广东省广州市南沙区七年级(下)期末数学试卷

合集下载

南沙七年级期末数学试卷

南沙七年级期末数学试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3.14B. -2C. 0.1010010001...D. 5/62. 下列各数中,最小的是()A. -3/2B. -2C. -1D. 03. 下列方程中,解为整数的是()A. 2x + 3 = 7B. 3x - 4 = 10C. 5x + 2 = 8D. 4x - 1 = 34. 一个长方形的长是5cm,宽是3cm,它的周长是()A. 16cmB. 18cmC. 20cmD. 24cm5. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形6. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^27. 下列各数中,能被3整除的是()A. 17B. 24C. 29D. 368. 一个数的平方根是±3,那么这个数是()A. 9B. -9C. 9或-9D. 09. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)10. 下列函数中,自变量x的取值范围正确的是()A. y = 2x,x ≤ 0B. y = 1/x,x ≠ 0C. y = √x,x ≥ 0D. y = x^2,x ≥ 0二、填空题(每题3分,共30分)11. 2的平方根是________,-2的平方根是________。

12. (-3)的立方根是________。

13. 0.001的平方根是________。

14. 如果a^2 = 9,那么a的值是________。

15. 下列各数中,绝对值最小的是________。

16. 一个圆的半径是4cm,那么它的直径是________cm。

2022-2023学年广东省广州市南沙区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省广州市南沙区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省广州市南沙区七年级(下)期末数学试卷一、选择题。

(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=60°,则∠2=()A.30°B.60°C.120°D.150°2.(3分)立方根等于2的数是()A.8B.4C.±4D.±83.(3分)在平面直角坐标系中,将点(2,3)向右平移2个单位,所得的点的坐标是()A.(0,3)B.(4,3)C.(2,1)D.(2,5)4.(3分)已知x+3y=12,则当y=2时,x的值是()A.B.6C.D.95.(3分)下列不等式变形正确的是()A.由3x<﹣6,得x=﹣2B.由2x>﹣6,得x>4C.由2x﹣1>2,得x>3D.由﹣3x>6,得x<﹣26.(3分)某校为了了解七年级学生的视力情况,现从七年级学生中抽出50名同学进行视力测试,所抽样的这50名同学的视力情况是这个问题的()A.总体B.个体C.样本D.样本容量7.(3分)一个正方形在平面直角坐标系中的三个顶点的坐标为(﹣3,3),(﹣3,﹣1),(1,﹣1),则第四个顶点到x轴的距离是()A.1B.2C.3D.48.(3分)如图,直线a,b,c两两相交,a⊥c,点O是垂足,∠1:∠2=3:2,则∠2的度数是()A.36°B.54°C.72°D.18°9.(3分)若m+3,3m﹣1是同一个正数的两个平方根,则这个正数是()A.B.C.D.10.(3分)不等式组的解集是x>2,则﹣2m+4的取值范围是()A.﹣2m+4≥0B.﹣2m+4≤2C.﹣2m+4≥2D.﹣2m+4<2二、填空题。

(本大题共6小题,每小题3分,满分18分。

)11.(3分)已知∠A与∠B互余,且∠A=50°,则∠B=.12.(3分)若座位号(2,3)表示教室内第2排第3列的位置,某同学坐在第6排第4列,则该同学的座位号是.13.(3分)化简:=.14.(3分)点(2x﹣4,3)在第二象限内,则x的取值范围是.15.(3分)已知一个样本有50个数据,其中最大值为83,最小值为32,若取组距为10,则应把它分成组.16.(3分)若二元一次方程组和同解,那么(a+b)的平方根是.三、解答题。

广东省广州市七年级下学期数学期末考试试卷

广东省广州市七年级下学期数学期末考试试卷

广东省广州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列三条线段中(单位长度都是cm),能组成三角形的是()A . 3,4,9B . 50,60,12C . 11,11,31D . 20,30,502. (2分)两条平行线被第三条直线所截,则()A . 一对内错角的平分线互相平行B . 一对同旁内角的平分线互相平行C . 一对对顶角的平分线互相平行D . 一对邻补角的平分线互相平行3. (2分)分解因式2x2− 4x + 2的最终结果是()A . 2x(x− 2)B . 2(x2− 2x + 1)C . 2(x− 1)2D . (2x− 2)24. (2分)(2017·新野模拟) 下列说法正确的是()A . 为检测某市正在销售的酸奶质量,应采用抽样调查的方式B . 两名同学连续六次的数学测试平均分相同,那么方差较大的同学的数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放动画片”是必然事件5. (2分)已知点P在x轴上,P到y轴的距离是3,则点P的坐标为()A . (0,3)B . (3,0)C . (-3,0)D . (3,0)或(-3,0)6. (2分)(2017·霍邱模拟) 要使多项式(x2+px+2)(x﹣q)不含关于x的二次项,则p与q的关系是()A . 相等B . 互为相反数C . 互为倒数D . 乘积为﹣17. (2分)若点P在第二象限,点P到x轴的距离是4,到y轴的距离是3,点P的坐标是()A . (﹣4,3)B . (4,﹣3)C . (﹣3,4)D . (3,﹣4)8. (2分) (2019七下·长春期中) 用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有辆货车,则应满足的不等式组是()A .B .C .D .9. (2分)在0到20的自然数中,立方根是有理数的共有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·新泰模拟) 一个盒子中装有四张完全相同的卡片,分别写着2cm,3cm,4cm和5cm,盒子外有两张卡片,分别写着3cm和5cm,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是()A .B .C .D .11. (2分) (2016九上·西城期中) 如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是()A . 90°B . 80°C . 50°D . 30°12. (2分)下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式B . 一组数据1,2,5,5,5,3,3的中位数和众数都是5C . 抛掷一枚硬币100次,一定有50次“正面朝上”D . 甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定二、填空题 (共4题;共5分)13. (2分) (2017八上·余杭期中) 命题“ 的倍数都是偶数”的逆命题是________,这个逆命题是一个________命题.(填“真”或“假”)14. (1分) (2017七下·椒江期末) 已知点P(a-2,a)在x轴上,那么a=________.15. (1分) (2016八上·江苏期末) 王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.16. (1分)某学生身高为1.63m,体重为60kg,该学生的体重指数为________ .(精确到0.1)三、解答题 (共6题;共56分)17. (5分) (2017七下·昌平期末) 分解因式:ax2-2ax+a .18. (15分)(2016·攀枝花) 某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?19. (10分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标.20. (11分) (2019八上·北京期中) 定义:任意两个数a 、b ,按规则c = a +b-ab 扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若a =2, b =-3,直接写出a 、b 的“如意数” c ;(2)若a =2, b = x2 +1,求a 、b 的“如意数” c ,并比较b 与c 的大小;(3)已知a=x2-1,且a 、b 的“如意数” c = x3 +3x2-1,则b =________(用含 x 的式子表示)21. (10分)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A与∠1、∠2之间存在什么样的关系?并说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D分别落在四边形BCFE内部点A′、D′的位置,如图③所示.你能求出∠A′、∠D′、∠1 与∠2之间的关系吗?并说明理由.22. (5分) (2016七上·县月考) 如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME 的度数.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共56分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、。

广州市初一下学期数学期末试卷带答案

广州市初一下学期数学期末试卷带答案

广州市初一下学期数学期末试卷带答案一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 3.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=104.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .725.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .7.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 9 8.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8± 9.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252710.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( ) A .12 B .12± C .6 D .6±二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.分解因式:29a -=__________.13.计算:32(2)xy -=___________.14.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.15.二元一次方程7x+y =15的正整数解为_____.16.计算:x (x ﹣2)=_____17.分解因式:x 2﹣4x=__.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.22.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.23.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.24.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.25.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.27.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 228.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) .(1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩ ,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.4.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =,∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.5.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB ∥DE ,∴∠2+∠D=180°,则∠D=130°,故选C .考点:平行线的性质.6.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移.故选:A .【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.7.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.8.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.B 解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a 的值.【详解】解:∵x 2-ax+36是一个完全平方式,∴a=±12,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得( 解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 14.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.15.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.17.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =;(3)∵25,2x y xy +==,∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键. 22.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩ 将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键. 24.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a 的值代入化简后的式子计算即可.【详解】解:(a -1)(2a +1)+(1+a )(1-a )=2a 2-a -1+1-a 2= a 2-a ,当a =2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.25.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。

广东省广州市南沙区七年级(下)期末数学试卷 (3)

广东省广州市南沙区七年级(下)期末数学试卷 (3)

广东省广州市南沙区七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分)1.(2分)观察下面A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.2.(2分)在平面直角坐标系中,点P(﹣3,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.4.(2分)若m>1,则下列各式中错误的是()A.3m>3B.﹣5m<﹣5C.m﹣1>0D.1﹣m>0 5.(2分)化简|3﹣π|的结果为()A.0B.3﹣πC.π﹣3D.3+π6.(2分)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠D=∠A B.∠1=∠2C.∠3=∠4D.∠D=∠DCE 7.(2分)下列调查中,调查方式不合理的是()A.用抽样调查了解广州市中学生每周使用手机所用的时间B.用全面调查了解某班学生对6月5日是“世界环境日”的知晓情况C.用抽样调查选出某校短跑最快的学生参加全市比赛D.用抽样调查了解南沙区初中学生零花钱的情况8.(2分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2B.x>1C.1≤x<2D.1<x≤2 9.(2分)如图,宽为50cm的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2 10.(2分)有一列数按如下规律排列:﹣,﹣,,﹣,﹣,,…则第2016个数是()A.B.﹣C.D.﹣二、填空题(本题共6个小题,每小题3分,共18分)11.(3分)﹣27的立方根是.12.(3分)不等式3x﹣5≤1的正整数解是.13.(3分)某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,用扇形图表示其分布情况,则∠AOB=.14.(3分)已知是方程ax+3y=9的解,则a的值为.15.(3分)如图,将一个宽度相等的纸条按如图所示沿AB折叠,已知∠1=60°,则∠2=.16.(3分)下列命题中,①若|a|=b,则a=b;②若直线l1∥l2,l1∥l3,则l2∥l3;③同角的补角相等;④同位角相等,是真命题的有(填序号)三、解答题(本题共7个小题,共62分)17.(8分)解不等式组,并把解集在数轴上表示出来:.18.(8分)已知与都是方程kx﹣b=y的解,求k和b的值.19.(8分)在平面直角坐标系中,△ABC的位置如图所示,将△ABC向左平移2个单位,再向下平移3个单位长度后得到△A′B′C′,(1)请在图中作出平移后的△A′B′C′(2)请写出A′、B′、C′三点的坐标;(3)若△ABC内有一点P(a,b),直接写出平移后点P的对应点的P′的坐标.20.(10分)如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.21.(8分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):数据段30~4040~5050~6060~7070~80总计频数104020百分比5%40%10%注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段汽车时速超过60千米即为违章,则违章车辆共有多少辆?22.(10分)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包,已知女款书包的单价60元/个,男款书包的单价55元/个.(1)原计划募捐4000元,全部用于购买两种款式的书包共70个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于师生捐款的积极性高涨,实际共捐款5800元,如果至少购买两种款式的书包共100个,那么女款书包最多能买多少个?23.(10分)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.广东省广州市南沙区七年级(下)期末数学试卷参考答案一、选择题(本大题共10小题,每小题2分,满分20分)1.D;2.B;3.B;4.D;5.C;6.B;7.C;8.D;9.A;10.C;二、填空题(本题共6个小题,每小题3分,共18分)11.﹣3;12.2或1;13.60°;14.6;15.120°;16.②③;三、解答题(本题共7个小题,共62分)17.;18.;19.;20.;21.80;50;200;20%;25%;100%;22.;23.﹣1;3;。

南沙初中七年级数学期末复习测试2

南沙初中七年级数学期末复习测试2

南沙初中七年级数学期末复习测试2(试卷满分:100分 考试时间:100分钟)班 级 姓 名 评价一.选择题(2分×12=24) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.单项式5zy x -的系数和次数分别是A .6,51B .6,51-C .5,51D .5,51-2.如果a +|a |=0,则a 是A .0B .负数C .正数D .非正数 3.a .b 互为倒数,以下各组数不互为倒数的是A .b a 313与 B .22b a 与 C .|a |与|b | D .33--b a 与4.若|5||1|,0,0---+-<<b a a b ab a 则化简= 。

A .4B .-4C .-6D .-2a +2b +65.已知∠AOB=30°,又自∠AOB 的顶点O 引射线OC ,若∠AOC :∠AOB=4 :3 ,那么 ∠BOC = 。

A .10°B .40°C .70°D .10°或70° 6.一个角等于它的补角的5倍,那么这个角的补角的余角是A .30°B .60°C .45°D .以上答案都不对7. 国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为 1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。

若设小明的这笔一年定期存款是x 元,则下列方程中正确的是A .1219%20%98.1=⋅+xB .1219%20%98.1=⋅xC .1219%)201(%98.1=-⋅xD .1219%)201(%98.1=-⋅+x x 8. 如图是正方体的平面展开图,每个面都标注了数字,如果2在正方体的左面,3在下面,那么正面的数字是A. 1B. 4C. 5D. 6 9.下列对0的说法中不正确的有 个。

①0是最小的有理数 ②0的相反数是0 ③0是最小的正数 ④0的绝对值是0 ⑤0是最小的正整数 ⑥0没有倒数⑦0是最小的自然数 ⑧0不是代数式 ⑨0乘以任何数都等于0 ⑩0既不是正数,也不是负数A .3B .4C .5D .6 10.用小正方体搭一个几何体,使它的主视图和俯视图如图所示, 这样的几何体最少需要正方体 个A .5B .6C .7D .81列 2列 3列 4列 5列 1行 2 4 6 8 2行 16 14 12 10 3行 18 20 22 24 … … … 28 26图911.下列说法正确的是 A .两点之间的距离是两点间的线段;B .同一平面内,过一点有且只有一条直线与已知直线平行;C .同一平面内,过一点有且只有一条直线与已知直线垂直;D .与同一条直线垂直的两条直线也垂直.12.将正偶数按图9排成5列:根据上面的排列规律,则2 000应在A .第125行,第1列B . 第125行,第2列C .第250行,第1列D .第250行,第2列二 填空题(每题2分,共16分)1.在数轴上,点A ,点B 分别表示-3和5,则线段AB 的中点所表示的数是_____2.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x)·x -(3⊕x)的值为 (“· ”和“-”仍为实数运算中的乘号和减号).3.已知a .b 互为相反数,且| a -b | = 6,则 b -1=_______.4. 已知点B 在直线AC 上,AB=8cm ,AC=18cm ,P. Q 分别是AB. AC 的中点,则PQ=_________.5. 2.42º= º ′ ″; 2点30分时,时钟与分钟所成的角为 度.6. 右图是某多面体的展开图:(1)若面B 在多面体的底部,则面 在上面;(2)若面D 在右面,面F 在后面,则面 在上面。

广东省七年级下册期末数学试卷

广东省七年级下册期末数学试卷

广东省七年级下册期末数学试卷本文档是广东省七年级下册期末数学试卷。

试卷包含选择题、填空题和解答题等多个题型,涵盖了下册数学课程的主要知识点。

请同学们认真阅读题目,按要求作答。

一、选择题1.下列哪个数是无理数?A.2.5 B. 0 C. √5 D. 1/42.计算:(2/3) × (6/7) 的结果是: A. 12/21 B. 8/9 C.4/21 D. 4/33.已知 a = 3,b = -2,c = 5,则 a + b × c 的结果为: A.13 B. -13 C. -17 D. 174.下列哪个图形既是正方形又是长方形? A. 正方形 B.长方形 C. 圆形 D. 三角形5.若正方体的体积为64立方厘米,边长为多少厘米?A. 2B. 4C. 6D. 8二、填空题6.二次方程 x^2 - 3x + 2 = 0 的根是\\\和\\\。

7.计算:12 ÷ (3 - 1) × 4 + 8 = \\\_。

8.已知三角形的两条边的长度分别为3cm和4cm,夹角为90度,则第三边的长度为\\\_。

9.计算:5^3 - 2 × (4 - 1) = \\\_。

10.分数 3/5 和 4/7 的和为\\\_。

三、解答题11.小明的体重是40千克,他每天早上吃饭前都去公园锻炼,每次锻炼消耗的能量为200千焦。

如果每1000千焦的能量消耗会使体重减少0.1千克,那么小明一天锻炼后体重减少多少千克?12.请根据下列等式求出变量的值: a + b = 5 2a - 3b =10以上就是本试卷的全部内容。

同学们在规定时间内认真作答,不得使用任何辅助工具。

祝各位考试顺利!Markdown文本输出示例:广东省七年级下册期末数学试卷一、选择题1.A2.B3.D4.B5.C二、填空题6.(1, 2)7.408.59.12310.47/35三、解答题11.1千克12.a = 4, b = 1。

广东省广州市七年级下学期数学期末试卷

广东省广州市七年级下学期数学期末试卷

广东省广州市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·偃师期中) 在实数3.14159,,1.010010001,p,中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020七下·思明月考) 下列说法错误的是()A . 1的平方根是1B . 0的平方根是0C . 1的算术平方根是1D . -1的立方根是-13. (2分) (2017七下·平南期中) 方程x﹣2y=3,﹣6xy﹣5=0,x﹣ =4,3x﹣5z=4y,x2+y=1中是二元一次方程的有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A . 23°B . 16°C . 20°D . 26°5. (2分) (2017·宁津模拟) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上D . 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6. (2分)(2020·金华模拟) 在如图所示的网格中有M,N,P,Q四个点,鹏鹏在该网格中建立了一个平面直角坐标系,然后得到点M的坐标为(﹣3,﹣1),点P的坐标为(0,﹣2),则点N和点Q的坐标分别为()A . (2,1),(1,﹣2)B . (1,1),(2,﹣2)C . (2,1),(﹣1,2)D . (1,1),(﹣2,2)7. (2分)若a>b,则下列不等式一定成立的是()A . a﹣b<0B . <C . 1﹣a<1﹣bD . ﹣1+a<﹣1+b8. (2分) (2019七下·邓州期中) 不等式组的解集在数轴上表示为()A .B .C .D .9. (2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()A . 第(1)步B . 第(2)步C . 第(3)步D . 第(4)步10. (2分) (2020七上·无为期末) 在时刻8:30,时钟上的时针和分针之间的夹角为()A . 85°B . 75°C . 70°D . 60°二、填空题 (共7题;共7分)11. (1分) (2020八上·东丽期末) 在平面直角坐标系中,点P(5,﹣3)关于y轴的对称点在第________象限.12. (1分)若 +|b2﹣16|=0,则ab=________.13. (1分)要调查下列问题:①市场上某种食品的某种添加剂含量是否符合国家标准;②杭州地区空气质量;③杭州市区常住人口总数,适合抽样调查的是________ (填序号)14. (1分) (2020七下·常德期末) 已知是方程组的解,则 =________15. (1分) (2017七下·马龙期末) 关于x,y的二元一次方程组的解满足x+y>2,则a的范围为________.16. (1分) (2020七上·福田期末) 如图,点O是直线上一点,平分,,则________°.17. (1分) (2019七上·东城期中) 在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数,如果小红想了一个数,并告诉小月操作后的结果是-1,那么小红所想的数是________.三、解答题 (共8题;共85分)18. (5分) (2019八上·达县期中) 化简计算:(1);(2)19. (5分) (2019七下·北流期末) 解不等式组并写出它的所有整数解.20. (10分)(2019·上饶模拟) 如图,矩形的边,点,分别在轴,轴上,反比例函数的图象经过点,且与边交于点 .(1)求反比例函数的解析式;(2)求点的坐标.21. (10分) (2020八下·哈尔滨月考) 图1、图2分别是8×8的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为的菱形.(2)在图2中画出周长为18,面积为16的平行四边形.22. (10分) (2019八上·泰州月考) 已知y-1与x+2成正比例,且x=-1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m-1,m+1),求m的值.23. (15分)(2019·永康模拟) 永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班共有学生多少人?并补全条形统计图;(2)求“篮球”所在扇形圆心角的度数;(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率.24. (15分)(2019·江陵模拟) 已知,如图在平面直角坐标系中,过点A(0,2)的直线与⊙O相切于点C,与x轴交于点B且半径为 .(1)求∠BAO的度数.(2)求直线AB的解析式.25. (15分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为________(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共85分)答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.D; 2.A; 3.C; 4.B; 5.D; 6.B; 7.D; 8.B; 9.C; 10.D; 二、填空题(本题共 6 小题,每小题 3 分,共 18 分) 11.4; 12.①③; 13.<; 14.16; 15.80°; 16.(﹣ ,7);
三、解答题(本题共 7 小题,共 62 分,解答要求写出文字说明、证明过程或演
个数依次加 1)中,无理数有( )
A.2 个
B.3 个
C.4 个
D.5 个
7.(2 分)已知 P(x,y)在第二象限,且 x2=4,|y|=7,则点 P 的坐标是( )
A.(2,﹣7) B.(﹣4,7)
C.(4,﹣7) D.(﹣2,7)
8.(2 分)二元一次方程 x+3y=7 的正整数解的个数是( )
A.1
B.2
C.3
D.4
9.(2 分)以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解:原式=



=3﹣4﹣

=3﹣4﹣ ﹣1+2④
=﹣ .
A.①
B.②
C.③
D.④
10.(2 分)甲、乙两人骑自行车比赛,若甲先骑 30 分钟,则乙出发后 50 分钟
可追上甲,设甲、乙每小时分别骑 x 千米、y 千米,则可列方程( )
(2)若他当天把批发回来的苹果和西瓜按零售价格全部卖出,小李能赚多少钱?
23.(10 分)已知,直线 AB∥DC,点 P 为平面上一点,连接 AP 与 CP.
(1)如图 1,点 P 在直线 AB、CD 之间,当∠BAP=60°,∠DCP=20°时, 求∠APC.
(2)如图 2,点 P 在直线 AB、CD 之间,∠BAP 与∠DCP 的角平分线相交于点 K,写出∠AKC 与∠APC 之间的数量关系,并说明理由.
广东省广州市南沙区七年级(下)期末数学试卷
一、选择题:(本大题共 10 小题,每小题 2 分,满分 20 分.在每小题給出的四 个选择项中,只有一项是符合题目要求的)
1.(2 分)如图所示的各组图形中,表示平移关系的是( )
A.
B.
C.
D.
2.(2 分)在数轴上表示不等式 x>﹣3 的解集,正确的是( )
(3)如图 3,点 P 落在 CD 外,∠BAP 与∠DCP 的角平分线相交于点 K,∠AKC 与∠APC 有何数量关系?并说明理由.
第5页(共6页)
广东省广州市南沙区七年级(下)期末数学试卷
参考答案
一、选择题:(本大题共 10 小题,每小题 2 分,满分 20 分.在每小题給出的四 个选择项中,只有一项是符合题目要求的)
19.(9 分)如图,已知 CD∥BF,∠B+∠D=180°,求证:AB∥DE.
第3页(共6页)
20.(9 分)若不等式组
的解集为﹣2<x<4,求出 a、b 的值.
21.(10 分)广州市某中学开展主题为“我爱阅读”的专题调查活动,了解学校 1200 名学生一年内阅读书籍的数量,随机抽取部分学生进行统计,绘制成如 下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:
DE 方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD 的度数


16.(3 分)在平面直角坐标系中,以任意两点 P(x1,y1),Q(x2,y2)为端点
的线段的中点坐标为(

).现有 A(3,4),B(1,8),C(﹣
2,6)三点,点 D 为线段 AB 的中点,点 C 为线段 AE 的中点,则线段 DE 的
中点坐标为

三、解答题(本题共 7 小题,共 62 分,解答要求写出文字说明、证明过程或演
算步骤)
17.(6 分)解方程组

18.(8 分)如图,平面直角坐标系中,△ABC 的顶点都在网格上,平移△ABC, 使点 C 与坐标原点 O 重合.
(1)请写出图中点 A、B、C 的坐标. (2)画出平移后的△OA1B1. (3)求△OA1A 的面积.
3n﹣2.
14.(3 分)用一根铁丝围成一个长方形,使长方形的一边长为 6 厘米且长方形
的面积不小于 12 平方厘米,则该铁丝至少长
厘米.
第2页(共6页)
15.(3 分)如图,工程队铺设一公路,他们从点 A 处铺设到点 B 处时,由于水
塘挡路,他们决定改变方向经过点 C,再拐到点 D,然后沿着与 AB 平行的
分组
频数
频率
0≤x<5
4
0.08
5≤x<10
14
0.28
10≤x<15
16
a
15≤x<20
b
c
20≤x<25
10
0.2
合计
d
1.00
(1)a=
,b=
,c=
,d=

(2)补全频数分布直方图.
(3)根据该样本,估计该校学生阅读书籍数量在 15 本或以上的人数.
(4)如果阅读书籍数量在 10 本或以上的人数占总人数的 70%以上,那么该校能
第6页(共6页)
评为“书香校园”,请根据上述数据分析该校是否能获得此荣誉,并说明理由.
22.(10 分)小李到农贸批发市场了解到苹果和西瓜的价格信息如下:
第4页(共6页)
水果品种
苹果
西瓜
批发价格
8 元/公斤
1.6 元/公斤
零售价格
10 元/公斤
2 元/公斤
他共用 280 元批发了苹果和西瓜共 75 公斤,
(1)请问小李批发的苹果和西瓜各多少公斤?
A.
B.
C.
D.
3.(2 分)如图,直线 a、b 被直线 c 所截,互为同旁内角是( )
A.∠4 和∠6 B.∠2 和∠7
C.∠4 和∠5 D.∠4 和∠6
4.(2 分)如图,从位置 P 到直线公路 MN 共有四条小道,若用相同的速度行走,
能最快到达公路 MN 的小道是( )
A.PA
B.PB
C.PC
A.30x=50y
B.
C.(30+50)x=50y
D.
二、填空题(本题共 6 小题,每小题 3 分,共 18 分)
11.(3 分)|﹣16|的算术平方根是

12.(3 分)命题①27 的立方根是 3;②﹣5 没有立方根;③若 m≥1,则 有
意义;以上命题是真命题的是

13.(3 分)若 m<n,则 3m﹣2
算步骤)
17.
; 18.
; 19.
; 20.
; 21.0.32;6;0.12;
50; 22.
; 所有,未经书 面同意,不得 复制发布
日期:2019/1/4 1 3:58:16; 用户:qgjyus er106 22;邮箱:qg jyus er10622.2195 7750;学号: 21985632
5.(2 分)下列调查,适合用全面调查方式的是( )
A.了解一批灯泡的使用寿命是否合格
B.了解珠江河中鱼的各类
C.了解广东电视台珠江频道《今日关注》的收视率
D.PD
第1页(共6页)
D.了解某校七年级一班学生的视力状况 6.(2 分)在实数 , , ,π, ,1.010010001…(每两个 1 之间 0 的
相关文档
最新文档