2015学年广东省广州市南沙区七年级下学期数学期末试卷带答案

合集下载

广州七年级下学期期末考数学

广州七年级下学期期末考数学

七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下面有4个汽车标志图案,其中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2. 据广东省卫计委通报,5月27日广东出现首例中东呼吸综合症(MERS )疑似病例,MERS 属于冠状病毒,病毒粒子成球形,直径约为140纳米(1米=1000000000纳米),用科学记数法表示为( )A. 1.4×1011米B. 140×109米C. 1.4×10−11米D. 1.4×10−7米 3. 下列条件中,能判定两个直角三角形全等的是() A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等4. 下列运算正确的是( ) A. a 6÷a 2=a 3 B. a 3⋅a 3⋅a 3=3a 3C. (a 3)4=a 12D. (a +2b)2=a 2+4b 25. 下列计算正确的是( ) A. (3x −y)(3x +y)=9x 2−y 2 B. (x −9)(x +9)x 2−9C. (x −y)(−x +y)=x 2−y 2D. (x −12)2=x 2−14 6. 已知m +n =2,mn =-2,则(1-m )(1-n )的值为( )A. −1B. 1C. −3D. 57. 下列判断正确的个数是( )(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A. 1个B. 2个C. 3个D. 4个8. 如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A. 1个B. 2个C. 3个D. 4个9. 下列关于概率的描述属于“等可能性事件”的是( )A. 交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B. 掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C. 小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D. 小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BCBD,点D到边AB的距离为6,则BC于D,若CD=12的长是()A. 6B. 12C. 18D. 2412.如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A. 60∘B. 70∘C. 80∘D. 90∘二、填空题(本大题共4小题,共12.0分)13.若x2+mx+9是一个完全平方式,则m的值是_______.14.如图,有一小球在如图所示的地板上面自由滚动,则小球在地板上最终停留在黑色区域的概率为______.15.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=56°,则∠EGF应为______.16.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=BC;(3)BD平分∠ABC;(4)AO=CO.其中正确的有______(填序号).三、计算题(本大题共3小题,共18.0分)17.计算:)0+(-0.2)2014×52014(1)2-2+(23(2)已知a m=3,a n=9,则a m+n=______.18.化简,再求值:[(x+2y)2-(3x+y)(3x-y)-5y2]÷2x,其中x=-1,y=1.219.一个不透明口袋中装有5个白球和6个红球,这些球除颜色外完全相同,充分搅匀后随机摸球.(1)如果先摸出一白球,将这个白球放回,再摸出一球,那么它是白球的概率是多少?(2)如果先摸出一白球,这个白球不放回,再摸出一球,那么它是白球的概率是多少?(3)如果先摸出一红球,这个红球不放回,再摸出一球,那么它是白球的概率是多少?四、解答题(本大题共5小题,共40.0分)20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,直线a为对称轴,A和C都在对称轴上.(1)△ABC以直线a为对称轴作△AB1C;(2)若∠BAC=30°,则∠BAB1=______°;(3)求△ABB1的面积等于______.21.“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.22.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.23.如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED证明:∵BE=FC∴BE+EF=FC+EF(______)即:______∵AB∥CD∴∠B=∠C(______)∠A=∠D∠B=∠C在△ABF和△DCE中,有BF=CE∴△ABF≌△DCE(______)∴∠AFB=∠DEC(______)∴AF∥ED(______)(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?答案和解析1.【答案】C【解析】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.根据轴对称图形的概念结合4个汽车标志图案的形状求解.本题考查了轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.【答案】D【解析】解:140纳米=1.4×10-7米,故选:D.绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】D【解析】【分析】此题主要考查两个直角三角形全等的判定,除了一般三角形全等的4种外,还有特殊的判定:HL.判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种.据此作答.【解答】解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选D.4.【答案】C【解析】解:A、a6÷a2=a4,故A错误;B、a3•a3•a3=a9,故B错误;C、(a3)4=a12,故C正确;D、(a+2b)2=a2+4b2+4ab,故D错误.故选:C.根据同底数幂的乘法与除法以及幂的乘方和完全平方公式的知识求解即可求得答案.本题主要考查了同底数幂的乘法与除法以及幂的乘方和完全平方公式的知识,解题的关键是熟记法则.5.【答案】A【解析】解:A、原式=9x2-y2,符合题意;B、原式=x2-81,不符合题意;C、原式=-x2+2xy-y2,不符合题意;D、原式=x2-x+,不符合题意,故选:A.各项计算得到结果,即可作出判断.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.6.【答案】C【解析】解:∵m+n=2,mn=-2,∴(1-m)(1-n)=1-n-m+mn=1-(n+m)+mn=1-2-2=-3;故选:C.根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,再代入计算即可.本题主要考查多项式乘以多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.7.【答案】C【解析】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.此题主要考查了全等图形的概念与性质,正确掌握判定两三角形全等的方法是解题关键.8.【答案】C【解析】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选:C.观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.解决本题的关键是读懂图意,明确横轴与纵轴的意义.9.【答案】D【解析】解:∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴它不属于“等可能性事件”,∴选项A不正确;∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴它不属于“等可能性事件”,∴选项B不正确;∵“直角三角形”三边的长度不相同,∴小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率不相同,∴它不属于“等可能性事件”,∴选项C不正确;∵小明用随机抽签的方式选择以上三种答案,A、B、C被选中的相同,∴它属于“等可能性事件”,∴选项D正确.故选:D.A:交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,所以它们发生的概率不相同,不属于“等可能性事件”,据此判断即可.B:因为图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率不相同,不属于“等可能性事件”,据此判断即可.C:因为“直角三角形”三边的长度不相同,所以小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率不相同,不属于“等可能性事件”,据此判断即可.D:小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的相同,属于“等可能性事件”,据此判断即可.此题主要考查了概率的意义,以及“等可能性事件”的性质和应用,要熟练掌握.10.【答案】A【解析】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.【答案】C【解析】【分析】本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.过D作DE⊥AB于E,则DE=6,根据角平分线性质求出CD=DE=6,求出BD即可.【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,故选C.12.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,又∠EFG=40°∴∠BEF=140°;∵EG平分∠BEF,∴∠BEG=∠BEF=70°,∴∠EGF=∠BEG=70°.故选:B.根据两直线平行,同旁内角互补可求出∠FEB,然后根据角平分线的性质求出∠BEG,最后根据内错角相等即可解答.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.13.【答案】±6【解析】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.利用完全平方公式的结构特征判断即可确定出m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】13【解析】解:∵由图可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴小球停留在黑色区域的概率是.故答案为:.先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.15.【答案】68°【解析】【分析】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.根据两直线平行,内错角相等可得∠2=∠1,再根据翻折变换的性质和平角的定义求出∠3,然后根据两直线平行,内错角相等可得∠EGF=∠3.【解答】解:如图,∵长方形的对边AD∥BC,∴∠2=∠1=56°,由翻折的性质和平角的定义可得∠3=180°-2∠2=180°-2×56°=68°,∵AD∥BC,∴∠EGF=∠3=68°.故答案为:68°.16.【答案】(1)(2)(3)(4)【解析】解:如图,∵直线l是四边形ABCD的对称轴,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠2=∠3,∴∠1=∠3=∠4,∴AB∥CD,AB=BC,故(1)(2)正确;由轴对称的性质,AC⊥BD,∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(3)(4)正确.综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(3)(4).根据轴对称的性质可得∠1=∠2,∠3=∠4,根据两直线平行,内错角相等可得∠2=∠3,从而得到∠1=∠3=∠4,然后根据内错角相等,两直线平行可得AB∥CD,等角对等边可得AB=BC,再根据等腰三角形三线合一的性质可得BD平分∠ABC,AO=CO.本题考查了轴对称的性质,平行线的性质以及等腰三角形三线合一的性质,熟记各性质是解题的关键,用阿拉伯数字加弧线表示角更形象直观.17.【答案】27【解析】解:(1)2-2+()0+(-0.2)2014×52014=+1+(-0.2×5)2014=+(-1)2014=+1=;(2)∵a m=3,a n=9,∴a m+n=a m×a n=3×9=27,故答案为:27.(1)先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)利用同底数幂的乘法法则的逆运算进行计算即可.本题主要考查了实数的运算以及幂的运算,解题时注意:同底数幂相乘,底数不变,指数相加.18.【答案】解:当x =-12,y =1时,原式=(x 2+4xy +4y 2-9x 2+y 2-5y 2)÷2x =(-8x 2+4xy )÷2x=-4x +2y=2+2=4【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【答案】解:(1)先摸出一白球,将这个白球放回,那么第二次模球时,仍然有5个白球和6个红球,则再摸出一球,那么它是白球的概率是P =511;(2)先摸出一白球,这个白球不放回,那么第二次摸球时,有4个白球和6个红球,那么它是白球的概率是P =410=25;(3)先摸出一红球,这个红球不放回,那么第二次摸球时,有5个白球和5个红球,那么它是白球的概率是P =510=12.【解析】列表得出所有等可能的情况数,即可确定出所求的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】60;28【解析】解:(1)△AB 1C 如图所示;(2)∠BAB 1=2∠BAC=2×30°=60°;(3)△ABB1的面积=×8×7=28.故答案为:60;28.(1)根据网格结构找出点B关于直线a的对称点B1的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置.21.【答案】解:如图所示,.【解析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.【答案】解:(1)根据图象知道:点A到点B是匀速运动、点E到点F是匀加速运动、点G到点H匀减速运动;(2)根据图象知道:汽车在点A的速度是30千米每小时,在点C的速度为0千米每小时;(3)如图所示:.【解析】(1)根据图象可以确定从点A到点B、点E到点F、点G到点H分别表明汽车的运动状态;(2)根据图象可以直接得到汽车在点A和点C的速度;(3)结合已知条件利用图象可以画出从28分钟以后汽车速度与行驶时间的关系图.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23.【答案】等式的性质;BF=CE;两直线平行内错角相等;AAS;全等三角形对应角相等;内错角相等两直线平行【解析】证明:∵BE=FC,∴BE+EF=FC+EF(等式的性质),即BF=CE,∵AB∥CD,∴∠B=∠C(两直线平行内错角相等),∠A=∠D,∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC(全等三角形对应角相等),∴AF∥ED(内错角相等两直线平行).故答案为:等式的性质;BF=CE;两直线平行内错角相等;AAS;全等三角形对应角相等;内错角相等两直线平行由BE=CF,利用等式的性质得到BF=CE,再由AB与DC平行,得到两对内错角相等,利用AAS得到三角形ABF与三角形DCE全等,利用全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证.此题考查了全等三角形的判定与性质,以及平行线的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】(1)证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△ABE和△ADC中,{AB=AD∠DAC=∠BAE AE=AC,∴△ABE≌△ADC(SAS),∴BE=DC,∠ABE=∠ADC,又∵∠BFO=∠DFA,∠ADF+∠DFA=90°,∴∠ABE+∠BFO=90°,∴∠BOF=∠DAF=90,即BE⊥DC.(2)解:结论:BE=CD.理由:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,{AD=AB∠DAC=∠BAE AC=AE,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOD=180°-∠BOC=60°.【解析】(1)只要证明△ABE≌△ADC即可解决问题;(2)根据等边三角形的性质得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根据SAS推出△DAC≌△BAE,根据全等三角形的性质得出∠BEA=∠ACD,求出∠BOC=∠ECO+∠OEC=∠ACE+∠AEC,再根据∠BOD=180°-∠BOC,即可求出∠BOD;此题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键。

2015学年七年级(下)期末数学试题(含答案)

2015学年七年级(下)期末数学试题(含答案)

七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.1.下列各式的计算中,正确的是()A.﹣2﹣2=﹣4 B.(+1)0=0 C.(﹣)﹣3=27 D.(m2+1)0=12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°(第2题) (第5题)3.若3x=a,3y=b,则3x﹣2y等于()A.B.2ab C.a+D.4.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.05.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个6.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣17.已知多项式ax+b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,则a b的值为()A.﹣2 B.2 C.﹣1 D.18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.+=B.+=C.﹣=D.+=9.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则ac2>bc2C.若ac2>bc2,则a>b D.若a>0,b>0,且,则a>b10.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:2x3﹣8xy2=.12.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为.13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为.15.如果x2﹣2(m﹣1)x+m2+3是一个完全平方式,则m=.16.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;…那么f (1)+f (2)+f ()+f (3)+…+f (n +1)+f()= (结果用含n 的代数式表示).三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以) 17.解下列方程(组):(1) (2)﹣2=.18.计算:(1)()﹣1﹣4×(﹣2)﹣2+(﹣π+3.14)0﹣()﹣2(2)用简便方法计算:1252﹣124×126﹣2101×(﹣0.5)99.19.解不等式组,并从其解集中选取一个能使下面分式有意义的整数,代入求值.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.设b=ma是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为2a2,若能,请求出满足条件的m值;若不能,请说明理由.22.某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.(1)已知a、b、c是△ABC的三边长,试判断代数式(a2+b2﹣c2)2与4a2b2的大小.(2)已知a、b、c是△ABC的三边长,且3a3+6a2b﹣3a2c﹣6abc=0,则△ABC是什么三角形?24.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?参考答案一、仔细选一选1.解:A、﹣2﹣2=﹣,错误;B、(+1)0=1,错误;C、(﹣)﹣3=﹣27,错误;D、(m2+1)0=1,正确;故选D2.解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C3.3x﹣2y=3x÷32y=3x÷32y=3x÷(3y)2=a÷b2=.故选A.4.解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选:A5.解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.6.解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.7.解:∵(ax+b)(2x2﹣x+2)=2ax3+(2b﹣a)x2+(2a﹣b)x+2b,又∵展开式中不含x的一次项,且常数项为﹣4,∴,解得:,∴a b=(﹣1)﹣2=1,选D.8.解:设规定的时间为x天,由题意得,+=.故选D.9.解:A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.分母越大,分数值越小,故此选项错误.故选C.10.解:根据题意可知a﹣1≤3即a+2≤5,所以a≤3,又因为3<x<a+2,即a+2>3,所以a>1,所以1<a≤3,故选:D.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).12.解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.13.解:(1)在同一平面内,不相交的两条直线叫做平行线;故错误;(2)经过直线外一点,有且只有一条直线与已知直线平行;故错误;(3)在同一平面内,垂直于同一条直线的两直线平行;故错误;(4)直线a∥b,b∥c,则a∥c;故正确;(5)两条平行直线被第三条直线所截,同位角相等,故错误.其中正确的是(4).14.解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.15.解:∵x2﹣2(m﹣1)x+m2+3是一个完全平方式,∴(m﹣1)2=m2+3,即m2﹣2m+1=m2+3,解得:m=﹣1,故答案为:﹣116.解:∵根据题意,f(2)==,f()==;f(3)==,f()==;…f(n+1)=,f()==;∴f(1)+f(2)+f()+f(3)+…+f(n+1)+f()=+++++…++=+1+1+…+1=故答案为:+n.三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)方程组整理得:,①×6+②×5得:57x=﹣38,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=2﹣4×+1﹣9=﹣7;(2)原式=1252﹣(125﹣1)×(125+1)﹣2×(﹣2×0.5)99=1252﹣1252+1+2=3.19.解:,由①得,x<2,由②得,x>﹣3,所以,不等式组的解集是﹣3<x<2,÷﹣=×﹣=﹣=,分式有意义,则x2﹣1≠0,3x≠0,解得x≠±1,x≠0,所以,使得分式有意义的整数只有﹣2,代入得:原式===.20.解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:不能化简为2a2,理由:∵设b=ma,∴(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)=4a2﹣4ab+b2﹣a2+4b2+4ab+4a2=7a2+5b2=7a2+5(ma)2=7a2+5m2a2=(7+5m2)a2=2a2,故7+5m2=2,解得:5m2=﹣5,不合题意,错误.22.解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)如图:(4)21000×=2520(人)全市本届学生中“最喜欢足球运动”的学生约有2520人;23.解:(1)(a2+b2﹣c2)2﹣4a2b2第11页(共11页)=(a 2+b 2﹣c 2+2ab )(a 2+b 2﹣c 2﹣2ab )=[(a +b )2﹣c 2][(a ﹣b )2﹣c 2]=(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +c ),∵a ,b ,c 是三角形ABC 三边,∴a +b +c >0,a +b ﹣c >0,a ﹣b ﹣c <0,a ﹣b +c >0,∴(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +C )<0,即值为负数,(a 2+b 2﹣c 2)2<4a 2b 2(2)3a 3+6a 2b ﹣3a 2c ﹣6abc =0,可得:a (a ﹣c )(a +2b )=0,所以a =c ,所以△ABC 是等腰三角形.24.解:(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得,∴解方程组得:答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则,解得,解得:20≤y ≤25 ∵y 为正整数∴y =20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W =20x +30y =20(200﹣2 y )+30y =﹣10y +4000(20≤y ≤25)∵﹣10<0,∴W 随y 的增大而减小,∴当y =20时,W 有最大值W 最大=﹣10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.。

2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷

2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷

2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)下列四个数中,无理数是()A.B.﹣0.1 C. D.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)﹣8的立方根是()A.﹣2 B.2 C.±2 D.44.(2分)下列统计中,能用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率5.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠46.(2分)若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc7.(2分)下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c8.(2分)如图,已知直线a∥b,∠1=40°,∠2=100°,则∠3等于()A.40°B.60°C.80°D.100°9.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是()A.B.C.D.10.(2分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为()A.(1006,0)B.(1006,1)C.(1007,0)D.(1007,1)二、填空题(本题共6个小题,每小题3分,共18分)11.(3分)不等式﹣2x<3的解集是.12.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在长方形的对边上.如果∠1=16°,那么∠2的度数是.13.(3分)某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有人.14.(3分)计算:=15.(3分)在坐标平面内,若点P(x﹣3,x+2)在第三象限,则x的取值范围.16.(3分)已知一个正数k的两个平方根是2a﹣15和a+3,则这个正数的值为.三、解答题(本题共7个小题,共62分,解答要求写出文字说明,证明过程或计算步骤)17.(6分)解方程组:.18.(8分)解不等式组,并把解集在数轴上表示出来:.19.(10分)如图,DB平分∠ADC,∠1=∠3.(1)求证:AB∥DC;(2)若∠2=55°,求∠A的度数.20.(8分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.21.(10分)如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.22.(10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.(10分)如图,已知直线BC∥OA,∠C=∠OAB=108°,E、F在线段BC上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若∠OEC=∠OBA,求∠OEC的度数;(3)若平行移动线段AB,是否存在∠OEC=2∠OBA?若存在,求出∠OEC的度数;若不存在,请说明理由.2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)下列四个数中,无理数是()A.B.﹣0.1 C. D.【解答】解:A、是有理数,故A错误;B、﹣0.1是有理数,故B错误;C、=4是有理数,故C错误;D、是无理数,故D正确;故选:D.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.3.(2分)﹣8的立方根是()A.﹣2 B.2 C.±2 D.4【解答】解:=﹣2,故选:A.4.(2分)下列统计中,能用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率【解答】解:A、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查.故选C.5.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4【解答】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.6.(2分)若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc【解答】解:A、由a<b,则a﹣c<b﹣c,故A选项正确;B、a<b,可设a=﹣1,b=0,则a2<b2不成立,故B选项错误;C、由a<b,则﹣a>﹣b,故C选项错误;D、当c=0,ac=bc,故D选项错误.故选:A.7.(2分)下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c【解答】解:A、在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B、在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C、在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题.故选:C.8.(2分)如图,已知直线a∥b,∠1=40°,∠2=100°,则∠3等于()A.40°B.60°C.80°D.100°【解答】解:过点A作AB∥a,∵直线a∥b,∠1=40°,∠2=100°,∴AB∥a∥b,∠DAB=∠1=40°,∴∠3=∠BAC=100°﹣40°=60°.故选:B.9.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是()A.B.C.D.【解答】解:设乙的弹珠数为x颗,甲的弹珠数为y颗,由题意得,整理得.故选:D.10.(2分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为()A.(1006,0)B.(1006,1)C.(1007,0)D.(1007,1)【解答】解:由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=503时,A2015(1007,0).故选:C.二、填空题(本题共6个小题,每小题3分,共18分)11.(3分)不等式﹣2x<3的解集是x>﹣.【解答】解:﹣2x<3,系数化为1得,,故答案为x>﹣.12.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在长方形的对边上.如果∠1=16°,那么∠2的度数是14°.【解答】解:∵∠1+∠3=90°﹣60°=30°,而∠1=16°,∴∠3=14°,∵a∥b,∴∠2=∠3=14°.故答案为14°.13.(3分)某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有108人.【解答】解:教师所占的百分比是:1﹣46%﹣45%=9%,则教师的人数是:1200×9%=108.故答案是:108.14.(3分)计算:=【解答】解:=+2=.故答案为:.15.(3分)在坐标平面内,若点P(x﹣3,x+2)在第三象限,则x的取值范围x<﹣2.【解答】解:由点P(x﹣3,x+2)在第三象限,得.解得x<﹣2,故答案为:x<﹣2.16.(3分)已知一个正数k的两个平方根是2a﹣15和a+3,则这个正数的值为49.【解答】解:由题意得,2a﹣15+a+3=0,解得,a=4,a+3=7,72=49,故答案为:49.三、解答题(本题共7个小题,共62分,解答要求写出文字说明,证明过程或计算步骤)17.(6分)解方程组:.【解答】解:,①+②得:4x=8,即x=2,把x=2代入①得:2﹣y=5,即y=﹣3,则方程组的解为:.18.(8分)解不等式组,并把解集在数轴上表示出来:.【解答】解:,由不等式①得:x≥﹣4由不等式②得:x<2,所以原不等式组的解集为:﹣4≤x<2.19.(10分)如图,DB平分∠ADC,∠1=∠3.(1)求证:AB∥DC;(2)若∠2=55°,求∠A的度数.【解答】解:(1)∵DB平分∠ADC,∴∠1=∠2,又∵∠1=∠3,∴∠2=∠3,∴AB∥CD;(2)∵DB平分∠ADC,∴∠ADC=2∠2=2×55°=110°,又∵AB∥CD,∴∠A+∠ADC=180°,∴∠A=180°﹣∠ADC,=180°﹣110°=70°.20.(8分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有40名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.【解答】解:(1)20÷50%=40;故答案为:40;(2)骑自行车的人数为:20%×40=8(人),如图所示:(3)“乘车”部分所对应的圆心角的度数为360×=108°;(4)600×20%=120人.所以估计该年级骑自行车上学的学生人数为120人.21.(10分)如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.【解答】解:(1)由图可得A(﹣3,0),B(﹣5,﹣1),C(﹣2,﹣2);=2×3﹣×1×2﹣×1×2﹣×1×3=;(2)S△ABC(3)如图所示,△A1B1C1即为所求.22.(10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.23.(10分)如图,已知直线BC∥OA,∠C=∠OAB=108°,E、F在线段BC上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若∠OEC=∠OBA,求∠OEC的度数;(3)若平行移动线段AB,是否存在∠OEC=2∠OBA?若存在,求出∠OEC的度数;若不存在,请说明理由.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠AOC=×72°=36°;(2)设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵∠OEC=∠EOA=∠AOB+∠EOB=x+36°,CB∥AO∴∠OBA=180°﹣∠OAB﹣∠CBO=180°﹣108°﹣x=72°﹣x,∵∠OEC=∠OBA,∴x+36°=72°﹣x,∴x=18°,∴∠OEC=∠OBA=72°﹣18°=54°.(3)不存在.由(2)可知:∠OEC=x+36°,∠OBA=72°﹣x∵∠OEC=2∠OBA,∴x+36°=2(72°﹣x),解得x=36°,∴∠EOA=∠EOB+∠AOB=36°+36°=72°这与∠COA=72°相矛盾.∴不存在∠OEC=2∠OBA.。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

广州市初一下学期数学期末试卷带答案

广州市初一下学期数学期末试卷带答案

广州市初一下学期数学期末试卷带答案一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 3.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=104.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .725.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .7.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 9 8.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8± 9.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252710.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( ) A .12 B .12± C .6 D .6±二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.分解因式:29a -=__________.13.计算:32(2)xy -=___________.14.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.15.二元一次方程7x+y =15的正整数解为_____.16.计算:x (x ﹣2)=_____17.分解因式:x 2﹣4x=__.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.22.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.23.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.24.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.25.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.27.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 228.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) .(1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩ ,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.4.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =,∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.5.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB ∥DE ,∴∠2+∠D=180°,则∠D=130°,故选C .考点:平行线的性质.6.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移.故选:A .【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.7.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.8.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.B 解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a 的值.【详解】解:∵x 2-ax+36是一个完全平方式,∴a=±12,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得( 解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 14.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.15.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.17.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =;(3)∵25,2x y xy +==,∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键. 22.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩ 将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键. 24.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a 的值代入化简后的式子计算即可.【详解】解:(a -1)(2a +1)+(1+a )(1-a )=2a 2-a -1+1-a 2= a 2-a ,当a =2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.25.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。

广州市南沙区2015-2016学年七年级下期末数学试卷含答案解析

广州市南沙区2015-2016学年七年级下期末数学试卷含答案解析

A. B. C. D. 【考点】实数与数轴. 【分析】根据被开方数越大算术平方根越大,可得答案. 【解答】解:由被开方数越大算术平方根越大,得
<<<< < , 即 <2< <3< < ,
第 5 页(共 17 页)
A.x≤2 B.x>1 C.1≤x<2 D.1<x≤2
第 1 页(共 17 页)
18.已知

都是方程 kx﹣b=y 的解,求 k 和 b 的值.
19.在平面直角坐标系中,△ABC 的位置如图所示,将△ABC 向左平移 2 个单位,再向 下平移 3 个单位长度后得到△A′B′C′,((1)请在图中作出平移后的△A′B′C′ (2)请写出 A′、B′、C′三点的坐标; (3)若△ABC 内有一点 P(a,b),直接写出平移后点 P 的对应点的 P′的坐标.
2015-2016 学年广东省广州市南沙区七年级(下)期末数学试卷
一、选择题(本大题共 10 小题,每小题 2 分,满分 20 分) 1.观察下面 A、B、C、D 四幅图案中,能通过图案(1)平移得到的是( )
A.
B.
C.
D.
2.在平面直角坐标系中,点 P(﹣3,1)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.如图,数轴上点 P 表示的数可能是( )
20.如图,AD∥BC,AE 平分∠BAD,CD 与 AE 相交于 F,∠CFE=∠E.求证:AB∥ CD.
21.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):
数据段 30~40 40~50 50~60 60~70 70~80 总计
频数
10
40
20
百分比
5%
40%

广东省广州市南沙区2016-2017学年七年级下学期数学期末考试试卷及参考答案

该校是否能获得此荣誉,并说明理由.
22. 小李到农贸批发市场了解到苹果和西瓜的价格信息如下:
水果品种
苹果
西瓜
批发价格
8元/公斤
1.6元/公斤
零售价格
10元/公斤
2元/公斤
他共用280元批发了苹果和西瓜共75公斤,
(1) 请问小李批发的苹果和西瓜各多少公斤? (2) 若他当天把批发回来的苹果和西瓜按零售价格全部卖出,小李能赚多少钱? 23. 已知,直线AB∥DC,点P为平面上一点,连接AP与CP. (1) 如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
解:原式=

=

=3﹣4﹣

=3﹣4﹣ ﹣1+2④
=﹣ .
A. ① B . ② C . ③ D . ④
10. 甲、乙两人骑自行车比赛,若甲先骑30分钟,则乙出发后50分钟可追上甲,设甲、乙每小时分别骑x千米、y千米
,则可列方程( )
A . 30x=50y B .
C . (30+50)x=50y D .
20. 若不等式组
的解集为﹣2<x<4,求出a、b的值.
21. 广州市某中学开展主题为“我爱阅读”的专题调查活动,了解学校1200名学生一年内阅读书籍的数量,随机抽取部分
学生进行统计,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:
分组
频数
频率
0≤x<5
4
0.08
5≤x<10
A . PA B . PB C . PC D . PD 5. 下列调查,适合用全面调查方式的是( ) A . 了解一批灯泡的使用寿命是否合格 B . 了解珠江河中鱼的各类 C . 了解广东电视台珠江频道《今日关注》的收视率 D . 了解

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

2015年广东省广州市天河区七年级下学期数学期末试卷与解析答案

2014-2015学年广东省广州市天河区七年级(下)期末数学试卷一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.(3分)在平面直角坐标中,点P(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查B.对广州市七年级学生身高现状的调查C.多某品牌食品安全的调查D.对一批灯管使用寿命的调查3.(3分)下列实数中,属于无理数的是()A.B.C.3.14 D.4.(3分)的算术平方根是()A.3 B.±3 C.±D.5.(3分)点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)B.(5,﹣1)C.(2,2) D.(﹣1,﹣1)6.(3分)甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h B.22.5km/h,2.5km/hC.18km/h,24km/h D.12.5km/h,1.5km/h7.(3分)已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.0个 B.1个 C.2个 D.3个8.(3分)若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n9.(3分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.210.(3分)天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种 B.2种 C.3种 D.4种二、填空题:每小题3分,共18分.11.(3分)=.12.(3分)不等式组的解集是.13.(3分)若点M(a+3,a﹣2)在x轴上,则a=.14.(3分)若3x﹣2y=11,则用含有x的式子表示y,得y=.15.(3分)若a+1和﹣5是实数m的平方根,则a的值为.16.(3分)若|x+2y﹣5|+|2x﹣y|=0,则3x+y=.三、解答题:本大题有9小题,共102分.解答要求写出文字说明,证明过程或计算步骤.17.(16分)(1)解方程组:.(2)解不等式:≤+1.18.(6分)如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,平移三角形ABC,使点B与坐标原点O重合.请写出图中点A,B,C的坐标并画出平移后的三角形A1OC1.19.(10分)为响应国家要求中小学每人锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了图1和图2,问:(1)该班共有多少名学生?若全年级共有600名学生,估计全年级参加乒乓球活动的学生有多少名?(2)请在图1中将“乒乓球”部分的图形补充完整,并求出扇形统计图中,表示“足球”的扇形圆心角的度数.20.(10分)小明参见学校组织的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5分.小明参加本次竞赛要超过100分,他至少要答对多少道题?21.(10分)如图,已知AB∥CD,直线MN分别交AB,CD于点M,N,NG平分∠MND,若∠1=70°,求∠2的度数.22.(11分)已知:如图,AD⊥BC,FG⊥BC.垂足分别为D,G.且∠ADE=∠CFG.求证:DE∥AC.23.(13分)已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<1;(2)若该不等式组只有3个正整数解,求一个满足条件的整数k的值.24.(13分)在平面直角坐标系中,已知点A(﹣2,0)、B(0,3),O为原点.(1)求三角形AOB的面积;(2)若点C在坐标轴上,且三角形ABC的面积为6,求点C的坐标.25.(13分)小明去超市买三种商品.其中丙商品单价最高.如果购买3件甲商品、2件乙商品和1件丙商品,那么需要付费20元,如果购买4件甲商品,3件乙商品和2件丙商品,那么需要付费32元.(1)如果购买三种商品各1件,那么需要付费多少元?(2)如果需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需多少钱才能保证一定能全部买到?(结果精确到元)2014-2015学年广东省广州市天河区七年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.(3分)在平面直角坐标中,点P(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(1,﹣3)的横坐标为正,纵坐标为负,且第四象限点的符号特点为(正,负),∴点P(1,﹣3)在第四象限.故选:D.2.(3分)下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查B.对广州市七年级学生身高现状的调查C.多某品牌食品安全的调查D.对一批灯管使用寿命的调查【解答】解:A、旅客上飞机前的安全检查,应采用全面调查的方式,正确;B、对广州市七年级学生身高现状的调查,由于范围较大,采用抽样调查方式,故错误;C、多某品牌食品安全的调查,由于范围较大,采用抽查方式,故错误;D、对一批灯管的使用寿命,由于破坏性较强,应采用抽样调查方式,故错误;故选:A.3.(3分)下列实数中,属于无理数的是()A.B.C.3.14 D.【解答】解:A、=2是整数,是有理数,选项错误;B、是无理数,选项正确;C、3.14是有限小数是有理数,选项错误;D、是分数,是有理数,选项错误.故选:B.4.(3分)的算术平方根是()A.3 B.±3 C.±D.【解答】解:=3,3的算术平方根,故选:D.5.(3分)点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)B.(5,﹣1)C.(2,2) D.(﹣1,﹣1)【解答】解:点M(2,﹣1)向上平移3个单位长度得到的点的坐标是(2,﹣1+3),即(2,2),故选:C.6.(3分)甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h B.22.5km/h,2.5km/hC.18km/h,24km/h D.12.5km/h,1.5km/h【解答】解:设这艘轮船在静水中的船速为x千米/小时,水流速度为y千米/小时,由题意得,,解得:.故选:B.7.(3分)已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.0个 B.1个 C.2个 D.3个【解答】解:相等的角不一定是对顶角,所以①错误;邻补角的平分线互相垂直,所以②正确;互补的两个角可能都是直角,所以③错误;平行于同一条直线的两条直线平行,所以④正确.故选:C.8.(3分)若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n【解答】解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选:D.9.(3分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.2【解答】解:把是代入方程kx+3y=5中,得2k+3=5,解得k=1.故选:A.10.(3分)天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种 B.2种 C.3种 D.4种【解答】解:设租用A型号客车x辆,B型号客车y辆,则40x+50y=500,即4x+5y=50,当x=0时,y=10,符合题意;当x=5时,y=6,符合题意;当x=10时,y=2,符合题意;故师生一次性全部到达公园的租车方案有3种.故选:C.二、填空题:每小题3分,共18分.11.(3分)=4.【解答】解:∵4的立方为64,∴64的立方根为4∴=4.12.(3分)不等式组的解集是﹣1<x<.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x<,∴不等式组的解集是﹣1<x<,故答案为:﹣1<x<.13.(3分)若点M(a+3,a﹣2)在x轴上,则a=2.【解答】解:∵点M(a+3,a﹣2)在x轴上,∴a﹣2=0,解得a=2.故答案填2.14.(3分)若3x﹣2y=11,则用含有x的式子表示y,得y=.【解答】解:方程3x﹣2y=11,解得:y=,故答案为:15.(3分)若a+1和﹣5是实数m的平方根,则a的值为4或﹣6.【解答】解:因为a+1和﹣5是实数m的平方根,可得:a+1﹣5=0,a+1=﹣5解得:a=4,a=﹣6故答案为:4或﹣6.16.(3分)若|x+2y﹣5|+|2x﹣y|=0,则3x+y=5.【解答】解:∵|x+2y﹣5|+|2x﹣y|=0,∴,①×2﹣②得:5y=10,即y=2,把y=2代入②得:x=1,则3x+y=5,故答案为:5三、解答题:本大题有9小题,共102分.解答要求写出文字说明,证明过程或计算步骤.17.(16分)(1)解方程组:.(2)解不等式:≤+1.【解答】解:(1),①+②得:4x=12,即x=3,把x=3代入①得:y=﹣1,则方程组的解为;(2)去分母得:3x+3≤4x+12,解得:x≥﹣9.18.(6分)如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,平移三角形ABC,使点B与坐标原点O重合.请写出图中点A,B,C的坐标并画出平移后的三角形A1OC1.【解答】解:如图所示,A(2,﹣1),B(4,3),C(1,2).19.(10分)为响应国家要求中小学每人锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了图1和图2,问:(1)该班共有多少名学生?若全年级共有600名学生,估计全年级参加乒乓球活动的学生有多少名?(2)请在图1中将“乒乓球”部分的图形补充完整,并求出扇形统计图中,表示“足球”的扇形圆心角的度数.【解答】解:(1)根据题意,参加篮球的有20人,占的比例为40%,则被调查的班级的学生人数为:20÷40%=50(人),全年级参加乒乓球活动的学生数为:600×=600×10%=60(人);(2)根据(1)的结论,共50人被调查,则喜欢“乒乓球”的学生人数为:50﹣20﹣10﹣15=5(人)“乒乓球”部分的图形补充:“足球”的扇形圆心角的度数=360°×=72°.20.(10分)小明参见学校组织的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5分.小明参加本次竞赛要超过100分,他至少要答对多少道题?【解答】解:设他答对x道题,则答错或不答(20﹣x),由题意得,10x﹣5(20﹣x)>100,解得:x>13,答:他至少答对14道题.21.(10分)如图,已知AB∥CD,直线MN分别交AB,CD于点M,N,NG平分∠MND,若∠1=70°,求∠2的度数.【解答】解:∵AB∥CD,∠1=70°,∴∠1=∠MND=70°,∠2=∠GND.∵NG平分∠MND,∴∠GND=∠MND=35°,∴∠2=∠GND=35°.22.(11分)已知:如图,AD⊥BC,FG⊥BC.垂足分别为D,G.且∠ADE=∠CFG.求证:DE∥AC.【解答】证明:∵AD⊥BC,FG⊥BC且∠ADE=∠CFG,∴∠C+∠CFG=90°,∠BDE+∠ADE=90°,∴∠BDE=∠C,∴DE∥AC.23.(13分)已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<1;(2)若该不等式组只有3个正整数解,求一个满足条件的整数k的值.【解答】解:(1)解不等式组可得解集为﹣2<x<,∵不等式组的解集为﹣2<x<1,∴=1,解得k=﹣3.(2)解不等式组可得解集为﹣2<x<,不等式组有3个正整数解,则正整数解是:1,2,3.则3<≤4.解得:3<k≤6.24.(13分)在平面直角坐标系中,已知点A(﹣2,0)、B(0,3),O为原点.(1)求三角形AOB的面积;(2)若点C在坐标轴上,且三角形ABC的面积为6,求点C的坐标.【解答】解:(1)如图:S△AOB=×2×3=3;(2)当C点在y轴上,设C(0,t),∵三角形ABC的面积为6,∴•|t﹣3|•2=6,解得t=9或﹣3.∴C点坐标为(0,﹣3),(0,9),当C点在x轴上,设C(m,0),∵三角形ABC的面积为6,∴•|m+2|•3=6,解得m=2或﹣6.∴C点坐标为(2,0),(﹣6,0),综上所述,C点坐标为(2,0),(﹣6,0),(0,﹣3),(0,9).25.(13分)小明去超市买三种商品.其中丙商品单价最高.如果购买3件甲商品、2件乙商品和1件丙商品,那么需要付费20元,如果购买4件甲商品,3件乙商品和2件丙商品,那么需要付费32元.(1)如果购买三种商品各1件,那么需要付费多少元?(2)如果需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需多少钱才能保证一定能全部买到?(结果精确到元)【解答】解:(1)设一件甲商品x元,乙y元,丙z元,根据题意得:3x+2y+z=20①4x+3y+2z=32②①﹣②得:﹣x﹣y﹣z=﹣12,∴x+y+z=12,答:如果购买三种商品各1件,那么需要付费12元;(2)设需要购买1件甲商品,3件乙商品和2件丙商品,费用为w元,则w=x+3y+2z 由解得,由题意解得<x<4,∴w=x+3(8﹣2x)+2(4+x)=﹣3x+32,∴20<w<28,∵w是整数,∴w=21答:需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需21元才能保证一定能全部买到.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

2015—2016学年度第二学期期末考试七年级数学试题带答案

2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)下列四个数中,无理数是()A.B.﹣0.1 C. D.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)﹣8的立方根是()A.﹣2 B.2 C.±2 D.44.(2分)下列统计中,能用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率5.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠46.(2分)若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc7.(2分)下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c8.(2分)如图,已知直线a∥b,∠1=40°,∠2=100°,则∠3等于()A.40°B.60°C.80°D.100°9.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是()A.B.C.D.10.(2分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为()A.(1006,0)B.(1006,1)C.(1007,0)D.(1007,1)二、填空题(本题共6个小题,每小题3分,共18分)11.(3分)不等式﹣2x<3的解集是.12.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在长方形的对边上.如果∠1=16°,那么∠2的度数是.13.(3分)某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有人.14.(3分)计算:=15.(3分)在坐标平面内,若点P(x﹣3,x+2)在第三象限,则x的取值范围.16.(3分)已知一个正数k的两个平方根是2a﹣15和a+3,则这个正数的值为.三、解答题(本题共7个小题,共62分,解答要求写出文字说明,证明过程或计算步骤)17.(6分)解方程组:.18.(8分)解不等式组,并把解集在数轴上表示出来:.19.(10分)如图,DB平分∠ADC,∠1=∠3.(1)求证:AB∥DC;(2)若∠2=55°,求∠A的度数.20.(8分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.21.(10分)如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.22.(10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.(10分)如图,已知直线BC∥OA,∠C=∠OAB=108°,E、F在线段BC上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若∠OEC=∠OBA,求∠OEC的度数;(3)若平行移动线段AB,是否存在∠OEC=2∠OBA?若存在,求出∠OEC的度数;若不存在,请说明理由.2014-2015学年广东省广州市南沙区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)下列四个数中,无理数是()A.B.﹣0.1 C. D.【解答】解:A、是有理数,故A错误;B、﹣0.1是有理数,故B错误;C、=4是有理数,故C错误;D、是无理数,故D正确;故选:D.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.3.(2分)﹣8的立方根是()A.﹣2 B.2 C.±2 D.4【解答】解:=﹣2,故选:A.4.(2分)下列统计中,能用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率【解答】解:A、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查.故选C.5.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4【解答】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.6.(2分)若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc【解答】解:A、由a<b,则a﹣c<b﹣c,故A选项正确;B、a<b,可设a=﹣1,b=0,则a2<b2不成立,故B选项错误;C、由a<b,则﹣a>﹣b,故C选项错误;D、当c=0,ac=bc,故D选项错误.故选:A.7.(2分)下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c【解答】解:A、在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B、在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C、在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题.故选:C.8.(2分)如图,已知直线a∥b,∠1=40°,∠2=100°,则∠3等于()A.40°B.60°C.80°D.100°【解答】解:过点A作AB∥a,∵直线a∥b,∠1=40°,∠2=100°,∴AB∥a∥b,∠DAB=∠1=40°,∴∠3=∠BAC=100°﹣40°=60°.故选:B.9.(2分)甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是()A.B.C.D.【解答】解:设乙的弹珠数为x颗,甲的弹珠数为y颗,由题意得,整理得.故选:D.10.(2分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为()A.(1006,0)B.(1006,1)C.(1007,0)D.(1007,1)【解答】解:由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=503时,A2015(1007,0).故选:C.二、填空题(本题共6个小题,每小题3分,共18分)11.(3分)不等式﹣2x<3的解集是x>﹣.【解答】解:﹣2x<3,系数化为1得,,故答案为x>﹣.12.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在长方形的对边上.如果∠1=16°,那么∠2的度数是14°.【解答】解:∵∠1+∠3=90°﹣60°=30°,而∠1=16°,∴∠3=14°,∵a∥b,∴∠2=∠3=14°.故答案为14°.13.(3分)某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有108人.【解答】解:教师所占的百分比是:1﹣46%﹣45%=9%,则教师的人数是:1200×9%=108.故答案是:108.14.(3分)计算:=【解答】解:=+2=.故答案为:.15.(3分)在坐标平面内,若点P(x﹣3,x+2)在第三象限,则x的取值范围x<﹣2.【解答】解:由点P(x﹣3,x+2)在第三象限,得.解得x<﹣2,故答案为:x<﹣2.16.(3分)已知一个正数k的两个平方根是2a﹣15和a+3,则这个正数的值为49.【解答】解:由题意得,2a﹣15+a+3=0,解得,a=4,a+3=7,72=49,故答案为:49.三、解答题(本题共7个小题,共62分,解答要求写出文字说明,证明过程或计算步骤)17.(6分)解方程组:.【解答】解:,①+②得:4x=8,即x=2,把x=2代入①得:2﹣y=5,即y=﹣3,则方程组的解为:.18.(8分)解不等式组,并把解集在数轴上表示出来:.【解答】解:,由不等式①得:x≥﹣4由不等式②得:x<2,所以原不等式组的解集为:﹣4≤x<2.19.(10分)如图,DB平分∠ADC,∠1=∠3.(1)求证:AB∥DC;(2)若∠2=55°,求∠A的度数.【解答】解:(1)∵DB平分∠ADC,∴∠1=∠2,又∵∠1=∠3,∴∠2=∠3,∴AB∥CD;(2)∵DB平分∠ADC,∴∠ADC=2∠2=2×55°=110°,又∵AB∥CD,∴∠A+∠ADC=180°,∴∠A=180°﹣∠ADC,=180°﹣110°=70°.20.(8分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有40名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.【解答】解:(1)20÷50%=40;故答案为:40;(2)骑自行车的人数为:20%×40=8(人),如图所示:(3)“乘车”部分所对应的圆心角的度数为360×=108°;(4)600×20%=120人.所以估计该年级骑自行车上学的学生人数为120人.21.(10分)如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.【解答】解:(1)由图可得A(﹣3,0),B(﹣5,﹣1),C(﹣2,﹣2);=2×3﹣×1×2﹣×1×2﹣×1×3=;(2)S△ABC(3)如图所示,△A1B1C1即为所求.22.(10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.23.(10分)如图,已知直线BC∥OA,∠C=∠OAB=108°,E、F在线段BC上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若∠OEC=∠OBA,求∠OEC的度数;(3)若平行移动线段AB,是否存在∠OEC=2∠OBA?若存在,求出∠OEC的度数;若不存在,请说明理由.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠AOC=×72°=36°;(2)设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵∠OEC=∠EOA=∠AOB+∠EOB=x+36°,CB∥AO∴∠OBA=180°﹣∠OAB﹣∠CBO=180°﹣108°﹣x=72°﹣x,∵∠OEC=∠OBA,∴x+36°=72°﹣x,∴x=18°,∴∠OEC=∠OBA=72°﹣18°=54°.(3)不存在.由(2)可知:∠OEC=x+36°,∠OBA=72°﹣x∵∠OEC=2∠OBA,∴x+36°=2(72°﹣x),解得x=36°,∴∠EOA=∠EOB+∠AOB=36°+36°=72°这与∠COA=72°相矛盾.∴不存在∠OEC=2∠OBA.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

相关文档
最新文档