2018全国高中数学联赛安徽省初赛试卷 + 参考答案

合集下载

全国高中数学联赛安徽赛区试卷含解析

全国高中数学联赛安徽赛区试卷含解析

全国高中数学联赛安徽初赛试卷一、选择题(本题满分36分,每小题6分)1.正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a =A 、98B 、99C 、100D 、1012.已知lg x 的小数部分为a ,则21lg x 的小数部分为 A 、2a -的小数部分 B 、12a -的小数部分 C 、22a -的小数部分 D 、以上都不正确3.过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线( )上A 、2213,22y x y x ==B 、2235,22y x y x == C 、22,3y x y x == D 、223,5y x y x == 4.已知△ABC 为等腰直角三角形,∠C = 90°,D 、E 为AB 边上的两个点,且点D 在AE 之间,∠DCE = 45°,则以AD 、DE 、ED 为边长构成的三角形的最大角是A 、锐角B 、钝角C 、直角D 、不能确定5.将正整数从1开始不间断的写成一行,第2006个数码是 (旁注:这是希望杯的培训题)A 、0B 、5C 、7D 、以上都不正确6.已知圆锥的顶点V 和底面圆心O 的连线垂直于底面(旁注,这句话实际上是废话),一个过VO 中点M 的平面与圆O 相切,与圆锥的交线是一个椭圆,若圆O 半径为1,则椭圆的短轴的长为A、 BCD 、以上结果都不对 二、(每小题9分,共54分)7.设等差数列的首项和公差均为正整数,项数为不小于3的素数,且各项之和为2006,则这样的数列共有_____个.8.已知实数x 、y 满足()()()()55111511541545x x y y ⎧-+-=⎪⎨-+-=-⎪⎩,则x y +=_____. (旁注:联赛原题) 9.正八边形所有对角线在其内部交点的个数为_____.10.若x 、y 为实数,且223x xy y ++=,则22x xy y -+的最大值和最小值分别为_____.11.一个正方体的8个顶点可以组成_____个非等边三角形.12.若关于x的方程2kx +恰有一个实根,则k 的取值范围是_____.三、论述题(本题满分60分,每小题20分)13.设有2006个互不相同的复数,其中任何两个数的积(包括自乘)是这2006个数之一,求这2006个数的和.14.求3221123nnk k k n n n k k k C n k C n kC ==-+∑∑的值.15.已知数列{}()0n a n ≥满足00a =,对于所有n N +∈,有115n n a a +=+,求n a 的通项公式.全国高中数学联赛安徽初赛参考答案1B2C3B5A6B7(15)8(15)9(65)10(6和2)11(48)12()14(0)15() )2,3[]3,2(⋃--2]2)56()56([nn n a --+=。

【数学竞赛】2018年全国高中数学联赛安徽省初赛试卷(附答案)

【数学竞赛】2018年全国高中数学联赛安徽省初赛试卷(附答案)

|T,n2按照顺时针螺旋方式排成n行n列的表格T,第一行是1,2,,n.例如:=⎢894⎥.题号一2018年全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00—11:30)二总分9101112得分评卷人复核人注意:1.本试卷共12小题,满分150分; 2.用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线;4.不得使用计算器.一、填空题(每题8分,共64分,结果须化简)1.设三个复数1,i,z在复平面上对应的三点共线,且z|=5,则z=.2.设n是正整数,且满足n5=438427732293,则n=.3.函数f(x)=|sin(2x)+sin(3x)+sin(4x)|的最小正周期=.4.设点P,Q分别在函数y=2x和y=log x的图象上,则|PQ|的最小值=2.5.从1,2,,10中随机抽取三个各不相同的数字,其样本方差s2≤1的概率=.6.在边长为1的正方体ABCD-A B C D内部有一小球,该小球与正方体的对角线段AC相切,则小球11111半径的最大值=.7.设H是△ABC的垂心,且3HA+4HB+5HC=0,则cos∠AHB=.⎡123⎤8.把1,2,n3⎢⎥⎢⎣765⎥⎦设2018在T100的第i行第j列,则(i,j)=.二、解答题(第9—10题每题21分,第11—12题每题22分,共86分)9.如图所示,设ABCD是矩形,点E,F分别是线段AD,BC的中点,点G在线段EF上,点D,H关于线段AG的垂直平分线l对称.求证:∠HAB=3∠GAB.D HCE lG FA B213 2 π 210.(1) M ( x 0 , y 0 ) 处的切线方程 x 0 x - y 0 y = 1 .(3 分)b 2y 0 , x 0 + y ⎪ , B ( x 2 , y 2 ) = x 0 -y 0 , b a -b ⎭0 010. 设 O 是坐标原点,双曲线C : x 2 y 2 - a 2 b 2= 1(a > 0,b > 0) 上动点 M 处的切线交 C 的两条渐近线于 A , B两点.(1)求证: △AOB 的面积 S 是定值;(2)求 △AOB 的外心 P 的轨迹方程.11. (1)求证:对于任意实数 x , y , z 都有 x 2 + 2 y 2 + 3z 2 ≥3( xy + yz + zx ) .(2)是否存在实数k >试证明你的结论.3 ,使得对于任意实数 x , y , z 下式恒成立?x 2 + 2 y 2 + 3z 2 ≥ k ( x y + yz +zx )12. 在正 2018 边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色. 求此图形中三边颜色都相同的三角形的最小个数.参考答案和评分标准一、填空题(每题 8 分,共 64 分)1 2 3 45 6 7 84 - 3i 或 - 3 + 4i 1 + ln(ln 2) ln 21 154 - 65 -6 6(34,95)二、解答题(第 9—10 题每题 21 分,第 11—12 题每题 22 分,共 86 分) 9.由 E , F 分别是 AD , BC 的中点,得 EF // AB ⊥ AD .(3 分) 设 P 是 E 关于 l 的对称点,则 EP // AG ⊥ l ,故四边形 AEPG 是等腰梯形. (8 分) 进而 ∠PAG = ∠EGA = ∠GAB , ∠APG = ∠GEA ,从而 AP ⊥ HG . (13 分) 再由 HP = DE = EA = PG ,得 ∠HAP = ∠PAG = ∠GAB . (18 分) 因此, ∠HAB = 3∠GAB .(21 分)a 2⎛ a b ⎫ ⎛ a - b ⎫ ⎪ ⎪与渐近线方程联立,得 A ( x 1, y 1 ) = x ⎝ a + b a b ⎭ ⎝ a x 0上述两式相乘,得P的轨迹方程为a2x2-b2y2=1(a2+b2)2.11故x2+2y2+3z2≥3(xy+yz+zx).22,∑x(2017-x)=2M.当且仅当每个x=1008或1009时,N取得最小值C10092018-⨯1008=2C3.(16分)从而,S=1x y-x y=ab是定值.21221(2)由(1)可设A(λa,λb),B(a,-b),P(x,y),λ为非零常数.λλ由P A=PO=PB,得(x-λa)2+(y-λb)2=x2+y2=(x-a)2+(y+b)2.(9分) (12分) (15分)λλ从而有ax+by=λ(a2+b2),ax-by=1(a2+b2).22λ(18分) (21分)411.(1)由均值不等式,1x2+3y2≥3xy,x2+3z2≥3xz,y2+3z2≥3y z.2222 (2)x2+2y2+3z2-k(xy+yz+zx)=(x-k y-k z)2+(2-k2)y2+(3-k2)z2+(k2-k)y z22442(8分) (14分)上式≥0恒成立当且仅当2-k2≥0且(k2-k)2≤4(2-42k24)(3-k2).4(18分)化简得k≤22且k3-6k2+24≥0.显然,k=2>3满足要求.(22分) 12.设N是此图形中三边颜色都相同的三角形数目,M是此图形中三边颜色不全相同的三角形数目,x是以第i个顶点为端点的红色线段数目,则有iM+N=C320182018i i(10分) ii=1321009N=2C3是可以取到的,例如把线段i→i±j mod2018(1≤i≤2018,1≤j≤504)染成红1009色,其它线段染成蓝色.(22分)。

2018年全国高中数学联合竞赛试题及解答.(A卷)

2018年全国高中数学联合竞赛试题及解答.(A卷)

{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。

2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。

2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。

进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。

2018年全国高中数学联合竞赛一试参考答案(B卷)高考资料

2018年全国高中数学联合竞赛一试参考答案(B卷)高考资料

.....................20分
4
吾将上下而求索
一、填空题:本大题共8小题,每小题8分,满分64分.
1. 设集合A={2,0,1,8}, B={2aI aEA}, 则AUB的所有元素之和是

答案: 31. 解:易知B={4,0,2,16}, 故AUB={O,1,2,4,8,16}.AUB的所有元素之和
是0+1+ 2+ 4+8+16=31.
2. 已知 圆锥的 顶点为P, 底面半径长为2'高为1.在圆锥 底面 上取一点Q , 使得 直线PQ与底面所成角不大千45 °, 则满足条件的点Q所构成的区域 的面积

答案: 31r.
解:圆锥顶点 P在底面上的投影即为底面中心, 记之为o. 由条件知,
OP =tan乙OQP三1'即OQ之1'故所求 的区域面积为7r·22 -Jr-12 =31r. OQ
3. 将1,2,3,4,5,6随机排成一 行,记为a,b,c,d,e ,f, 则abc+def是奇数的概
率为 答案: — 1 · 10
量.已知数列{all } 满足:对任意正整数n, 点(an+I'an )均在l上.若a2=6, 则 研叩4 as的值为
答案: — 32.
解:易知直线l的方程是3x +y=O. 因此对任意正整数n, 有3an+I +an=0,

an
+I
=——1 3
化,故
{a,J是以
——13为公比的等比数列.千是a3
=——1 3
所以 0三/(x)三I{:} /(21r— 6)三/(x)三/(4 — 1r)'

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

2018年全国高中数学联赛试题与解析B卷

2018年全国高中数学联赛试题与解析B卷
| log3 x 1|, 0 x 0 f x = 4 x , x 9
an1 an 2, n 1, 2, 3, an
,2 求满足 an 42018 的
设 a,b,c 是三个互不相同的实数,满足 f (a) f (b) f (c) ,求 abc 的取值范围.
3
r
而 abc = r.
点(句, f(Co )) 作平行于·x 抽的直线l,则l与 f(x) 的图像另有两个交点仰 , !(α )), (b, /(b)) c其中αε (0,匀, bε (3, 9) ),满足 !(α ) = f(b)= f(c) ,并且 ab=9 ,从
四本题满分50分给定整数2018年全国高中数学联合竞赛一试b卷参考答案及评分标准说明评阅试卷时请依据评分标填空题只设分和分两档其他各题评请严格按照本准次结不得增加他中间次如果考生解答方法本解答同只要思路合理步骤正确评卷时参考本评分标准适当划分档次评分解答题中第9小题分个档次小题分aub的所0124863解
’叫
一1.
显然{a.}单调递增.由于 a11 = 23012 1 < 24036 = 420 ,s, a = 26144 12 故满足题目条件的n的最小值是12.
..................... 8分 1 > 2喃36 = 420 1&' …………......... 16分
10. (本题满分20分)己知定义在R + 上的函数 f(x) 为 [ pog 3 x-11,。<λ三9, ) = ( /x { 卢 x>9. 14-..Jx,
f (9)=l ,故结合图像可知
cε (9, +oo),
..................... 5分

2018年全国高中数学联合竞赛一试B卷参考答案(含加试)

2018年全国高中数学联合竞赛一试B卷参考答案(含加试)
2

�± ,
7

6. 设抛物线 C: y =2x 的准线与 x 轴交千点 A, 过点 B(-1,0) 作 一 直线 l 与
抛物线 C 相切千点 K, 过点 A 作 l 的平行线,与抛物线 C交千点 M,N, 则 �KMN 的面积为 I 答案: — . 2
I I I 解:设直线 l 与 MN 的斜率为 k, 则 l:x=— y-1, MN:x=— y-— .
将l 与 C 联立,得方程
2 五 l- — y+2=0, 由条件知其判别式为零,故 k =士 -. k 2
— 2 ——
k
k
2
将MN 与 C 联立,得方程 y IYM -yNI 结合l 与 MN 平行,可知
2
k
y+I=O, 千是
2—
气(yM +YN)
4yM凡

`口=2'
1 1 1 1 — — — — — — S�KMN= S归BMN= S�BAM s�BANI = ·IABI·YM YNI= · -2= . 2 2 2 2 7. 设 /(x) 是定义在 R 上的以 2 为周期的偶函数,在区间 [I,2] 上严格递减,
率为

-3, tan[(3-¾l =5, 则tan(a -(3)的值为

7 答案: -— . 4 解:由两角差的正切公式可知 ran[[a 十
"l
3

-3 -5 [/l — "]]� 1 +(— 3)x5 6
tan[ 0: — /3+ 勹=*,从而 tan(a: — /3) = — cot[ 0: — /3+ 勹= —
答案: 31. 解:易知B= {4, 0,2,16}, 故AUB= {O,1,2,4,8,16}. AUB的所有元素之和

【竞赛试题】2018全国高中数学联赛安徽省初赛试卷

【竞赛试题】2018全国高中数学联赛安徽省初赛试卷

1【竞赛试题】2018全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00)一、填空题(每题8分,共64分,结果须化简)1、设三个复数1, i, z 在复平面上对应的三点共线,且|z|=5,则z=2、设n 是正整数,且满足n 5=438427732293,则n=3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=4.设点P,Q 分别在函数y=2x 和y=log 2x 的图象上,则|PQ|的最小值=5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤1的概率=6、在边长为I 的正方体ABCD-A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=7、设H 是△ABC 的垂心,且3450HA HB HC ++=,则cos ∠AHB=8、把1,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是1,2,…,n.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在T 100的第i 行第j 列,则(i,j)= · 二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)9、如图所示,设ABCD 是矩形,点E, F 分别是线段AD, BC 的中点,点G 在线段EF 上,点D, H 关于线段AG 的垂直平分线L 对称.求证:∠HAB=3∠GAB.10、设O 是坐标原点,双曲线C:上动点M 处的切线交C 的两条渐近线于A,B 两点。

(1)减B 两点:`(1)求证:△AOB 的面积S 是定值。

(2)求△AOB 的外心P 的轨迹方程.11、(1)求证:对于任意实数x,y,z都有: ) 222x23y z xy yz zx ++≥++.(2)是否存在实数x.y,z下式恒成立?()222x23y z k xy yz zx++≥++,试证明你的结论.12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.232018全国高中数学联赛安徽省初赛试卷考试时间:2019年6月30日上午9:001.设三个复数1,i,z 在复平面上对应的三点共线,且5z =,则z =4-3i,34i -+.2.设n 是正整数,且满足5438427732293n =,则n =213.3.函数()sin2sin3sin4f x x x x =++的最小正周期=2π.4.设点,P Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值=5、从1,2,,10⋅⋅⋅中随机抽取三个各不相同的数字,其样本方差21s ≤的概率=115. 6、在边长为1的正方体1111ABCD A BC D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值 7、设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cosAHB ∠=6-. 8、把21,2,,n ⋅⋅⋅按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n ⋅⋅⋅.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在100T 的第i 行第j 列,则(),i j =()34,95.9、如图所示,设ABCD 是矩形,点,E F 分别是线段,AD BC 的中点,点G 在线段EF 上,点,D H 关于线段AG 的垂直平分线L 对称.求证:3HAB GAB ∠=∠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018全国高中数学联赛安徽省初赛试卷
考试时间:2019年6月30日上午9:00
1.设三个复数1,i,z 在复平面上对应的三点共线,且5z =,则z =4-3i,34i −+.
2.设n 是正整数,且满足5438427732293n =,则n =21
3.
3.函数()sin 2sin 3sin 4f x x x x =++的最小正周期=2π.
4.设点,P Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值=
5、从1,2,,10⋅⋅⋅中随机抽取三个各不相同的数字,其样本方差21s ≤的概率=115
. 6、在边长为1的正方体1111ABCD A B C D −内部有一小球,该小球与正方体的对角线段
1AC 相切,则小球半径的最大值=45
. 7、设H 是ABC ∆的垂心,且3450HA HB HC ++=,则
cos AHB ∠=6−
. 8、把21,2,,n ⋅⋅⋅按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n ⋅⋅⋅.
例如:3123894765T ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
设2018在100T 的第i 行第j 列,则(),i j =()34,95.
9、如图所示,设ABCD是矩形,点,E F分别是线段,
AD BC的中点,点G在线段EF上,点,D H关于线段AG的垂直平分线L对称.求证:3
HAB GAB
∠=∠.
10、设O是坐标原点,双曲线:
C
22
22
1
x y
a b
−=上动点M处的切线交C的两条渐近
线于,A B两点.
(1)求证:ABC
∆的面积S是定值; (2)求AOB
∆的外心P的轨迹方程.
11.(1)求证:对于任意实数,,x y z 都有:)22223x y z xy yz zx ++≥++..
(2)是否存在实数k >,,x y z 下式恒成立?
()22223x y z k xy yz zx ++≥++
试证明你的结论.
标答:
12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.。

相关文档
最新文档