操作系统实验--处理机调度算法实现

合集下载

处理机调度算法实验总结

处理机调度算法实验总结

处理机调度算法实验总结1. 引言处理机调度算法是操作系统中的重要组成部分,它决定了如何合理地分配处理机资源,以提高系统的性能和效率。

本次实验旨在通过实际操作和实验数据的分析,对不同的处理机调度算法进行比较和总结,以便更好地理解和应用这些算法。

2. 实验设计在本次实验中,我们选择了三种常见的处理机调度算法进行比较,分别是先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。

我们设计了以下实验方案:2.1 实验环境•操作系统:Windows 10•开发工具:C语言编译器2.2 实验步骤1.设计并实现三个处理机调度算法的代码;2.编写测试用例,包括不同作业的到达时间和服务时间;3.运行代码,记录每个作业的等待时间和周转时间;4.分析和比较三种算法的性能指标;5.总结实验结果。

3. 实验结果经过实验运行和数据记录,我们得到了以下实验结果:3.1 先来先服务(FCFS)•等待时间:1.作业1:02.作业2:103.作业3:15•周转时间:1.作业1:102.作业2:203.作业3:253.2 最短作业优先(SJF)•等待时间:1.作业1:02.作业2:53.作业3:10•周转时间:1.作业1:52.作业2:153.作业3:203.3 时间片轮转(RR)•等待时间:1.作业1:102.作业2:53.作业3:0•周转时间:1.作业1:202.作业2:153.作业3:104. 结果分析根据实验结果,我们可以得出以下结论:4.1 先来先服务(FCFS)•优点:简单易实现;•缺点:平均等待时间较长,不适用于长作业。

4.2 最短作业优先(SJF)•优点:平均等待时间最短;•缺点:无法预测作业的运行时间,可能导致长作业等待时间过长。

4.3 时间片轮转(RR)•优点:对长作业有较好的响应时间;•缺点:平均等待时间较长,不适用于短作业。

5. 实验总结通过本次实验,我们深入了解了三种常见的处理机调度算法,并通过实验数据对其进行了比较和分析。

操作系统实验之处理机调度实验报告

操作系统实验之处理机调度实验报告

操作系统实验之处理机调度实验报告一、实验目的处理机调度是操作系统中的核心功能之一,本次实验的主要目的是通过模拟不同的处理机调度算法,深入理解操作系统对处理机资源的分配和管理策略,比较不同调度算法的性能差异,并观察它们在不同负载情况下的表现。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 Python 38。

实验中使用了 Python 的相关库,如`numpy`、`matplotlib`等,用于数据生成、计算和图形绘制。

三、实验原理1、先来先服务(FCFS)调度算法先来先服务算法按照作业到达的先后顺序进行调度。

先到达的作业先被服务,直到完成或阻塞,然后再处理下一个到达的作业。

2、短作业优先(SJF)调度算法短作业优先算法选择预计运行时间最短的作业先执行。

这种算法可以有效地减少作业的平均等待时间,但可能导致长作业长时间等待。

3、时间片轮转(RR)调度算法时间片轮转算法将处理机的时间分成固定长度的时间片,每个作业轮流获得一个时间片的处理时间。

当时间片用完后,如果作业还未完成,则将其放入就绪队列的末尾等待下一轮调度。

4、优先级调度算法优先级调度算法为每个作业分配一个优先级,优先级高的作业先被执行。

优先级可以根据作业的性质、紧急程度等因素来确定。

四、实验内容与步骤1、数据生成首先,生成一组模拟的作业,包括作业的到达时间、预计运行时间和优先级等信息。

为了使实验结果更具代表性,生成了不同规模和特征的作业集合。

2、算法实现分别实现了先来先服务、短作业优先、时间片轮转和优先级调度这四种算法。

在实现过程中,严格按照算法的定义和规则进行处理机的分配和调度。

3、性能评估指标定义了以下性能评估指标来比较不同调度算法的效果:平均等待时间:作业在就绪队列中的等待时间的平均值。

平均周转时间:作业从到达系统到完成的时间间隔的平均值。

系统吞吐量:单位时间内完成的作业数量。

4、实验结果分析对每种调度算法进行多次实验,使用不同的作业集合,并记录相应的性能指标数据。

处理机调度实验报告

处理机调度实验报告

处理机调度实验报告处理机调度实验报告一、引言处理机调度是计算机操作系统中一个重要的概念,它涉及到如何合理地分配处理机资源以提高系统的运行效率。

本文将针对处理机调度进行实验,探讨不同调度算法对系统性能的影响。

二、实验目的本实验的目的是通过模拟不同的处理机调度算法,比较它们在不同负载下的性能表现,进而分析其优缺点,为实际操作系统的调度算法选择提供参考。

三、实验方法1. 实验环境本实验使用了一台配置较高的计算机作为实验环境,操作系统为Linux,处理器为Intel Core i7,内存为8GB。

2. 实验设置为了模拟不同的负载情况,我们使用了三个不同的测试程序:程序A、程序B和程序C。

程序A是一个计算密集型任务,程序B是一个I/O密集型任务,程序C是一个混合型任务。

3. 实验步骤首先,我们分别运行程序A、程序B和程序C,并记录它们的运行时间。

然后,我们使用不同的调度算法来调度这些任务,并记录它们的运行时间和系统资源利用率。

四、实验结果与分析1. 调度算法1:先来先服务(First-Come, First-Served,FCFS)FCFS算法按照任务到达的先后顺序进行调度,即先到先服务。

实验结果显示,在计算密集型任务下,FCFS算法表现较好,但在I/O密集型任务和混合型任务下,其性能明显下降。

这是因为在FCFS算法中,任务的执行顺序是固定的,无法根据任务的特性进行灵活调度。

2. 调度算法2:最短作业优先(Shortest Job First,SJF)SJF算法根据任务的执行时间进行调度,即执行时间最短的任务先执行。

实验结果显示,在计算密集型任务和混合型任务下,SJF算法表现较好,但在I/O密集型任务下,其性能较差。

这是因为在I/O密集型任务中,任务的执行时间不仅与计算量有关,还与I/O操作的耗时有关,因此SJF算法无法有效地进行调度。

3. 调度算法3:时间片轮转(Round Robin,RR)RR算法将处理机的运行时间划分为若干个时间片,每个任务在一个时间片内执行一定的时间,然后切换到下一个任务。

用C语言模拟Linux操作系统下处理机调度实验报告

用C语言模拟Linux操作系统下处理机调度实验报告

实验二:处理机调度一、实验目的:1、了解Linux下Emacs编辑器的使用方法,掌握各种常用的键盘操作命令;2、理解并掌握处理机调度算法。

二、实验内容及要求:在采用多道系统的设计程序中,往往有若干进程同时处于就绪状态。

当就绪状态进程数大于处理机数时,就必须按照某种策略来决定哪些进程优先占用处理机。

本实验模拟在单处理机情况下处理机调度。

1、优先调度算法实现处理机的调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(按优先数的大小把进程连成队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针为"0"、要求运行时间、优先数、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"优先数"和"要求运行时间";3把给定的进程按优先数的大小连成队列,用一单元指出队首进程;4每模拟执行一次进程,优先数减一,要求运行时间减一;5如果要求运行的时间>=0,再将它加入队列(按优先数的大小插入,重置队首标志);如果要求运行的时间=0,那么把它的状态修改为结束,且推出队列;6若就绪队列不为空,重复上述,直到所有的进程都结束;7程序有显示和打印语句,每次运行后显示变化。

2、按时间片轮转法实现处理机调度:设计思路:1每个进程用一个进程控制块PCB来代表,进程控制块包括进程名(进程的标识、指针(把进程连成循环队列,用指针指出下一个进程的进程控制块首地址,最后一个进程中的指针指出第一个进程的进程控制块首地址、已运行时间、状态(就绪、结束;2每次运行处理机调度程序前,为每个进程确定它的"要求运行时间";3用指针把给定的进程按顺序排成循环队列,用另一标志单元记录轮到的进程;4每模拟运行一次进程,已运行时间加一;5进程运行一次后,把该进程控制块的指针值送到标志单元,以指示下一个轮到的进程。

处理机调度实验报告1

处理机调度实验报告1
实现思想:
设置多个就绪队列,各个队列优先级逐个降低,各个队列时间片逐个增加,优先级越高的队列执行时间片就越短,一般时间片按倍增规则,例如,第二队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍,整合了时间片、FCFS、优先级三种机制。
三.实验过程及内容:(对程序代码进行说明和分析,越详细越好,代码排版要整齐,可读性要高)
time+=pcbdata1[t_ready[0]].time_need;
j=time-pcbdata1[t_ready[0]].time_start;
k=(float)j/pcbdata1[t_ready[0]].time_need;
t_order[0]=0;
printf("完成时间--%d,周转时间--%d,带权周转时间--%.1f\n",time,j,k);
}
}
//**************调度函数
void FCFS()
{
int i,j,temp;
double k;
for(i=0;i<num;i++)
{order[i]=pcbdata[i].time_start;
ready[i]=i;
}
for(i=0;i<num;i++) //按到达时间排序
for(j=i+1;j<num;j++)
t_ready[i]=ready[i];
}
time=order[0];
for(l=0;l<num1;l++){
//判断到达的进程数,用temp_num存放
for(i=0;i<num&&pcbdata1[ready[i]].time_start<=time;i++)

实验一 处理机调度实验报告

实验一 处理机调度实验报告

实验一处理机调度实验报告一、实验目的处理机调度是操作系统中的一个重要组成部分,其目的是合理地分配处理机资源,以提高系统的性能和效率。

本次实验的主要目的是通过模拟处理机调度算法,深入理解不同调度算法的工作原理和性能特点,并能够对它们进行比较和分析。

二、实验环境本次实验使用了以下软件和工具:1、操作系统:Windows 102、编程语言:Python3、开发环境:PyCharm三、实验内容1、先来先服务(FCFS)调度算法先来先服务调度算法按照作业或进程到达的先后顺序进行调度。

即先到达的作业或进程先得到处理机的服务。

2、短作业优先(SJF)调度算法短作业优先调度算法优先调度运行时间短的作业或进程。

在实现过程中,需要对作业或进程的运行时间进行预测或已知。

3、高响应比优先(HRRN)调度算法高响应比优先调度算法综合考虑作业或进程的等待时间和运行时间。

响应比的计算公式为:响应比=(等待时间+要求服务时间)/要求服务时间。

4、时间片轮转(RR)调度算法时间片轮转调度算法将处理机的时间分成固定大小的时间片,每个作业或进程在一个时间片内运行,当时间片用完后,切换到下一个作业或进程。

四、实验步骤1、设计数据结构为了表示作业或进程,设计了一个包含作业或进程 ID、到达时间、运行时间和等待时间等属性的数据结构。

2、实现调度算法分别实现了上述四种调度算法。

在实现过程中,根据算法的特点进行相应的处理和计算。

3、模拟调度过程创建一组作业或进程,并按照不同的调度算法进行调度。

在调度过程中,更新作业或进程的状态和相关时间参数。

4、计算性能指标计算了平均周转时间和平均带权周转时间等性能指标,用于评估不同调度算法的性能。

五、实验结果与分析1、先来先服务(FCFS)调度算法平均周转时间:通过计算所有作业或进程的周转时间之和除以作业或进程的数量,得到平均周转时间。

在 FCFS 算法中,由于按照到达顺序进行调度,可能会导致长作业或进程长时间占用处理机,从而使平均周转时间较长。

操作系统实验一处理机调度算法的实现

操作系统实验一处理机调度算法的实现

实验报告学院(系)名称:计算机与通信工程学院
【实验过程记录(源程序、测试用例、测试结果及心得体会等)】程序运行代码如下:
#include<>
#include <>
#include <>
struct PCB{n");
}
程序运行结果截图如下:
实验体会:
刚开始的时候不知道用什么数据结构,只知道PCB这个结构中有什么,根据题目得知其中包括进程的名字、优先运行数、运行时间。

在看了数据结构的书和一个已经写好的程序后得知,应该使用链式队列。

但是初始化链式队列之后,问题就来了,应该定义哪些函数来运行进程满足题目的要求??根据题目分析出,需要四个函数,对进程的优先数进行从小到大排列的sort()函数,对进程进行检查和判断的check()函数,对进程进行优先数减1和运行时间减1的running()函数,最后是主函数main()。

运行时出现了指针混乱的问题和记录运行的变量没有初始化的问题,最为困难的是sort函数的编写。

操作系统实验一处理机调度算法的实现

操作系统实验一处理机调度算法的实现

操作系统实验一处理机调度算法的实现操作系统中的处理机调度算法是为了合理地分配和利用处理器资源,提高系统的性能和响应速度。

这些算法主要用于决定下一个要执行的进程或线程。

在本篇文章中,我们将介绍几种常见的处理机调度算法以及它们的实际应用。

首先,我们要了解什么是处理机调度算法。

处理机调度是指从就绪队列中选择一个进程,并分配处理机给它。

调度算法的目标是合理地选择进程,以达到最佳的系统性能指标。

这些指标可以包括响应时间、吞吐量、公平性等。

最简单的调度算法是先来先服务(FCFS)。

这种算法按照进程到达的顺序来进行调度。

当一个进程完成后,下一个进程在队列头被选中执行。

FCFS算法的优点是实现简单,但缺点是不考虑进程的执行时间,导致平均等待时间较长。

FCFS主要用于批处理环境中,例如打印任务的排队。

另一种常见的调度算法是短作业优先(SJF)。

这种算法选择剩余执行时间最短的进程进行调度。

为了实现SJF算法,系统需要预测进程的执行时间,这可能是一个难题。

SJF算法的优点是能够最小化平均等待时间,但缺点是可能导致长作业的饥饿。

SJF算法主要用于交互式系统或具有预测性能的任务。

另一个常见的调度算法是轮转调度(RR)。

这种算法将处理机时间分成一定大小的时间片(时间片就是一段处理器运行的时间),每个进程在一个时间片内执行,然后进入队列尾部等待。

轮转调度算法的目的是实现公平性,每个进程都有机会被执行。

RR算法的优点是能够减少各个进程的响应时间,但缺点是可能造成高负载下的处理机浪费。

RR算法主要用于实时系统或多用户环境。

另一个调度算法是最高响应比优先(HRRN)。

响应比是指进程等待时间与预计执行时间的比率。

HRRN算法选择响应比最高的进程进行调度。

这种算法考虑了等待时间和执行时间的权衡,能够实现较好的性能。

但是,HRRN算法计算响应比需要实时监测和更新进程的等待时间和执行时间。

HRRN算法适用于交互式或多用户系统。

还有一种常见的调度算法是最短剩余时间优先(SRTF)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、完成容器。
当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。
struct proc //定义进程结构体
{
char name[5];
int num;
int pri;
};
void main()//主函数
{ char ch;
struct proc pr[n];//声明结构体数组
int i,k,j;
int count=n;
for(i=0;i<n;i++)//输入5个进程
函数描述:
struct proc/*定义结构体内部包含进程的信息*/
{
char name[5]; /*定义进程名*/
int num; /*定义运行时间*/
int pri; /*定义优先权*/
};
Void main()/*主函数:掌控整个程序的运行过程,是程序的主体部分*/
struct proc pr[n];/*声明结构体数组*/
4.处理机调度总是选队首进程运行。采用动态优先数算法,进程每运行一次优先数就减“1”,同时将运行时间减“1”。
5.若要求运行时间为零,则将其状态置为“结束”,且退出队列。
6.运行所设计程序,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程
实验过程与实验结果(可包括实验实施的步骤、算法描述、流程、结论等)
for(k=1;k<n;k++)
{for(j=0;j<n-1;j++)
if(pr[j].pri<pr[j+1].pri)
{
struct proc temp;
temp=pr[j];
pr[j]=pr[j+1];
pr[j+1]=temp;
}
}
while(pr[0].num!=0)//进程运行循环;
{
ch=getchar();
for(i=0;i<n;i++)/*for函数定义输入进程数*/
for(k=1;k<n;k++)/*for函数判断优先权大小并进行排序*/
while(pr[0].num!=0)/*while进程运行循环*/

实验代码:
#include<stdio.h>
#include<string>
#define n 5
{for(j=0;j<count-1;j++)
if(pr[j].pri<pr[j+1].pri)
{ห้องสมุดไป่ตู้
struct proc temp;
temp=pr[j];
pr[j]=pr[j+1];
pr[j+1]=temp;
}
}
}
}
试验结果:
1.执行结果
2.结果分析
当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。
{ printf("第%d个进程:\n",i+1);
printf("名称:");
scanf("%s",&pr[i].name);
printf("运行时间:");
scanf("%d",&pr[i].num);
printf("优先级:");
scanf("%d",&pr[i].pri);
}
//按进程优先级大小排序
天津理工大学
计算机与通信工程学院
实验报告
2011至2012学年第二学期
课程名称
操作系统
实验(1)
实验名称
处理机调度算法的实现
实验时间
2012年5月5日第1节至第6节
学号姓名
******
专业
主讲教师
辅导教师
软件环境
VC++6
硬件环境
PC机
实验目的
了解操作系统处理机调度的基本概念,处理机调度程序的功能,常用的处理机调度算法。C或C++编程方法与语句格式,提前初步编好实验程序。
实验内容(应包括实验题目、实验要求、实验任务等)
实验题目:处理机调度算法的实现
实验要求:学生应正确地设计有关的数据结构与各个功能模块,画出程序的流程图,编写程序,程序执行结果应正确。
实验任务:
1.设定系统中有五个进程,每一个进程用一个进程控制块表示。
2.输入每个进程的“优先数”和“要求运行时间”,
3.为了调度方便,将五个进程按给定的优先数从大到小连成就绪队列。用一单元指出队列首进程,用指针指出队列的连接情况。
实验步骤:
1.根据实验任务,先进行算法构思。因为是采取高优先权调度算法,因此在编写程序之前,先构思算法。具体算法见下面算法描述。
2.根据上一步骤写好的算法。
3.编写程序。
4.采用VC++进行程序的编写,并对编写的程序进行测试
(1)初始化进程信息。(2)将各个进程按优先数从高到低排列成就绪队列。(3)检查所有队列是否为空,若空则结束,否则将队首进程调入执行。(4)检查该运行进程是否运行完毕,若运行完毕,将此进程状态改为完成,插入另一个完成进程队列;否则,将该进程的优先数减1,然后重新对它进行排序,插入就绪队列适当位置后等待CPU。(5)重复步骤(3)、(4),直到就绪队列为空。
pr[0].pri=pr[0].pri-1;
pr[0].num=pr[0].num-1;
printf("此次执行的进程数据属性:\n");
printf("名称--%s,执行时间--%d,优先权--%d\n",pr[0].name,pr[0].num,pr[0].pri);
if(pr[0].num==0)
{
printf("进程%s结束!!\n",pr[0].name);
count=count-1;
printf("还有%d个进程在等待执行.....\n",count);
for(i=0;i<count;i++){pr[i]=pr[i+1];}//排除掉运行完的进程
}
for(k=1;k<count;k++)//再排序
算法描述:
将每个进程抽象成一个控制块PCB,PCB用一个结构体描述。
构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。
相关文档
最新文档