。 (3)在上问中,若R=2Ω,金属棒 中电流方向由a到b,求磁感应强度 的大小与方向。 (g=10m/s2,sin370=0.6,cos370=0.8)
a
d b c
思考:你能作出ad间电压与时间的关系图 象吗?
电磁感应中的能量问题
(一)基本思路:受力分析→弄清哪些力做功, 正功还是负功→明确有哪些形式的能量参与转 化,哪增哪减如有滑动摩擦力做功,必然有内 能出现;重力做功,就可能有机械能参与转化; 安培力做负功就将其它形式能转化为电能,做 正功将电能转化为其它形式的能;→由动能定 理或能量守恒定律列方程求解.
如图相距为L的两光滑平行导轨,平行放置在倾角为 θ的斜面上,导轨的右端接有电阻R(轨道电阻不 计),斜面处在一匀强磁场B中,磁场方向垂直于斜 面向上,质量为m,电阻为2R的金属棒ab放在导轨上, 与导轨接触良好,由静止释放,下滑距离S后速度最 2 2 2 m g Sin 大,则 R 2 2 A.下滑过程电阻R消耗的最大功率为 B L B.下滑过程电阻R消耗的最大功率为
水平固定的光滑U型金属框架宽为L,足够长,其上放 一质量为m的金属棒ab,左端连接有一阻值为R的电阻(金 属框架、金属棒及导线的电阻均可忽略不计),整个装置 处在向下的匀强磁场中,磁感应强度大小为B。现给棒一 个初速v0,使棒始终垂直框架并沿框架运动,如图所示。 (1)金属棒从开始运动到达稳定状态的过程中求:通过电 阻R的电量和电阻R中产生的热量 (2)金属棒从开始运动到达稳定状态的过程中求金属棒通 过的位移 (3)如果将U型金属框架左端的电阻R换为一电容为C的电容 器,其他条件不变,如图所示。求金属棒从开始运动到达 稳定状态时电容器的带电量和电容器所储存的能量(不计 电路向外界辐射的能量) a R b v0
电磁感应中的力学问题
1.方法:从运动和力的关系着手,运用牛顿第二定 律和电磁感应规律求解 2.基本思路:受力分析→运动分析→变化趋向→确 定运动过程和最终的稳定状态→由牛顿第二定律列方 程求解. 3.注意安培力的特点:
导体运动v 阻 碍 安培力F
磁场对电流的作用
电磁感应
感应电动势E 闭 合 电 路 欧 姆 定 律
d av
0
v1
Ⅱ Ⅲ
cⅠ b
半径为a的圆形区域内有均匀磁场,磁感强度为 B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环 与磁场同心地放置,磁场与环面垂直,其中 a=0.4m, b=0.6m,金属环上分别接有灯L1、L2,两灯的电阻均为 R =2Ω,一金属棒MN与金属环接触良好,棒与环的电阻 均忽略不计 (1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒 滑过圆环直径OO′ 的瞬时(如图所示)MN中的电动势 和流过灯L1的电流。 (2)撤去中间的金属棒MN,将右面的半圆环OL2O′ 以 OO′ 为轴向上翻转90º,若此 时磁场随时间均匀变化,其变 化率为ΔB/Δt=4T/s,求L1的功率。
如图所示,在竖直面内有两平行金属导轨AB、CD。导 轨间距为L,电阻不计。一根电阻不计的金属棒ab可在 导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。 导轨之间有垂直纸面向外的匀强磁场,磁感强度为 B。 导轨右边与电路连接。电路中的三个定值电阻阻值分 别为2R、R和R。在BD间接有一水平放置的平行板电容 器C,板间距离为d。 (1)当ab以速度v0匀速向左运动时,电容器中质量为m 的带电微粒恰好静止。试判断微粒的带电性质及带电 量的大小。 (2)ab棒由静止开始,以恒定 的加速度a向左运动。讨论电容 器中带电微粒的加速度如何变化。 (设带电微粒始终未与极板接触)
3m 2 g 2 Sin2 R 2 2 B L
9m 3 g 2 Sin2 2 R 4 4 2B L C.下滑过程克服安培力做功
9m 3 g 2 Sin2 D.下滑过程克服安培力做功 mgS Sin 2 B 4 L4 R2
θ=30º,L=1m,B=1T,导轨光滑电阻不计,F功率 恒定且为6W,m=0.2kg、R=1Ω,ab由静止开始运动, 当s=2.8m时,获得稳定速度,在此过程中ab产生的热 量Q=5.8J,g=10m/s2,求: (1)ab棒的稳定速度 (2)ab棒从静止开始达到稳定速度所需时间