2023七年级基础奥数练习题试题(8篇)

合集下载

初一奥数竞赛题

初一奥数竞赛题

初一奥数竞赛题一、小李和小王一起参加数学竞赛,小李的得分是小王的两倍。

如果小李少得3分,而小王多得3分,则小李的得分就是小王的3倍。

那么小李原来得了多少分?A. 12分B. 15分C. 18分D. 21分(答案:C)二、一个两位数,十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数。

试求原两位数是多少?A. 16B. 25C. 34D. 43(答案:B)三、甲、乙两数的和是185,已知甲数的1/4与乙数的1/5的和是42,求两数相差多少?A. 20B. 25C. 30D. 35(答案:B)四、三个连续奇数的和是159,那么其中最大的一个奇数是多少?A. 49B. 51C. 53D. 55(答案:C)五、甲、乙、丙三人进行象棋比赛,每两人赛一盘。

规定:赢一盘得2分,输得0分,打平各得1分,全部比赛的三盘棋下完后,甲得3分,乙得1分,那么丙得多少分?A. 1分B. 2分C. 3分D. 4分(答案:D)六、甲、乙、丙、丁四人进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。

结果甲第一,乙、丙并列第二,丁最后一名,那么乙得几分?A. 3分B. 4分C. 5分D. 6分(答案:B)七、甲用40秒可绕一环形跑道跑一圈,乙反向跑,每隔15秒与甲相遇1次,乙跑一圈所用的时间是多少秒?A. 20秒B. 25秒C. 30秒D. 35秒(答案:C)八、小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。

结果去学校的时间比回家的时间多10分钟。

已知小明从家到学校的全程是多少千米?A. 5千米B. 10千米C. 15千米D. 20千米(答案:B)九、小明和小亮想买同一本书,小明缺1元5角,小亮缺1元3角。

如果用他们的钱合买这本书,钱正好。

这本书的价钱是多少?A. 2元8角B. 3元C. 3元8角D. 4元(答案:A)十、有甲、乙、丙三人所处位置不同,甲说:“以我为坐标原点,乙的位置是(2,3)。

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。

奥数初一试题及答案

奥数初一试题及答案

奥数初一试题及答案一、选择题(每题3分,共15分)1. 若a、b、c为任意实数,且a+b+c=0,则下列等式中正确的是()。

A. ab+bc+ca=0B. a^2+b^2+c^2=ab+bc+caC. a^2+b^2+c^2=0D. a^3+b^3+c^3=02. 一个数列,首项为1,公差为2,那么第10项的值是()。

A. 19B. 20C. 21D. 223. 下列哪个图形的面积最大?()A. 边长为4的正方形B. 半径为4的圆C. 底为4,高为4的等腰三角形D. 长为8,宽为4的矩形4. 一个正整数n,使得n^2-2n-35能被5整除,n的最小值是()。

A. 7B. 8C. 9D. 105. 一个等差数列的前三项和为6,后三项和为24,那么这个等差数列的中间项是()。

A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)6. 若x+y=5,xy=3,则x^2+y^2的值为______。

7. 一个等比数列的前三项分别为2,6,18,那么第四项的值为______。

8. 一个圆的半径为r,那么这个圆的周长为______。

9. 一个正整数n,使得n^2+3n+2能被6整除,n的最小值是______。

10. 一个等差数列的首项为a,公差为d,前n项和为S_n,那么S_n的表达式为______。

三、解答题(每题10分,共40分)11. 已知一个等差数列的首项为3,公差为2,求这个等差数列的前10项和。

12. 已知一个等比数列的首项为3,公比为2,求这个等比数列的前5项和。

13. 已知一个二次函数y=ax^2+bx+c,其中a、b、c为常数,且当x=1时,y=0;当x=-1时,y=4;当x=2时,y=5,求a、b、c 的值。

14. 已知一个三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,求证这个三角形是直角三角形。

四、附加题(15分)15. 一个正整数n,使得n^3-2n能被3整除,求n的最小值。

七年级数学奥数题

七年级数学奥数题

七年级数学奥数题七年级数学奥数题一、问题类型1、一元二次不等式给定一元二次不等式,求不等式的解的个数及其解的集合。

例:求解不等式x²-2x+2>0的解集合。

解:设ax²+bx+c>0,其中a≠0。

不等式的解的个数:对不等式ax²+bx+c>0的两端取对数,得ln(ax²+bx+c)>0,因lnx>0(x>0),得ax²+bx+c>0。

解的集合:利用二次不等式ax²+bx+c>0的一般形式x=(-b±√(b²-4ac))/2a,求得x=(-2±2√2)/2,即x=-1±√2,故解集合为x=-1±√2。

2、概率给出概率问题,求出概率大小及对应情况。

例:一个骰子投掷两次,求出和为六的概率。

解:由于一个骰子投掷两次,求和为六的概率,因此投掷一次的点数分别是(1,5)、(2,4)、(3,3)、(4,2)、(5,1),每种组合概率都为1/36,由此得出和为六的概率为1/36+1/36=2/36=1/18。

3、函数求解给出函数,利用函数的定义域求出函数的值。

例:求函数y=|x|+2x+3的定义域及其在定义域上的值。

解:函数y=|x|+2x+3在x>=0时,y=x+2x+3=3x+3;在x<0时,y=-x+2x+3=x+3,故定义域为R及(3x+3,x+3),在定义域上的值为3x+3或x+3。

二、应用题1、已知函数f(x)={2x-1,x<-1;3x+2,-1≤x≤2;x²+3,x>2,求函数f(x)的反函数。

解:设y=f(x),当y>=0,则x>2,即x=√(y-3);当y<0,则-1≤x≤2,即x=-(y-2)/3;当y=-1,即x=-1。

故反函数为x=√y+3(y>=-1)或x=-(y-2)/3(y<-1)。

七年级奥数练习题80道

七年级奥数练习题80道

七年级奥数练习题80道【练习一】1.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒。

已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少?2.一列火车以30m/s的速度在平直轨道上行驶,在相邻的平行轨道上迎面开来一列长200m的货车,其速度是20m/s,坐在窗口的乘客看到货车从他眼前经过的时间是什么时候?3.甲、乙两列火车,甲车的速度是15m/s,乙车的速度是10m/s。

若两车同向行驶时错车时间比相向行驶时错车时间多40s,已知甲车的长度是100米,求乙车的长度。

4.一辆客车以15m/s的速度行驶,突然从后面开来的一辆长300m的货车以20m/s 的速度向前行驶,那么坐在窗口的乘客看到货车从他眼前通过的时间是多少?5.辆客车长150M.以30M/S的速度在平直的轨道上行驶,在相邻的平行轨道上迎面开来一辆长100M的货车,速度是20M/S,客车里靠窗户坐的乘客看到货车从他眼前经过的时间是多少?6.两列客车在并排的平行轨道上同向匀速行驶,两车的速度分别为20M/S,30M/S,两车长分别为150M,100M,求两列车交会时的时间是多少?【练习二】1.妈妈买了2斤苹果,4斤菠萝,花去14元;爸爸买了3斤苹果,2斤菠萝,花去13元;那么1斤苹果,1斤菠萝各多少钱?2.修一段路计划16人20天完成,这16人工作了5天后,增加4人,如果这些人的工作效率相同,问提前几天完成修路任务?3.某饭店要安装空调240台,已知10名工程技术人员8小时能安装空调64台,现饭店要求安装公司在12小时内装完,需要增派同样工作效率的技术人员多少名?4.某工程原计划42人12天(每天按8小时工作)完成,工作7天后因支持其它紧急任务调走了12人,那么剩下的工作还要几天才能完成?若要求按原定日期完工,那么每天得工作多少小时?5.小强家住三层,从一层到三层需要走60秒钟,按此速度,从一层到六层需要多少秒钟?6.加工9600套服装,30人10天完成了3600套,又增加了20人,剩下的还需要几天完成?【练习三】1、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?【练习四】1、甲、乙二人同时从起点出发沿同一方向行走,甲每小时行5千米,乙第一小时行1千米,第二小时行2千米,以后每行1小时都比前1小时多行1千米。

初一奥数题(附答案

初一奥数题(附答案

初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x 的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u =3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠D OB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BE F.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且B D∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价1 0%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:4532.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?牙刷:1.4 牙膏:2.433.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+ 0.25x(2)求新合金中含第二种合金的重量范围;最大:1.035 最小:0.905(3)求新合金中含锰的重量范围.0.01~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖A D,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p =6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.仅供个人参考仅供个人用于学习、研究;不得用于商业用途。

初一奥数题(附答案

初一奥数题(附答案

初一奥数题(附答案)【1 】1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值规模.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均长短负实数,且知足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才干使旅程最短?13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?21.假如正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是知足下列前提的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.30.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?甲:105 乙:4532.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜2 0%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量规模;最大:1.035 最小:0.905(3)求新合金中含锰的重量规模.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CF B.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEF DG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b +c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6 k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4, 4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t= 1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3= 12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4 (元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+ x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。

初中初一学生基础奥数应用练习题(8篇)

初中初一学生基础奥数应用练习题(8篇)

初中初一学生基础奥数应用练习题(8篇)想要学好基础的奥数题吗?数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。

下面是小编给大家整理的初中初一学生基础奥数应用练习题,仅供参考希望能帮助到大家。

初中初一学生基础奥数应用练习题篇11、打一份书稿,甲独打需30天,乙单独打需20天。

甲、乙合打若干天后,甲停工休息,乙继续打了5天完成。

甲打了多少天?2、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。

现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。

乙队休息了几天?3、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。

有同样的装货汽车M和N ,甲搬运M汽车的货物,乙同时搬运N汽车的货物。

丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的'货物。

丙帮助甲搬运了几小时?4、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。

现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。

这样一共用了几天时间?5、甲、乙合做一项工程,20天完成。

如果甲队做7天,乙队做5天,只能完成工程的1/ 3,两队单独做完任务各需多少天?6、一件工作,甲先独做3天,然后与乙合做5天,这样才完成全工程的一半。

已知甲、乙工作效率的比是3:4。

如果由乙单独做,需要多少天才能完成?初中初一学生基础奥数应用练习题篇21.甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。

已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?2.某零件加工厂要加工零件1200个。

第一车间每天能加工190个,比二车间每天少加工20个。

现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?3.自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023七年级基础奥数练习题试题(8篇)
奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。

下面是小编给大家整理的2023七年级基础奥数练习题试题,仅供参考希望能帮助到大家。

2023七年级基础奥数练习题试题篇1
1、甲乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后甲追上乙,乙每小时行6千米,甲的速度是多少千米?
2、一架飞机执行空投救灾物资的任务,原计划每分钟飞行9千米。

为了争取时间,现在将速度提高到每分钟12千米,结果比原计划早到了30分钟。

机场与空投地点相隔多少千米?
3、某校师生开展行军活动,以每小时6千米的速度前进,3小时后,学校派通讯员骑自行车去传达命令。

如果通讯员以每小时15千米的平均速度追赶队伍,需要几小时才能追上?
4、甲乙二人由A地去B地,甲每分钟行50米,乙每分钟行45米,乙比甲早走4分钟,二人同时到达B地,那么AB两地的距离是多少米?
5、某人步行的速度为每秒钟2米。

一列火车从后面开来,超过他用了10秒钟。

已知列车的长为90米,那么列车的速度是多少米?
2023七年级基础奥数练习题试题篇2
1.加工一批零件,原计划每天加工80个,正好按期完成任务。

由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。

他们实际加工零件多少个?
2.甲、乙二人加工一批帽子,甲每天比乙多加工10个。

途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?
3.甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。

途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。

A、B 两地相距多少千米?
4.甲、乙两人承包一项工程,共得工资1120元。

已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。

求甲、乙每天各分得工资多少元?
5.用汽车运一堆煤,原计划8小时运完。

实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。

原计划8小时运多少吨煤?
2023七年级基础奥数练习题试题篇3
1、水结成冰时,体积增加1/10,当冰融成水后,体积要减少几分之几?
2、某商店同时卖出两件商品,每件各得30元,其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?
3、某处摆着甲、乙两盆花,一群蜜蜂飞来,在甲花上落了1/4,在乙花上落了1/3。

假如这群蜜蜂中再有两盆花上蜜蜂之差的3倍的蜜蜂落在花上,则剩下2只蜜蜂,这群蜜蜂共有多少只?
4、小牛乘汽车从县城到省城需2天,他第一天走了全程的1/2又72千米,第二天走的路程等于第一天的1/2,求县城到省城的距离。

5、光明小学六年级有学生360人,其中女生占7/12,后来又转来了几名女生,这样女生占六年级总人数的60%,转来的女生有多少人?
6、小英一家由小英和她的父母组成。

小英的父亲比母亲大3岁。

今年全家年龄的总和是71岁,8年前这个家庭的年龄总和是49岁。

今年小英多少岁?父亲多少岁?母亲多少岁2023七年级基础奥数练习题试题篇4
1、甲、乙、丙三人都要从A地到B地去,甲有一辆摩托车每次只能带1人,甲每小时可以行36千米,乙、丙步行的速度为每小时4千米,已知A、B两地相距36千米,求三人同时到达的最短时间为多少小时?
2、一条马路上有一行人和一个骑自行车的人同向而行,骑车人的速度是行人速度的3倍,这条马路上的1路汽车按相同的间隔发车匀速前进。

已知每隔10分钟一辆汽车超过行人,每隔20分钟一辆汽车超过骑车人,求1路汽车每隔多少分钟发车一辆?
3、有一批书,小明9天可装订3/4,小丽20天可装订5/6。

小明和小丽两个人合作几天可以装完?
4、有一件工程,甲独做20天可以完成这件工程的1/9,乙独做9天可以完成这件工程的1/10,甲、乙两人合做,需要几天可以完成这件工程的一半?
5、师徒两人共同加工一批零件,2天后已加工总数的1/3,这批零件如果全部由师傅单独加工,需要10天完成,如果全部由徒弟加工需几天完成?
2023七年级基础奥数练习题试题篇5
1、一件工作,甲独做要6天,乙的工效是甲的2倍。

两人同时合做,几天能完成?
2、一件工作,甲独做15天完成,乙独做18天完成,甲先做5天,余下的由乙独做,还需要多少天?
3、修一段30千米的公路。

甲队独做10天完成,乙队独做15天完成,两队合做几天可以完成?
4、给游泳池蓄水时,单开甲管10小时蓄满,单开乙管8小时蓄满。

如果甲乙两管同时开放,几小时可以蓄满水池?
5、打一份稿件5400字,甲单独打3小时完成全部的1/5,乙单独打2小时完成全部的1/4,甲乙二人合打一小时,甲比乙多打多少字?
6、一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成。

三人合做几小时可以完成工作的一半的一半?
2023七年级基础奥数练习题试题篇6
(1)李叔叔三年前在工商银行存了15万元的人民币的定期存款,年利率为3.24%,今年李叔叔准备把钱取出来买一套售价为17万的房子(一次性付款有九五折的优惠)。

请问,李叔叔取出来的钱够吗?(利息税为20%)
(2)某化工厂在一星期里,前三天平均每天节约用煤1.8吨,后4天节约用煤9.3吨,这一星期平均每天节约用煤多少吨?
(3)刘明、王华、李强的期中考试平均成绩是93.7分,李刚、赵云的平均成绩比他们三人的平均成绩高1.8分,他们五人的平均成绩是多少?
(4)期末考试,小明语文、数学、英语三科平均分时92分,如果只算语文、数学两科平均分时93分,英语是多少分?
(5)一个长方形的周长是120厘米,长于宽的比是3:2,长方形的面积是多少平方厘米?
(6)从甲地到乙地,慢车要行15小时,快车要行10小时,慢车从乙地开出5小时后,快车从甲地开出,再经过几小时两车相遇?
2023七年级基础奥数练习题试题篇7
1、小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走4 0米,几分钟后两人相遇?
2、甲、乙两人从相距36千米的两地相向而行。

甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?
3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。

两车开出几小时后,还相距95千米?
4、用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?
5、甲、乙两车分别从A、B两地出发,相向而行,4小时相遇。

相遇后,甲车继续行了3小时到达B地,乙每小时行24千米,AB两地间的路程是多少千米?
2023七年级基础奥数练习题试题篇8
1、甲、乙两地相距40千米,A和B同时从甲地出发去乙地,A步行每小时4千米,B骑摩托车每小时行40千米,B到达乙地后立即与C从乙地向甲地出发,C步行每小时5千米,B往返于A和C之间联络,遇到其中一个立即返回,当A和C相遇时,B共行了多少千米?
2、两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地所需时间多1/3。

如果两车同时开出,相遇时快车比慢车多行48千米,求甲、乙两地的距离。

3、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离。

4、清晨4时,甲车从A地,乙车从B地同时相对开出,原指望在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前进350千米,在C地与乙相遇。

相遇后,乙车立即以原来每小时60千米的速度向A地开去。

问:乙车几点才能到达A地?
5、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。

当它们从起点一起出发后龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间,龟跑了多少米?。

相关文档
最新文档