GPS卫星定位的基本原理

合集下载

GPS系统定位原理:卫星信号的三角定位

GPS系统定位原理:卫星信号的三角定位

GPS系统定位原理:卫星信号的三角定位
全球定位系统(GPS)通过卫星信号的三角定位原理来确定接收器的位置。

以下是GPS系统定位的基本原理:
1. GPS卫星网络:
卫星分布: GPS系统中有一群卫星轨道绕地球运行。

这些卫星在不同的轨道上,确保地球上的任何位置都能接收到至少四颗卫星的信号。

信号传输:每颗卫星都以固定的频率向地球发射信号,其中包含卫星的位置和时间信息。

2. 接收器接收卫星信号:
接收器定位: GPS接收器位于地球表面,能够接收到来自多颗卫星的信号。

接收器通过测量信号的到达时间来确定每颗卫星与接收器之间的距离。

多颗卫星:至少接收到四颗卫星的信号,以确保足够的信息进行精准的定位。

3. 三角定位原理:
测量距离:接收器通过测量从卫星发射信号到接收器接收信号的时间来计算距离。

速度等于距离除以时间。

三角定位:使用接收器到多颗卫星的距离,可以确定接收器相对于每颗卫星的位置。

三个或以上卫星的交汇点就是接收器的位置。

4. 时间同步:
精确时间:由于GPS信号中包含卫星的时间信息,接收器使用这些信息来确保接收到的信号和卫星发射信号的时间是同步的。

5. 定位精度:
多个卫星:使用多颗卫星的信息可以提高定位的精度。

更多的卫星提供更多的交叉验证,减小误差。

差分GPS:通过使用参考站的已知位置进行比较,可以进一步提高定位的精度,称为差分GPS。

通过以上原理,GPS系统能够提供全球范围内高精度的定位服务,广泛应用于导航、地图服务、精准农业等领域。

gps卫星定位基本原理

gps卫星定位基本原理

gps卫星定位基本原理
GPS卫星定位基本原理
GPS(全球定位系统)是一种基于卫星定位的技术,可以精确地确定地球上任何一个点的位置。

GPS系统由一组卫星、地面控制站和接收器组成。

GPS卫星定位基本原理是通过卫星发射的信号,接收器接收到信号后计算出自己的位置。

GPS卫星定位基本原理包括三个主要的部分:卫星、接收器和信号。

卫星:GPS系统由24颗卫星组成,这些卫星在地球轨道上运行,每颗卫星都有自己的轨道和时钟。

卫星发射的信号包含了卫星的位置和时间信息。

接收器:接收器是用来接收卫星发射的信号的设备。

接收器可以接收到多颗卫星发射的信号,并计算出自己的位置。

接收器需要至少接收到三颗卫星的信号才能计算出自己的位置。

信号:GPS卫星发射的信号是一种无线电波,这种无线电波可以穿过云层和建筑物,到达地面上的接收器。

信号包含了卫星的位置和时间信息,接收器通过计算信号的传播时间和卫星的位置信息来确定自己的位置。

GPS卫星定位基本原理的实现过程如下:
1. 接收器接收到卫星发射的信号。

2. 接收器计算信号的传播时间。

3. 接收器通过卫星发射的信号中包含的卫星位置信息计算出卫星和接收器之间的距离。

4. 接收器接收到多颗卫星发射的信号,并计算出自己的位置。

5. 接收器通过计算多颗卫星发射的信号,可以确定自己的位置和精度。

GPS卫星定位基本原理是通过卫星发射的信号,接收器接收到信号后计算出自己的位置。

GPS系统可以在全球范围内提供高精度的定位服务,广泛应用于交通、军事、航空、航海、地质勘探等领域。

第四章-GPS定位基本原理

第四章-GPS定位基本原理

为P 码和W 码,然后再利用P
码来测距
原理
Z跟踪技术
将接收到的L1 和L2 信号分别和接 收机生成的、以P 码信号为基础的 复制信号相关,频带宽度降低到保 密W 码的带宽,从而得到未知的W 码调制信号的估值
应用反向频率信号处理法,将接收 到的信号减去这一W 码的估值, 就可以大部分消除W 码的影响, 进而恢复P 码
在相对定位中,至少其中一点或几个点的位置是已知的, 即其在WGS-84坐标系的坐标为已知,称之为基准点。
相对定位是高精度定位的基本方法
广泛应用于高精度大地控制网、精密工程测量、地球动 力学、地震监测网和导弹和火箭等外弹道测量方面。
动态定位
至少一台接收机处于运动状态,确定各观测时刻运动中 的接收机的绝对或相对位置关系。
GPS系统的定位过程可简述为如下步骤: 跟踪、选择卫星、接收选定卫星的信号。 解读、解算出卫星。 测量得到卫星和用户之间的相对位置。 解算得到用户的最可信赖位置。
“交会法” 定位
已知一颗卫星的位置和接收器到它的距离,就可以确定接收器在一个球面上。 已知两颗卫星的位置和接收器到它们的距离,就可以确定接收器在一个环上。 如果知道三颗卫星的位置和接收器到它们的距离,通常可以确定接收器一定
对于非特需用户, 采用Z 跟踪技术进行PRN 相关处理的积分 时间很短, 导致测量精度降低, 对于其他方式, 由于利用W 码 的近似信息和增加处理环节
导致伪距测量结果的误差增大
原来的高精度P 码在最终的伪距测量结果中并不是总能得到保证
虽然是采用同样的P 码, 由于测量方式和过程不同, 非特需 用户得到的P 码伪距精度低于特需用户的相应结果。
近来基本区分方法
静态:
接收机天线在测量期间静止不动。 测量的参数在测量期间是不随时间变化的。 目的是测量点位的坐标。

GPS_百度百科

GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。

它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。

GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。

首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。

这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。

其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。

接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。

通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。

最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。

GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。

接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。

二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。

下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。

2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。

3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。

4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。

5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。

GPS定位原理和简单公式

GPS定位原理和简单公式

GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。

它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。

GPS定位原理基于三角测量原理和时间测量原理。

1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。

GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。

2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。

简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。

假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。

2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。

设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。

3.定位算法:GPS定位一般使用最小二乘法来进行计算。

最小二乘法是一种数学优化方法,用于最小化误差的平方和。

在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。

总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法全球定位系统(GPS)是一种基于卫星导航的定位技术。

其基本原理是通过接收来自卫星系统的信号,并利用这些信号的时间差来计算接收器与卫星之间的距离,进而确定接收器的位置。

GPS定位原理:1.卫星信号发射:GPS系统由一组运行在地球轨道上的卫星组成。

这些卫星通过周期性地广播信号来与地面上的GPS接收器进行通信。

2.接收器接收信号:GPS接收器接收来自卫星的信号,一般至少需要接收到4颗卫星的信号才能进行定位。

3.信号延迟计算:GPS接收器通过测量信号从卫星发射到接收器接收的时间来计算信号的传播延迟,然后将延迟转换为距离。

4.距离计算:GPS接收器通过比较接收的信号与预先知道的卫星发射信号之间的时间差,进而计算出接收器与卫星之间的距离。

5.定位解算:通过同时计算接收器与多颗卫星之间的距离,可以确定接收器所在的位置。

这一过程通常使用三角测量或者多路径等算法来完成。

GPS定位解算算法:1.平面三角测量:这是一种常用的定位解算算法。

通过测量接收器与至少三颗卫星之间的距离,可以得到三个方程,从而确定接收器的位置。

2.弧长法:这一算法通过测量接收器与至少四颗卫星之间的距离,将每个卫星看作是一个弧线,然后通过计算不同卫星间弧线的交点来确定接收器的位置。

3.最小二乘法:这种算法将测量误差最小化,通过最小二乘法来计算接收器与卫星之间的距离和接收器的位置。

4.系统解算:该算法利用多个时间点上的观测数据,通过组合计算来减小误差,精确确定接收器的位置。

GPS定位解算算法根据具体的应用场景和精度要求有所不同,不同的算法有着各自的优缺点。

在实际应用中,通常结合多种算法进行定位,以提高精度。

同时,还可以通过使用差分GPS(DGPS)来消除大气延迟和接收器误差,进一步提高定位精度。

总结:GPS导航定位原理基于卫星信号的接收和测量,通过计算信号传播的时间差来确定接收器与卫星之间的距离,并通过不同的算法进行定位解算。

gps定位基本原理

gps定位基本原理

gps定位基本原理
GPS定位基本原理是利用卫星进行定位的技术。

GPS系统由一组卫星、地面控制站和用户设备组成。

卫星向地面控制站发送信号,控制站对这些信号进行处理和分析,并将处理后的信息发送给用户设备。

用户设备中的GPS接收器接收到来自卫星的信号,并测量信号的传播时间。

由于信号以光速传播,可以根据传播时间计算出信号的传播距离。

通过接收来自多颗卫星的信号,并计算出这些信号的传播距离,GPS接收器可以确定自身的位置。

为了准确计算位置,GPS接收器需要同时接收来自至少四颗卫星的信号。

每颗卫星都会向接收器发送一个具有时间戳的信号,并通过该时间戳与接收器中的时钟进行同步。

接收器使用来自多颗卫星的信号和时间戳来确定自身的位置。

GPS定位的精度取决于接收器接收到的卫星数量以及这些卫星的几何分布。

当接收器处于开阔地区,能够同时接收到来自多个方向的卫星信号时,定位精度会更高。

但当接收器处于有遮挡物的地区,如高楼大厦或树木茂密的地区,定位精度可能会下降。

总的来说,GPS定位基本原理是通过接收卫星信号并测量信号的传播时间来确定自身位置的。

这种定位技术在许多领域中得到广泛应用,例如导航、车辆追踪和地图绘制等。

GPS卫星定位基本原理

GPS卫星定位基本原理

GPS卫星定位基本原理
GPS(全球定位系统)卫星定位是一种利用卫星信号来确定地理位置和导航的技术。

1.GPS系统组成:GPS系统由24颗活动卫星和地面控制站组成。

每颗GPS卫星维持一个高精度的原子钟,并将卫星的位置和时间信息发送到地表的控制站。

3.接收器接收信号:GPS接收器是用来接收来自卫星的信号的设备。

接收器使用接收到的信号来计算卫星发射信号的传播时间。

4.信号传播时间测量:当接收器接收到卫星信号时,它会比较信号的到达时间和信号发射时间之间的差异。

差异的值称为传播时间。

5.多个卫星信号接收:为了获得准确的位置信息,接收器需要接收来自至少4颗卫星的信号。

通过接收多个卫星的信号,接收器可以计算出自己相对于卫星的距离。

7.三圆定位原理:GPS接收器是通过测量来自至少4颗卫星的距离来确定自身的位置的。

使用三圆定位原理,接收器可以绘制出3个球面,每个球面的半径等于来自一个卫星的距离。

接收器的位置将会位于这三个球面的交点处。

8.位置计算:通过测量来自至少4颗卫星的距离,接收器可以计算出自身的位置。

这个计算过程通常在接收器内部的计算机芯片中完成。

总结起来,GPS卫星定位是通过接收来自卫星的信号来确定接收位置和时间的技术。

接收器通过测量卫星信号的传播时间,并利用三圆定位原
理计算出自身与卫星之间的距离,进而推算出自身的位置。

这种技术在导航、地图绘制和测量等方面有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标,可从导航电文中求得
X u (t), Yu (t), Zu (t) — 用户接收天线在时元t 的三维
坐标,为待求的未知数
伪距测量的基本方程(续)
P j {[X j (t) X u (t)]2 [Y j (t) Yu (t)]2 [Z j (t) Zu (t)]2}1/ 2
如果把载波作为量测信号,载波的波长要短得多 (L1=19cm, L2=24cm ),比P码码元的 长度小两个数量级。对载波进行相位测量,可以 达到很高的精度。
载波相位测量存在的问题
载波信号是一种周期性正弦信号,相 位测量只能测定其不足一个波长的部 分,因而存在着整周数不确定性的问 题,使解算过程变得比较复杂。

C(dt
j
dT )
dioj n

dj trop
上式中有4个未知数(用户三维坐标和接收机的 钟差dT )。这样在任何一个观测瞬间,用户至 少需要同时观测4颗卫星,以便解算4个未知数。
载波相位测量—优势
伪距测量的不足:
测距码的码元宽度较大,因此量测精度较低。 (对C/A码而言精度3m左右,P码约为30cm)
GPS卫星定位方法分类
依据测距的原理划分: 1)伪距法定位(测码) 2)载波相位测量定位(测相) 3)差分GPS定位
根据待定点的运动状态划分: 1)静态定位 2)动态定位
伪距测量
伪距:
由卫星发射的测距码信号到达GPS接收机的 传播时间乘以光速所得出的量测距离。由于 各种误差的存在,与卫星到测站的实际几何 距离有一定差值。
(模糊度)的辅助资料。
伪距测量的方法
卫星发出一个测距码,该测距码经过τ时间后到达 接收机;
接收机产生一组结构完全相同的测距码—复
制码,并通过时延器使其延迟时间τ’;
伪距测量的方法(续)
将两组测距码进行相关处理,直到两组测距码的 自相关系数 R(τ’)=1为止,此时,复制码已和测 距码对齐,复制码的延迟时间τ’ 就等于卫星信号 的传播时间τ;
伪距测量的原理(续)
T ( R ) t( S ) ( R S ) ( R S ) ( R S ) [ S t( S )][ R T ( R )] ( R S ) (dt dT )
dt — 卫星时钟相对于GPS时间系统的时间偏差 (可根据导航电文求得)
将τ’ 乘上光速c后即可求得卫星至接收机的伪距。
为什么利用码相关法测定伪距?
为什么不利用码的标志来推算时延值? 随机误差的存在:
每个测距码在产生时;测距码在传播过程中由于外界干扰产生变 形;复制码在产生时。
仅根据测距码中的某一标志来进行量测会带来较大 误差。利用码相关技术在自相关系数R(τ’) = max 的 情况下来确定信号的传播时间τ,实质上是采用了多 个码特征来确定τ ,排除了随机误差的影响。
C (dt – dT ) — 时钟偏差引起的距离偏差
dion电离层效应引起的距离偏差 dtrop对流层引起的距离偏差
伪距测量的原理(续)
是卫星在轨位置和用户位置的函数,即:
{[ X j (t) X u (t)]2 [Y j (t) Yu (t)]2 [Z j (t) Zu (t)]2}1/ 2 X j (t), Y j (t), Z j (t) — 第j 颗卫星在时元t 的三维
重建载波
重建载波:
将调制在载波上的测距码和导航电文去掉, 重新获得载波。
方法:
- 码相关法:可同时提取测距信号和卫星电文 - 平方法 :只能提取载波
载波相位测量的观测量
GPS接收机所接收的卫星载波信号 与接收机本振参考信号的相位差。
载波相位测量原理
两种测量值:
- C/A码伪距 - P码伪距
伪距法定位
由GPS接收机在某一时刻测出到达四颗以 上GPS卫星的伪距以及已知的卫星位置, 采用测距交会的方法求定接收机天线所 在点的三维坐标。
伪距测量的特点
适用于导航和低精度测量(P码定位误差约为 10m,C/A码定位误差为20~30m);
定位速度快; 可作为载波相位测量中解决整波数不确定问题
伪距测量的原理
三种时间系统: 各颗GPS卫星的时间标准 各台GPS信号接收机的时间标准 统一上述时间标准的GPS时间系统
伪距测量的原理(续)
伪噪声码从卫星到接 收天线的传播时间:
T ( R ) t( S )
伪噪声码从卫星到 达接收天线的时元
伪噪声码在其卫 星的发射时元
伪噪声码的真 实传播时间
卫星到接收天线的距离(包含 电离层、对流层的误差):
C( R S )
卫星到接收天线的“伪距(pseudorange)”P: C
伪距测量的原理(续)
考虑电离层/对流层影响的伪距值:
P C C(dt dT ) dion dtrop
dT — 接收机时钟相对于GPS时间系统的时间偏 差(接收机钟差)
伪距测量的原理(续)
T ( R ) t( S ) ( R S ) ( R S ) ( R S ) [ S t( S )][ R T ( R )] ( R S ) (dt dT )
测绘工程本科生课程
GPS原理及应用
讲授:
第六讲 GPS卫星定位基本原理(一)
概述 伪距测量原理 载波相位测量原理
交会法确定点位
测角交会法 测边交会法
测角交会法
B
P
P
A
C
A
B
前方交会
A
B
测方交会
P
后方交会
A、B和C点坐标已知,P点坐标未知
测边(距)交会法
无线电接收机或卫星 P
d1 d2
d3
无线电导航定位 两条边可确定P点坐标
GPS卫星定位的基本原理
应用测距交会的原理,利用三颗以上卫星的已 知空间位置交会出地面未知点(用户接收机) 的位置。
GPS卫星定位的基本原理
观测方程 P点的三维坐标(X,Y,Z)
相关文档
最新文档