暑期第二讲整式的加减
2 整式的加减

第二讲:整式的加减一、合并同类项:(一).知识点:1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:数与数都是同类项如 :2a b 与-5a b 是同类项;4x 2y 与-31yx 2是同类项;83、0与2.5是同类项, 2、同类项的条件:(1)所含字母相同 (2)相同字母的指数也相同如 :32xyz 与xy 不是同类项,因为所含字母不相同 ; 0.523y x 和732y x 不是同类项 ,因为相同字母的指数不相同;(二)、应用题型一:找同类项1、指出下列多项式中的同类项:(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2。
解:(1)3x 与-2x 是同类项;-2y 与3y 是同类项;1与-5是同类项;(2 )2、写出-5x 3y 2的一个同类项_______________;3、下列各组式子中,是同类项的是( )A 、y x 23与23xy -B 、xy 3与yx 2-C 、x 2与22xD 、xy 5与yz 5题型二:利用同类项,求字母的值1、k 取何值时,(1)3x k y 与-x 2y 是同类项?(2)35k x y 与439y x -是同类项?解:(1)k=2时,3x k y 与-x 2y 是同类项;(2)2、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。
分析:因为是同类项,所以字母x 的指数要相同:即13n +=,所以2n =;字母y 的指数要相同:即2m =3、若425m x y 和149n x y +-是同类项,则m=_________,n=___________。
二、合并同类项(一).知识点:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
2、合并同类项的法则:把同类项的系数相加减,所得的结果作为系数,字母和字母指数保持不变。
整式的加减运算

整式的加减运算整式是指由常数、变量及它们的积和积的幂次和(其中幂次是非负整数)构成的式子。
整式的加减运算是指将两个整式进行相加或相减的操作。
在进行整式的加减运算时,需注意一些规则和步骤。
一、加法运算整式的加法运算是将两个整式的各项按照同类项进行相加,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的加法运算。
例一:将多项式3x^2+2x+5和4x^2-3x+1相加。
解:首先将同类项相加,即将x^2的系数相加,x的系数相加,常数项相加。
3x^2 + 2x + 5+ 4x^2 - 3x + 1_______________7x^2 - x + 6因此,3x^2+2x+5和4x^2-3x+1相加的结果为7x^2-x+6。
例二:将多项式2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加。
解:按照同类项相加的原则进行计算。
2x^3 + 4x^2 - 3x + 7+ (-3x^3) + (-2x^2) + 5x + (-2)_____________________________-x^3 + 2x^2 + 2x + 5因此,2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加的结果为-x^3+2x^2+2x+5。
二、减法运算整式的减法运算是将两个整式的各项按照同类项进行相减,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的减法运算。
例一:将多项式6x^2+2x-3和2x^2-5x-2相减。
解:将减数的每一项加上相反数再按照同类项相加。
6x^2 + 2x - 3- (2x^2 - 5x - 2)________________4x^2 + 7x - 1因此,6x^2+2x-3和2x^2-5x-2相减的结果为4x^2+7x-1。
例二:将多项式5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减。
解:按照同类项相减的原则进行计算。
5x^3 - 4x^2 + 3x - 1- (-2x^3 + 5x^2 + 4x - 2)________________________7x^3 - 9x^2 - x + 1因此,5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减的结果为7x^3-9x^2-x+1。
第2讲 整式的加减.doc

数学
解决图形规律题有两种方法:一种是数图形,将图形转化成数字规律, 再用数字规律解决问题,一种是通过图形的直观性,从图形中直接寻 找规律.
数学
考向训练1:某商店压了一批商品,为尽快售出,该商店采取如下销售方案: 将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降 价10%.经过两次降价后的价格为 0.945m 元(结果用含m的代数式表示).
(A)-3
(B)-1
(C) 1 (D)3 3
解析:由同类项的定义,得
m个方程组,得 n=3,m=-1.则 nm=3-1= 1 .故选 C. 3
数学
整式的化简求值
【例 5】 (5 分)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中
x=- 2 .
4
4
数学
2.多项式 (1)概念:几个单项式的 和 叫做多项式. (2)项:多项式中的每一个 单项式 叫做多项式的项,其中 不含字母 的项 叫做常数项. (3)次数:多项式中次数最 高 项的次数叫做多项式的次数. 3.整式
单项 式和 多项 式统称为整式.
数学 整式的加减运算(常考点)
1.同类项:所含 字母 相同,并且相同字母的 指数 也相同的项叫做
数学
整式的有关概念(易错点)
【例3】 多项式1+2xy-3xy2的次数及最高次项的系数分别是( A )
(A)3,-3
(B)2,-3
(C)5,-3
(D)2,3
思路分析:先找到最高次项,再写出其次数和系数.
解析:多项式1+2xy-3xy2的最高次项是-3xy2,次数是3,系数是-3. 故选A.
数学
七年级上册数学第二章整式的加减知识点

第二章 整式的加减知识点复习1、 叫做单项式,单独的一个数或一个字母 单项式。
2、 叫做单项式的系数; 叫做这个单项式的次数。
3、 叫做多项式,在多项式中每个 叫做多项式的项,其中,不含字母的项叫做 ,一个多项式有几项就叫做 。
4、 叫做这个多项式的次数。
5、 统称整式; 叫做分式。
6、 相同,并且 也相同的项叫做同类项,几个常数项 同类项。
7、 叫做合并同类项。
合并同类项的方法:①把作为合并后的系数,②字母及其指数部分 。
8、去括号法则:当括号前带“+”号时,去掉括号及“+”后,括号里的 ;当括号前带“-”时,去掉括号及“-”后,括号里的 ;如果括号前面既有数字又有符号,应把该符号看成该数字的性质符号,再按照 。
9、整式加减的运算法则: 。
1、单项式53a π-的系数是( )A .3B .3-C .3πD .3π-2、单项式235ab c 的次数是( )A .3B .5C .6D .73、下列单项中,书写最规范的一个是( )A .1aB .2x ⋅C .0.5xyD .112mn 4、与2xy 是同类项的是( )A .2x yB .2axyC .2()xyD .22y x -5、下列合并同类项正确的是( )A .532y y -=B .22245a b ab ab -=C .770ab ba -=D .4515520x x x +=6、减去2x -等于2639x x +-的代数式是( )A .269x -B .2659x x +-C .2659x x --+D .269x x +-7、下列x 4-,b a -31,y x 254,41a +,41-x ,x ,22b a -,3x -,1212323-+-y x y x x 中,多项式有( )个 A.4 B.5 C.6 D.78、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( )A 、可能是七次多项式B 、一定是大于七项的多项式C 、可能是二次多项式D 、一定是四次多项式9、某本书原价是x 元,提价10%后的价格为 元;10、多项式2532--x x 是 次 项式,常数项是 。
《整式的加减》PPT课件_人教版2

《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
B. -3a+3b
C. -3a-b
D. -3a+b
2. 下列去括号正确的是( C )
A. -3(b-1)=-3b+1
B. -3(a-2)=-3a-6
C. -3(b-1)=3-3b
D. -3(a-2)=3a-6
《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
5. 去括号:-(a+b-c)= -a-b+c
.
6. 去括号:a-(b-c)+d= a-b+c+d .
《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
《整式的加减》优秀课件人教版2-精 品课件p pt(实 用版)
7. 化简: (1)a-(2a-2); (1)原式=a-2a+2=第一天看了x页,第二天看的页数比第一
天看的页数的2倍少5页,第三天看的页数比第一天
看的页数的3倍多1页,三天刚好看完这本书.
(1)求这本书有多少页?
(2)第三天比第二天多看多少页? 解:(1)x+(2x-5)+(3x+1)=6x-4(页).
答:这本书有(6x-4)页. (2)(3x+1)-(2x-5)=x+6(页). 答:第三天比第二天多看(x+6)页.
整式的加减(二)—添加减括号及化简求值 第2讲

整式的加减(二)—添加减括号及化简求值(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用; 2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】【整式的加减(二)--去括号与添括号 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ).练习1去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ).2化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8 3化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号. 练习()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.(5)22()101025()10()25x y x y x y +--+=+-+.(6)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.类型三、小马虎例1.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .例2.由于看错了运算符号,“小马虎”把一个整式减去多项式2ab -3bc +4误认为加上这个多项式,结果得出答案是2bc -1-2ab.问原题的正确答案应是多少?练习:1小明在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。
整式的加减法
整式的加减法整式是指由字母与数字按照乘法原则连接在一起的代数式。
这种乘法连接的方式使得整式在进行加减法运算时,需要满足特定的规则和步骤。
本文将以整式的加减法为主题,详细介绍整式加减法的运算规则和注意事项。
一、整式的基本概念在讨论整式的加减法之前,先来了解一下整式的基本概念。
1. 字母部分:整式中的字母部分通常表示未知数或变量,用来代表一类数。
例如,3x表示3与未知数x的乘积。
2. 系数:整式中字母部分前面的数字称为系数,它表示字母部分的倍数。
例如,在3x中,3就是x的系数。
3. 幂:字母部分上方的小数字称为幂,表示字母的指数。
例如,在x²中,2就是x的幂。
4. 项:整式由多项式组成,每一项包括一个系数和一个幂。
例如,在3x²中,3x²就是一项。
二、整式的加法整式的加法遵循以下两个步骤:1. 将相同字母部分的项合并:首先将整式中相同字母部分的项进行合并,即将系数相加。
例如,将3x² + 2x²合并为5x²。
2. 将不同字母部分的项合并:如果整式中存在不同字母部分的项,直接将它们列在一起。
例如,将5x² + 3xy合并为5x² + 3xy。
举例说明:将4x² + 3xy² + 2x² + 5xy进行加法运算。
首先合并相同字母部分的项,得到(4x² + 2x²) + (3xy² + 5xy) = 6x² +8xy²。
然后将不同字母部分的项合并,最终结果为6x² + 8xy²。
三、整式的减法整式的减法也遵循同样的步骤,与加法相似。
1. 将相同字母部分的项合并:将减号前的整式中相同字母部分的项进行合并,即将系数相加,但是要注意减去的数要变为相反数。
例如,将3x² - 2x²合并为1x²或简化为x²。
初一数学暑期衔接班讲义:整式加减
初一数学暑期讲义 暑期复习衔接:整式的加减一、 教学衔接1、单项式: 。
2、多项式: 。
3、整式: 。
4、一个单项式中,所有字母的 叫单项式的次数,它只与 有关,与单项式的系数 ;一个多项式中, 的次数叫多项式的次数。
5、同类项的定义:所含字母 ,并且相同字母的次数也 的项叫做同类项。
6、合并同类项法则:系数相 ,字母及其指数 。
7、去括号法则:括号前是“+”号时,去掉括号和“+”号后括号里的各项符号都 ;括号前是“-”号时,去掉括号和“-”号后括号里的各项符号都 ;8、整式的加减法的步骤:(1) ;(2) 。
二、经典题型讲解:例1、下列代数式中那些是单项式,那些是多项式?若是单项式,请指出它的系数和次数;若是多项式,请指出它是几次几项式。
变式练习:其中单项式有 个,多项式有 个,次数为2的整式有 个。
54,14532,,1,5,3,1,3523222abab ab b a m x x x x x x ππ--+-+--+x x x x y x mn ab a ab 1,145,),(21,1,1,51222--+--π应满足什么条件?次单项式,则的是关于)、已知(例b y x y x a b ,a 5,2223+-?m ,5)2(4xy 2=--+-的三次二项式,则是关于变式练习:若y x xy m m的值为多少?是同类项,则与、单项式例b y x y x a b a ---+a 331321?a 34.5a 02==y x b b x y 的和是单项式,则与变式练习:若.3,31a ,3])23(22[a 342222=-=++---b ab ab b a ab ab b 其中,先化简,再求值:例的值。
)求代数式(变式练习:已知)(])2[(,3,2xy x y xy y x xy y x -----+=-=+的值。
时,多项式答案,并求出当的请你帮他正确地算出结果求出的答案是看成误将”时,试求,其中和“两个多项式:小强在做一道数学题例B A x B A x x B A B A B A x x B B --=-+-+--+--=1,523.,254A 522的值。
整式的加减运算
整式的加减运算整式是代数式中的一种重要形式,由变量和常数通过加、减、乘运算符号组合而成。
整式的加减运算是指对两个或多个整式进行加法和减法运算,以求得它们的和或差的过程。
本文将详细介绍整式的加减运算规则和相关知识。
一、整式的定义和基本形式整式由一系列项的和或差组成,每个项由常数与变量的乘积组成,常数称为系数,变量称为因式。
整式的基本形式为:a1x^n1 + a2x^n2 + … + anx^1 + anx^0,其中a1、a2等为常数系数,x为变量,n1、n2等为整数指数,0为常数项。
二、整式的加法运算两个整式相加,只需把相同指数的同类项的系数相加即可,不同指数的项合并后保持不变。
例如,对于整式3x^2 + 2x + 5和4x^2 - 3x + 1的相加运算,只需将同类项的系数相加:(3x^2 + 2x + 5) + (4x^2 - 3x + 1) = (3 + 4)x^2 + (2 - 3)x + (5 + 1) =7x^2 - x + 6三、整式的减法运算两个整式相减,可视为加法运算中的减法操作。
即将减数中各项的系数取相反数,然后按加法运算的规则进行计算。
例如,对于整式3x^2 + 2x + 5和4x^2 - 3x + 1的相减运算,可以转化为加法运算:(3x^2 + 2x + 5) - (4x^2 - 3x + 1) = (3x^2 + 2x + 5) + (-4x^2 + 3x - 1) = (3 - 4)x^2 + (2 + 3)x + (5 - 1) = -x^2 + 5x + 4四、整式的加减混合运算整式的加减混合运算即同时进行加法和减法运算。
运算步骤为先进行括号内的加减运算,然后再进行外层的加减运算。
例如,对于整式2x^2 + (3x - 4) - (x^2 + 2x - 1)的加减混合运算,先进行括号内的运算,再进行外层的运算:2x^2 + (3x - 4) - (x^2 + 2x - 1) = 2x^2 + 3x - 4 - x^2 - 2x + 1 = (2x^2 - x^2) + (3x - 2x) + (-4 + 1) = x^2 + x - 3五、整式的合并同类项整式的合并同类项是指将具有相同指数、相同因式的项合并成一个项。
《整式的加减》课件
整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲:代数式的化简求值问题
一、 知识链接
求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题
例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,
求()[]
m m m m +---45222的值.
例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.
例4. 已知012=-+a a ,求2007223++a a 的值.
例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。
从收入的角度考虑,选择哪家公司有利?
规律探索问题:
例6.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆
时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 ____上, “2008”在射线___________上. (2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的 代数式表示为__________________________.
三、小结
用字母代数实现了我们对数认识的又一次飞跃。
希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。
体会由特殊到一般,再由一般到特殊的重要方法。
四、提高练习
1、代数式的求值:
(1)已知2
5
a b
a b
-
=
+
,求代数式
2(2)3()
2
a b a b
a b a b
-+
+
+-
的值。
(2)已知2
25
x y
++的值是7,求代数式2
364
x y
++的值。
(3)已知2
a b
=;5
c a
=,求62
4
a b c
a b c
+-
-+
的值(0)
c≠
(4)已知11
3
b a
-=,求
22
2
a b ab
a b ab
--
-+
的值。
(5)已知:当1
x=时,代数式31
Px qx
++的值为2007,求当1
x=-时,代数式31
Px qx
++的值。
(6)已知223(1)(1)x x a bx cx dx +-=+++,求a b c d +++的值。
2、已知1abc =,求
111
a b c ab a bc b ac c ++++++++的值。
3、已知
x y z K y z x z x y
===+++,求K 的值。
4、若,,a b c 互异,且x y a b b c c a Z ==---,求x y Z ++的值。
5、已知1abc =,求
111
a b c ab a bc b ac c ++++++++的值。