万向传动轴的设计参数
万向传动轴径向全跳动计算

万向传动轴径向全跳动计算万向传动轴是一种常见的机械传动装置,用于将动力从一个位置传递到另一个位置。
它通常由两个万向节和一根轴组成,可以在不同的角度和位置上传递扭矩。
在传动轴的运行过程中,径向全跳动是一个重要的参数。
径向全跳动是指万向传动轴在转动过程中,两个万向节之间的径向距离的变化。
这种跳动会对传动轴的运行稳定性和传动效率产生影响,因此需要进行准确的计算和分析。
要计算万向传动轴的径向全跳动,我们首先需要了解万向节的结构和工作原理。
万向节通常由两个十字形的轴头和一个十字形的中心轴组成。
当传动轴转动时,轴头和中心轴之间会产生一定的相对角度,从而引起径向距离的变化。
为了准确计算万向传动轴的径向全跳动,我们需要确定一些关键参数。
首先是万向节的角度范围,即两个轴头之间可以扭转的最大角度。
其次是轴头的尺寸和形状,这会影响径向全跳动的大小和特性。
还需要考虑传动轴的转速和扭矩,以及传动轴的工作环境和使用条件。
根据这些参数,我们可以进行径向全跳动的计算。
一种常用的计算方法是基于几何关系和角度的变化。
首先,我们可以利用几何关系确定轴头之间的初始径向距离。
然后,根据转动角度和轴头的尺寸,计算出转动过程中径向距离的变化量。
最后,将初始径向距离和变化量相加,得到最终的径向全跳动。
除了几何计算,还可以使用数值模拟和计算机辅助设计软件进行径向全跳动的分析。
这些方法可以更准确地模拟和预测传动轴的运行情况,以及不同参数对径向全跳动的影响。
通过这些分析,我们可以优化传动轴的设计和参数选择,使其在工作过程中具有更好的性能和稳定性。
在实际应用中,径向全跳动的控制是非常重要的。
过大的跳动会导致传动轴的不稳定性和振动,甚至可能导致传动系统的故障。
因此,在设计和制造传动轴时,需要合理选择材料、加工工艺和装配精度,以控制径向全跳动的大小和变化范围。
万向传动轴径向全跳动的计算是传动系统设计和分析的重要内容。
通过准确计算和分析,可以优化传动轴的设计和参数选择,提高传动效率和稳定性。
万向传动轴设计

压力铸造
利用高压将金属液注入模具, 适用于小型零件。
离心铸造
利用离心力进行铸造,适用于 管状和套筒类零件。
锻造工艺
自由锻造
通过锤击或压力机对金属坯料 进行塑性变形,得到所需形状
的零件。
模锻
在模具中通过压力或冲击力使 金属坯料变形,适用于批量生 产。
辗环工艺
通过辗压机对环形坯料进行连 续塑性变形,得到环形零件。
根据动态特性分析结果,对万向 传动轴的结构和材料进行优化设 计,提高其动态性能。
减振降噪
采用有效的减振降噪措施,减小 万向传动轴在工作过程中产生的 振动和噪声,提高整车的舒适性。
04
万向传动轴的制造工艺
铸造工艺
01
02
03
04
砂型铸造
利用砂型模具进行铸造,适用 于大批量生产。
熔模铸造
通过熔模制作精密铸造,适用 于高精度零件。
定期润滑
根据需要定期对万向传动 轴进行润滑,以保证其正 常运转。
定期检查与保养
检查外观
定期检查万向传动轴的外观,查 看是否有裂纹、磨损等现象。
检查紧固件
确保万向传动轴的紧固件(如螺栓、 螺母等)紧固,无松动现象。
检查润滑情况
定期检查万向传动轴的润滑情况, 确保润滑良好。
常见故障及排除方法
传动轴异响
03
万向传动轴的优化设计
轻量化设计
轻量化设计
在满足强度和刚度要求的前提下,通过优化材料、结构、工艺等方式 降低万向传动轴的质量,从而提高整车的燃油经济性和动力性。
材料选择
选用高强度轻质材料,如铝合金、钛合金等,以减小万向传动轴的质 量。
结构优化
采用先进的有限元分析方法对万向传动轴的结构进行优化设计,去除 冗余部分,减小体积和重量。
万向传动轴设计范文

万向传动轴设计范文万向传动轴(Universal Joint Shaft)是一种能够实现两个轴线的不同角度传动的机械传动装置,广泛应用于汽车、机械设备和工业生产线等领域。
本文将详细介绍万向传动轴的设计原理、结构特点以及设计优化方法。
一、设计原理当传动输入轴转动时,中心轴通过两个交叉连接轴的连杆传递旋转力矩,并使输出轴也产生旋转。
由于交叉连接轴的特殊结构,万向传动轴能够使传动输入轴和输出轴存在不同的旋转角度,从而解决了轴线不同角度对传动的限制。
二、结构特点在设计过程中,需要考虑以下几个关键参数:1.轴间角度:指传动输入轴与输出轴之间的夹角。
该角度越大,传动轴工作时的额定转速越低,并且还会增加传动过程中的振动和噪音。
2.传动扭矩:表示输入轴传递给输出轴的力矩大小。
在设计中需要根据传动系统的需求确定传动轴的最大扭矩。
3.长度和直径:传动轴的长度和直径需要根据具体应用条件和承载要求进行确定。
三、设计优化方法在进行万向传动轴的设计时,可以采用以下几种优化方法:1.结构材料选择:传动轴的结构材料对其承载能力和耐久性具有重要影响。
可以通过优化材料选择,如选用高强度合金钢,来提高传动轴的耐久性能。
2.回转角度优化:通过合理设计传动轴的长度和交叉板角度,使得传动轴的回转角度在设计范围之内,从而提高传动效率并减少振动和噪音。
3.杆件直径优化:传动轴的杆件直径直接影响其承载能力。
可以采用有限元分析方法来优化杆件的直径,以满足传动系统的扭矩和振动要求。
4.轴承选择与布局:传动轴的轴承选择与布局对其旋转平衡性和耐久性有重要影响。
可以通过优化轴承的类型和布局,如选用角接触球轴承和双排球轴承,来提高传动轴的工作稳定性和寿命。
总之,万向传动轴作为一种重要的机械传动装置,在众多领域都有广泛应用。
其设计涉及到结构原理、材料选择、回转角度优化、杆件直径优化以及轴承选择与布局等多个方面,需要综合考虑承载能力、回转角度和振动噪音等设计要求,以实现传动系统的高效、稳定和可靠工作。
万向节与传动轴的标准

万向节与传动轴标准一、尺寸标准1. 万向节的尺寸应符合设计图纸的要求,尺寸偏差应在允许范围内。
2. 传动轴的长度、直径、偏心距等尺寸应符合设计图纸的要求,尺寸偏差应在允许范围内。
二、材料标准1. 万向节与传动轴的材料应具有足够的强度和韧性,以承受传动过程中的力和扭矩。
2. 材料应具有良好的耐磨性和抗疲劳性能,以适应长期使用的需求。
3. 材料应具有较好的耐腐蚀性能,以适应各种环境条件下的使用。
三、结构设计标准1. 万向节的结构设计应符合设计图纸的要求,确保传动轴在旋转过程中具有正确的传动方向和稳定的传动状态。
2. 传动轴的结构设计应合理分布载荷,减小应力集中,提高抗疲劳性能。
3. 结构设计应考虑制造工艺的可行性,便于加工和装配。
四、制造工艺标准1. 万向节的制造工艺应包括锻造、切削、热处理、表面处理等环节,确保产品质量和性能。
2. 传动轴的制造工艺应包括切割、锻造、切削、热处理等环节,确保产品质量和性能。
3. 制造工艺应遵循相关标准和规范,确保产品质量符合要求。
五、性能测试标准1. 万向节与传动轴的性能测试包括力学性能、动力学性能、耐久性等方面的测试。
2. 测试应在符合产品设计要求的条件下进行,以确保产品在实际使用中的性能表现。
3. 测试结果应符合相关标准和规范的要求,确保产品质量合格。
六、耐久性标准1. 万向节与传动轴的耐久性应符合设计要求,能够在规定的使用寿命内保持良好的性能。
2. 耐久性测试应包括模拟实际使用条件的长期试验,以评估产品的使用寿命。
3. 产品的耐久性应与安全性相结合考虑,以确保产品的可靠性。
七、安全性标准1. 万向节与传动轴的设计和制造应遵循相关安全标准和规范,确保产品在使用过程中的安全性。
2. 产品应配备必要的安全保护装置和警示标志,防止意外事故的发生。
3. 在产品的使用过程中,应定期进行安全检查和维护,确保产品的安全性能。
八、维护保养标准1. 万向节与传动轴的维护保养应定期进行,以确保产品长期保持良好的性能。
万向传动轴设计说明书

word 格式 整理版学习参考汽车设计课程设计说明书设计题目: 上海大众-桑塔纳志俊万向传动轴设计2014年11月28日目录1前言2设计说明书2.1原始数据2.2设计要求3万向传动轴设计3.1万向节结构方案的分析与选择3.1.1十字轴式万向节3.1.2准等速万向节3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动3.2.2双十字轴万向节传动3.2.3多十字轴万向节传动4 万向节的设计与计算4.1 万向传动轴的计算载荷4.2传动轴载荷计算4.3计算过程5 万向传动轴的结构分析与设计计算5.1 传动轴设计6 法兰盘设计前言万向传动轴在汽车上应用比较广泛。
发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。
本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。
传动轴是由轴管、万向节、伸缩花键等组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。
在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。
2 设计说明书2.1 原始数据最大总质量:1210kg发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min);轴距:2656mm;前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14长*宽*高(mm):4687*1700*1450前轮距(mm);1414后轮距(mm):1422最大马力(pa):952.2 设计要求1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。
十字轴式万向节传动轴总成设计规范

十字轴式万向节传动轴总成设计规范十字轴式万向节传动轴总成设计规范1 范围本标准规定了十字轴式万向节传动轴总成技术规范。
本标准适用于发动机、变速器纵置后轮及四轮驱动传动轴的设计。
2规范性引用文件下列文件对于本文件的应用是必不可少的.凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
QC/T 523 《汽车传动轴总成台架试验方法》QC/T 29082《汽车传动轴总成技术条件》3术语和定义3.1 传动轴:由一根或多根实心轴或空心轴管将二个或多个十字轴式万向节连接起来,用来将变速器的输出扭矩和旋转运动传递给驱动桥的装置。
3.2 传动轴临界转速:传动轴失去稳定性的最低转速。
传动轴在该转速下工作易发生共振,造成轴的严重弯曲变形,甚至折断。
3.3 当量夹角:多万向节传动轴的各个万向节输入、输出轴夹角等效转换成单万向节的夹角。
4目标性能4.2传动轴带万向节总成所连接的两轴相对位置在设计范围内变动时,能可靠地传递动力;4.2所连接两轴接近等速运转,由万向节夹角产生的附加载荷、振动和噪声应在允许范围内;4.3传动效率高,使用寿命长,结构简单,制造方便,维修容易等。
5 设计方法5.1 设计计算涉及的参数具体参数见表(一)、表(二)表(一)计算参数轴的抗扭截面系数(mm3)W T轴的转速(r/min)n轴传递的功率(kW)P计算截面处轴的直径(mm) d许用扭转切应力(MPa)[τT]传动轴管的外径(mm)D c传动轴管的内径(mm)d c传动轴的长度(mm)L c传动轴实际最高转速(r/min)n max变速器最高档变速比i5轴管的许用扭转切应力(MPa)[τc]花键轴的花键内径d h花键处转矩分布不均匀系数K′花键外径D h花键的有效工作长L h花键齿数n0齿侧许用挤压应力(MPa)[σy]表(二)需校核的参数序号名称符号目标值1 传动轴临界转速(r/min)n k2 轴管扭转强度τc[τc]3 花键轴扭转强度τh[τ0]4 花键齿侧挤压应力σy[σy]5.2 传动轴的布置5.2.1 传动轴总成在整车上的布置,见图1图 1 传动轴在整车上的布置图如图1所示,万向传动轴用于在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
等速万向节传动轴总成结构主参数的最优化设计

等速万向节传动轴总成结构主参数的最优化设计(原创实用版)目录1.等速万向节传动的概述2.等速万向节传动轴总成结构主参数的最优化设计2.1 传动轴总成结构的主要参数2.2 优化设计方法2.3 最优化设计的验证正文一、等速万向节传动的概述等速万向节传动是一种在传动过程中,使得输出轴和输入轴的角速度始终相等的传动方式。
这种传动方式广泛应用于汽车驱动轴、船舶推进器等领域。
等速万向节传动能够保证传动过程中的平稳性和可靠性,从而提高整个传动系统的工作效率和性能。
二、等速万向节传动轴总成结构主参数的最优化设计2.1 传动轴总成结构的主要参数在等速万向节传动轴总成结构中,主要的参数包括:万向节的类型、尺寸和材料;传动轴的直径、长度和材料;轴承的类型、尺寸和材料;以及密封件的类型和材料等。
这些参数对等速万向节传动的性能和可靠性有着重要的影响。
2.2 优化设计方法为了提高等速万向节传动轴总成结构的性能和可靠性,需要对其主要参数进行最优化设计。
最优化设计方法可以分为两类:一类是基于数学模型的优化设计,另一类是基于实验数据的优化设计。
基于数学模型的优化设计,主要是通过建立等速万向节传动轴总成结构的数学模型,然后运用数学方法和数值计算方法进行优化求解。
这种方法的优点是计算精度高,缺点是需要建立准确的数学模型,并对模型的参数进行精确的数值计算。
基于实验数据的优化设计,主要是通过进行大量的实验测试,然后运用统计方法和数据挖掘方法进行优化求解。
这种方法的优点是实验数据准确,缺点是实验过程耗费时间和资源。
2.3 最优化设计的验证最优化设计完成后,需要对其进行验证。
验证的主要方法有:模拟仿真验证、实验验证和实际应用验证。
模拟仿真验证主要是通过数学模型进行仿真实验,验证最优化设计的正确性和有效性;实验验证主要是通过实验设备进行实验测试,验证最优化设计的正确性和有效性;实际应用验证主要是通过实际应用,验证最优化设计的正确性和有效性。
汽车设计 第6版 第4章 万向传动设计

尺寸大,零件多,结构较复杂,传递转矩有限
当应用于转向驱动桥中,由于轴向尺寸大,为 使主销轴线的延长线与地面交点到轮胎的印迹 中心偏离不大,需要较大的主销内倾角
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
1.球笼式万向节
(1)固定型球笼式万向节
星形套7以内花键与主动轴1相连,其外表面设置有 6条凹槽(形成内滚道)。球形壳8的内表面设置有 对应的6条凹槽(形成外滚道)。6个钢球分别嵌装 在6条滚道中,并由保持架4使之保持在同一平面内。 动力由主动轴1经过钢球6、球形壳8输出。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
二、十字轴式万向节
滚针轴承的润滑和密封
毛毡油封:因防漏油、防水、防尘效果差,已淘汰 双刃口复合油封:防漏油、防水、防尘效果好。在 灰尘较多的环境中万向节寿命显著提高。 多刃口油封:防漏油、防水、防尘效果更好。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
2.三枢轴式万向节
三枢轴式万向节能允许最大轴间交角为43°
万向节安装位置或相连接总成
离合器-变速器;变速器-分动器 (相连接总成均安装在车架上)
驱动桥 传动轴
汽车满载 静止夹角
行驶中的 极限夹角
一般汽车 越野汽车 一般汽车 越野汽车
α不大于
1°~3°
6° 12° 15°~20° 30°
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
三、双联式万向节
汽车工程系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万向传动轴的设计参数
第一组
1-1微型客车传动系总体方案设计及万向传动轴的设计
一、任务:
1、确定传动系方案及发动机主要性能指标。
2、确定传动系的传动比。
3、设计万向节和传动轴。
4、编制设计说明
书。
二、原始条件:
车型微型客车
驱动形式FR4X2
发动机位置前置
最高车速U max=110km/h
最大爬坡度i max N30%
汽车总质量m a=1410kg
满载时前轴负荷率40%
外形尺寸总长L a X 总宽B a X 总高H a=3496X 1445X 1841mm3迎风面积AF.85 B a X H a
空气阻力系数C
D=0.6
轴距L=2200mm
前轮距B1=1440mm
后轮距B2=1420mm
车轮半径r=300mm
离合器单片十式摩擦离合器
变速器两轴式、四挡
第二组-1 4-1中型货车传动系总体方案设计及万向传动轴的设计 1、确定传动系方案及发动机主要性能指标。
2、确定传动系的传动比。
3、设计万向节和传动轴。
4、编制设计说明书。
二、原始条件:
车型 中型货车
驱动形式 FR4X 2
发动机位置 前置、纵置
最高车速 U max =90km/h
最大爬坡度 i max N 28%
汽车总质量 m a =9290kg
满载时前轴负荷率 25.4%
外形尺寸 总长L a X 总宽B a X 总高H 轴距 L=3950mm
前轮距 B 1=1810mm
后轮距 B 2=1800mm
迎风面积 A ^B 1X H a
空气阻力系数 C D =0.9
轮胎规格 9.00—20 或 9.0R20 离合器 单片十式摩擦离合器
变速器 中间轴式、五挡 一、任务:
=6910 X 2470 X 2455mm 3
第二组-2
6-1中型货车传动系总体方案设计及万向传动轴的设计
一、任务:
1、确定传动系方案及发动机主要性能指标。
2、确定传动系的传动比。
3、设计万向节和传动轴。
4、编制设计说明书。
二、原始条件:
车型中型货车
驱动形式FR4X2
发动机位置前置、纵置
最高车速U max=80km/h
最大爬坡度i max N30%
汽车总质量m a=9100kg,前轴2900kg,后轴6200kg
外形尺寸总长L a X总宽B a X总高H a=6800X2400X2130mm3
轴距L=3710mm
前轮距B1=1740mm
后轮距B2=1720mm
迎风面积A^B1X H a
空气阻力系数C
D=0.9
轮胎规格8.25—20或8.25R20
离合器单片干式摩擦离合器
变速器中间轴式、五挡
第三组
2-1轿车传动系总体方案设计及万向传动轴的设计
一、任务:
1、确定传动系方案及发动机主要性能指标。
2、确定传动系的传动比。
3、设计万向节和传动轴。
4、编制设计说明
书。
二、原始条件:
车型微型轿车
驱动形式FF4X2
发动机位置前置、横置
最高车速U max=120km/h
最大爬坡度i max N30%
汽车总质量m a=1020kg
满载时前轴负荷率50%
外形尺寸总长L a X 总宽B a X 总高H a=3500X 1445X 1470mm3迎风面积AF.78 B a X H a
空气阻力系数C
D=0.35
轴距L=2300mm
前轮距B1=1440mm
后轮距B2=1420mm
车轮半径r=300mm
离合器单片十式摩擦离合器
变速器两轴式、四挡
第四组
5-1中型客车传动系总体方案设计及万向传动轴的设计
一、任务:
1、确定传动系方案及发动机主要性能指标。
2、确定传动系的传动比。
3、设计万向节和传动轴。
4、编制设计说明书。
二、原始条件:
车型中型客车
驱动形式FR4X2
发动机位置前置、纵置
最高车速最大爬坡度U max=85km/h i max N27%
汽车总质量m a=8250kg
满载时前轴负荷率32.1%
外形尺寸总长L a X 总宽B a X 总高H a=8630X2420X2950mm3轴距L=4830mm
前轮距B1=1700mm
后轮距B2=1700mm
迎风面积A e0.85B a X H a
空气阻力系数轮胎规格C D=0.7
9.00—20 或9.0R20
离合器单片十式摩擦离合器变速器中间轴式、五挡。