VMware Horizon 7 测试报告
最新Vmware Horizon 7中文文档--使用适用于 Linux 的 VMware Horizon Client

使用适用于 Linux 的 VMwareHorizon Client2016 年 3 月Horizon Client在本文档被更新的版本替代之前,本文档支持列出的每个产品的版本和所有后续版本。
要查看本文档的更新版本,请访问/cn/support/pubs。
ZH_CN-002043-00使用适用于 Linux 的 VMware Horizon Client2 VMware, Inc.最新的技术文档可以从VMware 网站下载:/cn/support/VMware 网站还提供最近的产品更新信息。
您如果对本文档有任何意见或建议,请把反馈信息提交至:docfeedback@版权所有 © 2012–2016 VMware, Inc. 保留所有权利。
版权和商标信息。
VMware, Inc.3401 Hillview Ave.Palo Alto, CA 北京办公室北京市海淀区科学院南路2号融科资讯中心C 座南8层/cn 上海办公室上海市浦东新区浦东南路 999 号新梅联合广场 23 楼/cn 广州办公室广州市天河北路 233 号中信广场 7401 室/cn目录使用适用于 Linux 的 VMware Horizon Client51系统要求和安装7Linux 客户端系统的系统要求8实时音频-视频的系统要求10使用 Flash URL 重定向的要求12智能卡身份验证要求12支持的桌面操作系统13准备适用于 Horizon Client 的连接服务器13从 VMware 产品下载页面安装或升级适用于 Linux 的 Horizon Client14从 Ubuntu 软件中心安装适用于 Linux 的 Horizon Client18配置 VMware Blast 选项20VMware 收集的 Horizon Client 数据202为最终用户配置 Horizon Client23使用 URI 配置 Horizon Client24使用 Horizon Client 命令行界面和配置文件27为最终用户配置证书检查34配置高级 TLS/SSL 选项34配置发送到本地系统的特定键和组合键35使用 FreeRDP 进行 RDP 连接37在 Horizon Client 3.2 及更低版本上启用 FIPS 模式39在 Horizon Client 4.0 上启用 FIPS 模式39配置 PCoIP 客户端映像缓存403管理远程桌面和应用程序连接43连接到远程桌面或应用程序43共享对本地文件夹和驱动器的访问权限45Horizon Client 的证书检查模式46切换桌面或应用程序47注销或断开连接484在 Linux 系统上使用 Microsoft Windows 桌面或应用程序49Linux 功能支持表49国际化52键盘和显示器52将实时音频-视频功能用于网络摄像头和麦克风54在远程应用程序中保存文档58在远程桌面上设置虚拟打印机功能的打印首选项58VMware, Inc. 3使用适用于 Linux 的 VMware Horizon Client复制和粘贴文本595对 Horizon Client 进行故障排除61键盘输入问题61重置远程桌面或应用程序61卸载适用于 Linux 的 Horizon Client626在客户端上配置 USB 重定向63设置 USB 配置属性64USB 设备系列67索引694 VMware, Inc.使用适用于 Linux 的 VMware Horizon Client 本指南(《使用适用于 Linux 的 VMware Horizon Client》)介绍了有关在 Linux 客户端系统上安装 VMwareHorizon™ Client™软件以及使用该软件连接到数据中心中的 View 桌面的信息。
VMWare-vSphere7解决方案助力企业数字化转型

影响ACI 在全球拥有 30,000 个客户端和 2,000 个虚拟机,vSphere 6.5 的部署正是时候, 可为 ACI 带来以下优势:通过 HTML5 Web 客户端增强了可用性,并加快了对性能指标的访问速度通过 vCenter Appliance 改善了整体管理环境中托管的医疗数据符合 HIPAA、PCI 和 PI 要求,让您高枕无忧无缝的数据中心概念证明,现已扩展为 vSphere 6.5 的全球部署,范围包括即将被 ACI合并或收购的公司
主要功能特性包括:经过重新构建的 vCenter Server® Appliance,采用 了核心 vSphere 技术以简化部署、改善可管理性和 提高性能基于 HTML 5 的全新 vSphere Client,提供了更现 代、响应速度更快且更易于使用的用户界面新的虚拟机级别磁盘加密以及加密的 VMware vSphere vMotion®,用于保护静态数据和动态数据VMware vSphere Integrated Containers™,用于 帮助组织改造其基础架构,无需重新构建
RYAN FAY,ACI SPECIALTY BENEFITS 首席信息官
数字化转型成功案例 | 7
ACI Specialty Benefits 极大地受益于vSphere 6.5 升级
ACI Specialty Benefits (ACI) 面向全球客户提供员工援助和工作场所健康计划、礼宾服务和学生援助计划。现在,该公司的国际扩张计划已开展两年时间,每年的增长率达到约 300%。这为员工带来了巨大的机遇,但同时也带了更大的安全障碍,亟待 IT 部门 去解决。当需要评估各种新技术以帮助高效管理指数级增长所带来的复杂情况时,ACI 选择了 vSphere 6.5。IT 团队首先在数据中心内实施了 vSphere 6.5,现在 正准备进行整个企业范围内的全球部署,其中包括大型 VDI 环境。
Vmware Horizon view 7桌面虚拟化平台系统架构部署研究

8 3
融 入单个 统一 解决 方 案 。它将数 据 、 应用 和桌 面部 署转 变 为集 中化 的服 务 , 可 以实 现 高效 配 置 和集 中管 理 虚拟 桌 面 , 可 以方便 快捷 地 为终端 用户 提供 各种需 求 的虚 拟桌 面 。
( 一) 主 要组 成
V i e w C o n n e c t i o n S e r v e r 。V i e w C o n n e c t i o n S e r v e r 是 充 当客户端 连 接虚拟 桌 面代理 的应用 程序 , 它通 过
聂得 欣
( 河 南财 政金 融学 院 工程 经济 系 , 河 南 郑州 4 5 1 4 6 4 )
[ 摘
要] H o i r z o n v i e w 7套件 是 目前行 业领 先 的 桌面虚拟 化 解决 方案 , 它将 数 据 、 应 用和操 作 系统 桌
面部 署 转 变为集 中化 的服 务 , 可 以实现虚拟 桌 面的 高效 配置和 集 中管理 。 分析 V m w a r e H o i r z o n v i e w 7套 件 的主要 组成 和安 装过 程 , 研究V m w a r e H o i r z o n v i e w 7桌 面虚 拟化 平 台 系统 架构 的部 署 , 对 桌面虚 拟 化
Wi n d o w s 活动 目录对用户进行身份验证 , 将用户请求定向到能提供虚拟桌面的主机( 物理或服务器虚拟) 或 能提供 Wi n d o w s 远 程桌 面服 务 的主机 ( 物理 或服 务器 虚 拟 ) , 具 有用 户 身份 验证 、 授权 用户 访 问特 定 桌 面 等功 能 。
技 术 的 实际运 用具有借 鉴作 用。
(完整版)桌面虚拟化测试报告(VGPU)-

桌面虚拟化测试报告2015 年 12月信息中心编制人:审核人:目录一、解决方案概述 (3)1.1 测试背景 (3)1.2 测试目的 (3)1.3 价值体现 (3)二、测试简介 (4)2.1 测试内容 (4)2.2 时间安排 (4)2.3 测试结论 (5)三、附录 (5)3.1测试环境 (5)3.1.1 硬件配置 (5)3.1.2软件配置 (7)3.1.4系统架构 (7)3.1.5 测试工具 (9)3.2测试用例 (9)3.2.1 基本功能测试 (9)3.2.2 显示效果测试 (14)3.3 业务功能测试 (14)3.4 系统兼容性测试 (18)3.5 图形性能测试 (19)3.6 运维管理测试 (20)3.7 系统安全测试 (21)一、解决方案概述1.1 测试背景随着我们公司信息化进程的不断深入,传统的图形工作站已经无法满足日益更新的设计软件的硬件需求,而更换工作站的硬件成本非常昂贵,因此我们尝试在使用桌面虚拟化方式来替换原有的PC+工作站架构,从而简化我们企业 IT 基础架构,让企业IT能够快速响应不断变化的业务及终端用户需求,更快速地部署应用和桌面并提高研发效率,同时缩短产品开发周期提高竞争力。
Citrix和VMware作为业界最为领先的虚拟化厂商,Citrix xendesktop 和VMware Horizon View产品都结合NVIDIA的vGPU技术,可以替换传统图形工作站,满足我公司对于高性能图形计算机的使用需求。
1.2 测试目的本次测试的主要目的是为了更好的了解Citrix、VMware和NVIDIA公司联合推出的基于vGPU的图形工作站是否能满足满足我公司对于高性能图形计算机的使用需求,同时体验桌面解决方案,用以解决传统 PC以及图形工作站面临的各种难题。
本次测试主要对如下几个方面进行功能性验证。
•vSphere 6.0和XenServer的部署、管理及使用。
•vmware view 和Xendesktop桌面虚拟化的搭建及与NVIDIA 虚拟化显卡的集成。
桌面虚拟化部署VMware Horizon View 7部署图文教程1:VMware Horizon 7介绍

桌面虚拟化部署VMware Horizon View 7部署图文教程1:VMware Horizon 7介绍通过Horizon,IT部门可以在数据中心部署虚拟化环境,并将这些环境交付给员工。
最终用户可以获得熟悉的个性化环境,并且可以在企业或家庭网络中的任何地方访问此环境。
将桌面数据全部至于数据中心,管理员可以进行集中式管理,同时还能提高效率、增强安全性、降低成本(用户可以使用落后的PC或瘦客户机访问虚拟桌面环境)。
VMware Horizon 7虚拟桌面部署由以下几个组件组成•客户端设备•Horizon Client•Horizon Agent•Horizon Connection Server•Horizon Composer•Horizon ThinApp1.1客户端设备Horizon的一大优势在于,用户可以在任何地点使用任何设备访问桌面。
用户可以通过公司的笔记本电脑、家用PC、瘦客户端设备、MAC或平板访问个性化虚拟桌面。
在PC中用户只要打开Horizon Client就能显示Horizon桌面。
瘦客户端借助瘦客户端软件,管理员可以进行配置,让Horizon Client成为用户在瘦客户端上唯一能直接启动的应用程序。
将传统PC作为瘦客户端使用,可以延长硬件使用寿命。
乾颐堂数据中心1.2 Horizon ClientHorizon提供了多平台客户端,包括Windows、MAC OS、Linux、瘦客户端平台。
可以让用户通过各种硬件来访问虚拟桌面。
1.3 Horizon Agent需要在远程桌面源虚拟机、RDS服务器上安装,通过与Horizon Client连接来为用户提供连接监视,虚拟打印USB映射等功能1.4 Horizon Connection Server该服务充当客户端的连接点,Horizon Connection Server通过Windows Active Directory对用户提供身份验证,并将请求定向到相应的虚拟机、或服务器。
VMWare Horizon7新产品介绍

11
即时桌面交付 – 一秒一桌面
在线模板
克隆桌面
软件定义的数据中心
全新黑科技 – Instant Clone
Instant Clone
子虚机1
子虚机2 …
子虚机(n-1)
子虚机n
虚机内存 vmFork 操作
父虚机内存 父虚机 只有父虚机才需要存储镜像文件
宿主内存
子虚机1
子虚机2 … …
子虚机(n-1)
内网用户
剪切板 USB 打印 客户端驱动器
剪切板
USB 打印 客户端驱动器 最小带宽 带宽 最佳体验
带宽
智能策略
灵活而实时生效的策略,智能而适度的控制,真正的单点 登录
真正的单点 登录体验
受安全策略控制 的客户端特性
Access Point 身份验证 (SmartCard)
FIPS 140-2 (Federal Information Processing Standards)
即时应用 即时桌面
Horizon 7
®
全新黑科技
40+项功能增强
Horizon 7 – 市场领先的创新技术
即时交付
应用生命 周期管理
Blast Extreme 用户体验
智能策略
#digitalworkspace
黑科技首发
即时桌面交付
即时交付
在 20 分钟内交付 2000 个桌面
CPA 架构支持多达 10 个 站点,25 个 Pod,高达 50000 多个桌面会话
App Container
User Changes
App Volumes OS Infrastructure
VDI 会话
三项重要更新
VMWare Horizon7在vSan架构最佳实践

VMware Horizon 7 on VMware vSAN 最佳实践技术白皮书TECHNICAL WHITE PAPERTable of ContentsIntroduction 3 Purpose (3)Audience (3)Technology Overview and Best Practices 3 Overview (3)VMware vSAN (4)Introduction (4)All-Flash vs. Hybrid Architecture (4)Storage Hardware (6)Deduplication and Compression (7)Storage Policies (9)Swap Thin Provisioning (11)Native Encryption (11)vSAN Encryption vs. VM-level Encryption (12)VMware Horizon 7 (13)Introduction (13)Cloning Technology (13)Full Clones (13)Linked Clones (14)Instant Clones (15)VMware View Storage Accelerator and vSAN Client Cache (18)References 20 White Papers (20)Product Documentation (20)About the Authors (21)IntroductionPurposeAs more virtual desktop infrastructure customers are embracing hyper- converged infrastructure (HCI) technology to provide cost-effective, highly scalable, and easy-to-manage solution, they are looking for more information and recommendations for how these products work in conjunction.This white paper provides best practice recommendations when running VMware Horizon® 7 on VMware vSAN™ for a virtual desktop infrastructure (VDI) environment. This document is not meant to be a complete best practice guide on Horizon 7 or on vSAN. Excellent solution architectures are already available (links provided in the Reference section). This document focuses on the specific intersection points between the VDI platform and the storage platform and covers areas such as cloning, deduplication, storage consumption, etc.Note that Horizon 7 is the full name of the VMware desktop and application management platform and does not denote any specific product versions. AudienceThis reference architecture is intended for customers—IT architects, consultants, and administrators—involved in the early phases of planning, design, and deployment of VDI solutions using VMware Horizon 7 running on vSAN. It is assumed that the reader is familiar with the concepts and operations of VMware vSphere, vSAN and Horizon 7 technologies. Technology Overview and Best PracticesOverviewThis section provides an overview of the technologies that are used in this solution as well as best practices when using these technologies: •VMware vSAN™o All-Flash and Hybrid Architectureo Deduplication and Compressiono Storage Policieso Native Encryption•VMware Horizon® 7o Full Clone Technologyo Linked Clone Technologyo Instant Clone TechnologyVMware vSANIntroductionVMware vSAN™ is a hyper-converged infrastructure platform that is fully integrated with VMware vSphere. vSAN aggregates locally attached disks of hosts that are members of a vSphere cluster to create a distributed shared storage solution. Seamless integration with vSphere and the VMware ecosystem makes it the ideal storage platform for Horizon 7 VDI. vSAN provides scale-out storage within a Horizon 7 environment, enabling a grow- as-you-go model, with scaling up by adding disk drives in each host, or with scaling out by adding hosts to the cluster.All-flash vSAN configurations provide the highest levels of performance with very low latencies for the most demanding virtual desktop workloads. Space efficiency features such as deduplication, compression, and RAID-5/6 erasure coding minimize capacity consumption, which reduces the cost per gigabyte of usable capacity.Hybrid configurations use both flash and magnetic disks to provide a cost- effective platform for enterprise-class performance and resiliency.Per-virtual machine (VM) storage policy-based management lowers operational expenditures by enabling administrators to manage performance, availability, and capacity consumption with ease and precision. Native data- at-rest encryption, with FIPS 140-2 validation, can be enabled without the need for specialized hardware, which provides regulatory compliance without the typical costs associated with procuring and maintaining self-encrypting drives.Many deployment options are available for vSAN. These options range from 2-node clusters for small implementations to multiple clusters each with as many as 64 nodes--all centrally managed by VMware vCenter Server. vSAN stretched clusters can easily be configured to enable cross-site protection with no downtime for disaster avoidance and rapid, automated recovery from entire site failure.All-Flash vs. Hybrid ArchitecturevSAN provides two different configuration options:•An all-flash configuration• A hybrid configuration that uses both flash-based devices and magnetic disksThe all-flash configuration uses flash for both the caching layer and capacity layer. All-flash vSAN is an optimized platform for high performance and delivers greater and more consistent overall performance vs. hybrid configurations.All-flash vSAN aims at delivering extremely high IOPS with predictable low latencies. In all-flash architecture, two different grades of flash devices are commonly used in the storage hardware configuration:•Lower capacity and higher endurance devices for the cache layer •More cost-effective, higher capacity, and lower endurance devices for the capacity layerThe hybrid configuration uses:•Server-based flash devices to provide a cache layer for optimal performance•Magnetic spinning disks to provide capacity and persistent data storage Hybrid vSAN configurations delivers both enterprise-ready levels of performance and a resilient storage platform.All incoming writes are performed at the cache layer and then de-staged to the capacity layer. All data in the cache layer must be eventually de-staged, which happens asynchronously to achieve maximum efficiency. This helps extend the usable life of lower endurance flash devices in the capacity layer and lower the overall cost of the solution. All-flash configurations are required for storage efficiency capabilities such as deduplication, compression and RAID-5/6 erasure coding, all of which minimize raw capacity consumption.vSAN All-Flash DatastoreHybrid vSAN configurations use both flash and magnetic disks to provide a cost-effective platform for enterprise-class performance and resiliency.Hybrid configurations offer the lowest TCO due to the inherent lower cost of magnetic disks when compared to flash disks for the capacity layer. However, it is important to know that properly designing and sizing a vSAN hybrid configuration is extremely important to deliver predictable performance. Correct sizing of the cache device is the chief consideration, with sizing of the magnetic disk subsystem behind the cache being the secondary consideration. Hybrid configurations do not support storage efficiency capabilities such as deduplication, compression or RAID-5/6 erasure coding.vSAN Hybrid DatastoreStorage HardwarevSAN hosts that contribute storage can be configured with between one and five disk groups for the storage of vSAN objects. Disk groups require at least a single flash disk drive used for the cache tier, and between one and seven disk drives for the capacity tier. In all disk group configurations, a flash device is used for cache. In hybrid configurations, the capacity devices are comprised of SAS or NL-SAS magnetic disks. In all-flash configurations, the capacity devices may be flash SATA, SAS, PCIe, or NVMe.Devices such as SAS, NL-SAS, or SATA are attached to a Host Bus Adapter (HBA) or RAID controller for consumption of vSAN. These devices should be connected in pass-through mode and not RAID0 mode, depending on the HBA/RAID controller. For controllers that do not support pass-through mode, each device must be presented as an individual RAID0 device. While RAID controllers may support drive mirroring, striping, or erasure coding, these are not supported, nor required by vSAN. vSAN is an object-based storagesystem and distributes data across hosts in the cluster, which removes the need for these hardware-level mirroring, striping, or erasure coding. Instead, data protection and performance properties are defined logically using the Storage Policy Based Management (SPBM) framework instead.Just as compute and networking must be on the VMware Compatibility Guide, vSAN storage devices, such as Host Bus Adapters (HBA), RAID controllers, and storage devices must be on the VMware Compatibility Guide for vSAN to be supported. It is also important that these devices are running a supported firmware version as detailed in the HCL.With regards to availability, consider choosing hosts that have sufficient disk drive slots to accommodate more than one disk group, for both hybrid and all- flash configurations. Having multiple groups will increase availability by reducing the storage failure domain per host. In other words, for hosts with a single disk group and a single cache device, a cache device failure will result in failure of the entire host. However, for hosts with two disk groups with one cache device each, a single cache device failure in one disk group will not impact data being served from the remaining disk group. In addition, when deduplication and compression is enabled, the loss of a single capacity disk, in any disk group, will also result in failure of that entire disk group.With regards to performance, choosing hosts with multiple disk groups will improve overall performance for both front-end VM traffic and back-end vSAN traffic. Back-end vSAN traffic occurs after a disk device or host goes offline, fails, or when the capacity utilization of any disk exceeds 80%. Having multiple disk groups per host enables greater parallelism in these operations. Recommendation: Configure hosts with more than one disk group to achieve the highest levels of vSAN availability and performance. In addition, for hosts that are configured with many disk drives and multiple disk groups, distribute the storage I/O path across more than one HBA controller. Deduplication and CompressionvSAN deduplication and compression provides enterprise-class storage efficiency by minimizing the space required to make data persistent in the capacity layer. Deduplication and compression are always enabled or disabled together at the cluster level using a simple drop-down menu. It is not possible to enable vSAN deduplication or compression individually or for individual VMs. All-flash vSAN is required to use deduplication and compression. Note that a rolling reformat of all disks in the vSAN cluster is required, which can take a considerable amount of time depending on the amount of data. However, this process does not incur VM downtime and can be done online, usually during an upgrade.Recommendation: If vSAN deduplication and compression is part of the design decision, enable the service before any virtual desktops are deployed to the vSAN datastore. This will expedite the time required to enable the service.Enabling vSAN Deduplication and CompressionDeduplication occurs when the data is de-staged from the cache tier to the capacity tier. The deduplication algorithm utilizes a 4K-fixed block size and is performed within each disk group. In other words, redundant copies of a block within the same disk group are reduced to one copy, but redundant blocks across multiple disk groups are not deduplicated. Upon writing a 4K block, it is hashed to find whether an identical block already exists in the capacity tier of the disk group. If there is one, only a small metadatum is updated. If no such identical block is available, compression is then applied to the 4K block. If the 4K block can be compressed to 2K or less, vSAN persists the compressed data to the capacity tier. Otherwise, the 4K block is persisted to the capacity tier uncompressed.Deduplication and compression are applied to data in the capacity tier, commonly accounting for approximately 90% of all data on a vSAN datastore. Storing this data in 4K blocks enables effective deduplication and compression with minimal resource overhead for these operations. Deduplication and compression are not applied to data in the cache tier, which serves as a write buffer in an all-flash vSAN configuration. Naturally, the cache tier is being written to much more frequently than the capacity tier.Deduplication and Compression Space EfficiencyThe processes of deduplication and compression on any storage platform incur overhead and potentially impact performance in terms of latency and maximum IOPS. vSAN is no exception. However, considering deduplication and compression are only supported in all-flash vSAN configurations, these effects are predictable in the majority of use cases. The extreme performance and low latency of flash devices easily outweigh the additional resource requirements of deduplication and compression. Enabling deduplication and compression consumes a small amount of capacity for metadata, such as hash, translation, and allocation maps. The space consumed by this metadata is relative to the size of the vSAN datastore and is typically around 5% of the total capacity. Note that the user interface displays the percentage of used capacity, not total capacity (used and free space). In addition, enabling deduplication and compression consumes minimal CPU overhead –typically around 5% of the total cluster processing capacity. Recommendation: If using an all-flash vSAN configuration, enable deduplication and compression for Horizon 7 linked clone environments for both storage efficiency and accurate reporting of storage utilization. For instant clones, only enable deduplication and compression for improved reporting of storage utilization.Storage PoliciesPer-VM storage policy-based management is a foundational benefit of vSAN hyper-converged infrastructure. Unlike traditional storage solutions which must apply storage policies on a LUN or volume which may contain several VMs, vSAN enables precise control on a per-VM level. Administrators can manage performance, availability and capacity consumption with ease and precision for each VM in the environment.Typically, vSAN storage policies are created and managed using the vSphere Client. Storage policies can be assigned to entire VMs or individual VMDKswithin those VMs. Storage policies are either applied to VMs at the time of deployment or reassigned if the application requirements have changed. These modifications are performed with no downtime and without the need to migrate VMs from one datastore to another. It is important to note that changing the vSAN default storage policy or a global policy that applies to many VMs will require temporary storage overhead and may take a long time to complete depending on the scope of changes.Recommendation: Only apply storage policy changes to small groups of VMs at any one time to minimize temporary storage overhead and overall resynchronization activity.For Horizon 7 virtual desktop infrastructure, default storage policies are automatically created during desktop pool creation, depending on the type of pool you create. Horizon 7 creates vSAN storage policies for linked clone desktop pools, instant clone desktop pools, full clone desktop pools, or an automated farm per Horizon 7 cluster. Once these storage policies are created for the desktop pool; they will never be changed by Horizon 7. An administrator can edit these storage policies in vCenter, similar to a regular vSAN policy if Horizon 7 was not in use. Any new default storage policies enacted by Horizon 7 will not impact existing desktops pools. Each VM maintains its storage policy regardless of its physical location in the cluster. If the storage policy becomes non-compliant because of a host, disk, network failure or workload changes, vSAN reconfigures the data of the affected VMs and load balances to meet the compliance of the storage policy.Default vSAN storage policies configured by Horizon 7The default policy settings that Horizon 7 automatically configures are similar to the default vSAN storage policy settings that are configured for all vSAN deployments. These settings provide the baseline vSAN capabilities and are appropriate for many use cases unless the environment requires higher levels of availability, performance or storage efficiency.Recommendation: If storage efficiency is part of the design decision, consider using RAID-5/6 erasure coding instead of the default RAID-1 mirroring. If virtual desktops have already been deployed using the default policy settings, make a clone of the existing policy and then change the failure tolerance method to RAID-5/6 of the cloned policy. Then, apply this new storage policy to small groups of desktops at one time to minimize the impact of vSAN policy reconfiguration. In addition, consider using FTT=2 for the replica VM to increase availability.Swap Thin ProvisioningvSAN storage policies allow configuration of the VM or VMDK object space reservation, which is synonymous with enabling thick-provisioning on vSAN. When the administrator (or Horizon 7) configures an object space reservation of 0%, the VM or VMDK is thin-provisioned. However, this is not applied to the VM swap file (.vswp) in versions prior to vSAN 6.7. In these earlier versions, the .vswp file always has an object space reservation of 100%, even if the storage policy specifies 0%. This behavior can be disabled by configuring the advanced host setting “SwapThickProvisionedDisabled”, so that the .vswp file is thin provisioned for these versions of vSAN. Recommendation: Since swap files are thin provisioned in vSAN 6.7 by default, manually enable swap file thin provisioning in vSAN versions prior to 6.7 using the above advanced setting. It is important to only use swap file thin provisioning in environments where physical memory is not overcommitted, or where storage efficiency is part of the design decision.Native EncryptionvSAN native encryption for data-at-rest further improves security and provides compliance with increasingly stringent regulatory requirements. vSAN encryption uses an AES 256 cipher and is FIPS 140-2 validated. vSAN encryption is hardware-agnostic, meaning it can be deployed on any supported hardware in all-flash or hybrid configurations. Self-encrypting drives (SEDs) are not required. vSAN encryption is enabled and configured at the datastore level. In other words, every object on the vSAN datastore is encrypted when this feature is enabled. Note that a rolling reformat of all disks in the vSAN cluster is required, which can take a considerable amount of time depending on the amount of data. However, this process does not incur VM downtime and can be done online, usually during an upgrade. Recommendation: If vSAN encryption is part of the design decision, enable the service before any virtual desktops are deployed to the vSAN datastore. This will expedite the time required to enable the service.Enabling vSAN encryptionData is encrypted when it is written to persistent media in both the cache and capacity tiers of a vSAN datastore. Encryption occurs just above the device driver layer of the storage stack, which means it is compatible with all vSAN features such as deduplication and compression, RAID-5/6 erasure coding, stretched cluster configurations. All vSphere features including VMware vSphere vMotion, VMware vSphere Distributed Resource Scheduler (DRS), VMware vSphere High Availability (HA), and VMware vSphere Replication are supported.A Key Management Server (KMS) is required to enable and use vSAN encryption. Nearly all KMIP-compliant KMS vendors are compatible, with specific testing completed for vendors such as HyTrust®, Gemalto®, Thales e-Security®, CloudLink®, and Vormetric®. These solutions are commonly deployed in clusters of hardware appliances or virtual appliances for redundancy and high availability. Encryption keys are transferred to vSAN hosts using the Key Management Interoperability Protocol (KMIP). Industry standards and compliance with regulations often require the generation of new keys on a regular basis. This reduces the risk of a key being exposed or compromised by brute force. Generating new keys is performed in the vSAN UI with just a few clicks.KMS configured for use with vCenter ServervSAN Encryption vs. VM-level EncryptionVMware vSphere and vSAN provide two different methods of encrypting data, and it is important to understand the differences between the two solutions.•vSAN provides native data-at-rest encryption for the entire datastore, as covered previously in this section.•VMware vSphere provides VM-level encryption, which is not associated or related to the vSAN encryption capabilities.VM-level encryption can be used by non-vSAN users. vSAN encryption is enabled one time for the entire datastore, whereas VM-level encryption is enabled through policy-based management on a per-VM basis.Other than the granularity of encryption, the primary differences are when the data is encrypted and if storage efficiency capabilities are supported. With vSAN, data is transmitted unencrypted until it reaches the datastore, where it is then encrypted. vSAN encryption can co-exist and benefit from deduplication and compression capabilities. With VM-level encryption, data is encrypted in upper layers before it is transmitted to the underlying datastore, however this feature cannot take advantage of vSAN deduplication and compression.Recommendation: If storage efficiency or cluster-wide encryption is part of the design decision, only enable vSAN data-at-rest encryption. If data-in-flight encryption or per-VM encryption granularity is more important, use VM-level encryption instead.VMware Horizon 7IntroductionVMware Horizon® 7 delivers virtualized or hosted desktops and applications through a single platform to end users. These desktop and application services—including Remote Desktop Services (RDS) hosted apps, packaged apps with VMware ThinApp®, software-as-a-service (SaaS) apps, and even virtualized apps from Citrix—can all be accessed from one digital workspace across devices, locations, media, and connections without compromising quality and user experience. Leveraging complete workspace environment management and optimized for the software defined data center, Horizon 7 helps IT control, manage, and protect all of the Windows resources end users want, at the speed they expect, with the efficiency that business demands. Cloning TechnologyA clone is a copy of a master VM or golden image with a unique identity of its own, including a MAC address, UUID, and other system information. VMware Horizon 7 provides three types of cloning technologies to provide customers choice and flexibility. Persistent virtual desktops can be deployed using full clones. Non-persistent virtual desktops can be deployed using linked clones or the newest cloning technology, instant clones.Full ClonesA full clone is an independent copy of a VM. It shares nothing with its master VM or golden image, and it operates entirely separately from the golden image used to create it. Since each full clone VM is almost identical to thegolden image, this means that there is high degree of duplication across a pool of full clone VMs.Recommendation: If using an all-flash vSAN configuration, always enable vSAN deduplication and compression to reduce the duplication across multiple full clone VMsLinked ClonesA View Composer linked clone uses significantly less storage space than a full clone because it accesses software on shared virtual disks. Because of this sharing mechanism, a linked clone must always have access to the disk used for cloning.To make a linked clone, you take a snapshot of the golden image and then the Horizon 7 cloning process creates a replica VM to use for cloning. The linked clone shares virtual disks with the replica VM. The differential—the bits of software that are unique to the linked clone—is stored in a diff disk or redo disk. The differential is called delta disks. This arrangement allows the linked clone to occupy a smaller amount of physical disk space than the golden image, but still access the software installed on the shared virtual disks. You can create hundreds of linked diff disks from one replica, reducing the total storage space required.Linked clones are generated on Horizon 7 by the View Composer server. In the process of creating delta disks, two vmdks are created for each linked clone:.vmdk and checkpoint.vmdk.•The .vmdk disk is a snapshot of the state of the delta disks at the time of creation. It cannot be modified in any way by the user or by the system.View Composer creates this snapshot and persists it so that you canrapidly revert to a pristine copy of the delta disks during a refresh orrecompose operation.•The checkpoint.vmdk disk is where all the system and user changes are written. As such, it will grow as the virtual desktop is used. When alinked clone is refreshed or recomposed, the checkpoint.vmdk disk isdeleted and recreated, but the .vmdk disk remains.vSAN logical units of space are allocated in 4MB blocks, whereas VDI data is often written to the filesystem in smaller blocks (e.g. 512KB). This can result in free space allocated in each 4MB block. This behavior explains why at the time of initial linked clone creation, the .vmdk and checkpoint.vmdk disks appear larger than they actually are in the physical layer. This also explains why these disks will appear much larger than linked clones deployed on traditional VMFS storage.However, the empty spaces will be utilized for future writes as users begin to use their virtual desktops. As additional data is written these empty spaces are consumed, the eventual storage utilization become comparable to VMFS. By design, enabling vSAN deduplication and compression will provide thebest storage efficiency at the logical and physical layers. This is due to removal of redundant copies of data (including empty spaces) and compression of data after it has been deduplicated. Even if there are no deduplication savings (i.e. data is completely unique), enabling this mode will report the actual physical storage consumption to the logical layer, post- compression.Recommendation: If using an all-flash vSAN configuration, enable deduplication and compression for Horizon 7 linked clone environments for both storage efficiency and accurate reporting of storage utilization.As the end-user creates and deletes content on their desktops, Windows automatically creates and deletes system files. When the end-user and OS delete data, the corresponding data are marked for deletion but are not immediately deleted on the physical storage hardware. This behavior occurs for any storage system and may cause storage bloat.Recommendation: To avoid consuming unnecessary storage when using linked clones:•Refresh or recompose the pool on a frequent basis•Set logoff policy of the pool to “ref resh on logoff”•Use an SDD (System Disposal Disk), on which you redirect the temporary writes. This disk is deleted and recreated on every logoff. Instant ClonesLike a linked clone, an instant clone shares virtual disks with the replica VM after the linked clone is created. The process of creating instant clones differs from that used for linked clones in the following way: The cloning process creates a running parent VM from the replica VM. At creation time, the instant clone shares the memory pages of the running parent VM from which it is created.Instant clones use copy-on-write for memory and disk management. Instant clones are based on a running parent VM, derived from a master VM. At the instant when an instant clone is created from a running parent VM, any reads of unchanged information come from the already existing running parent VM. However, any changes made to the instant clone are written to a delta disk, not to the running parent VM. This strategy preserves security and isolation between the instant clones by ensuring the following:•Each instant clone is immediately accessible.•Changes do not affect the shared data and memory of the running parent VM on which all other instant clones are based. Sharing thememory page of a running parent VM at creation time enables instantclones to be created within a few seconds and instantly powered on.With a few exceptions such as vGPU enabled desktop and Linuxdesktop, an instant clone requires no extra boot when the cloningprocess is finished.。
VMware服务器虚拟架构测试报告

VMware服务器虚拟架构测试报告目录1测试目的............................ 错误!未定义书签。
2测试人员及职责...................... 错误!未定义书签。
测试人员......................................... 错误!未定义书签职责划分......................................... 错误!未定义书签3测试安排............................ 错误!未定义书签。
测试时间......................................... 错误!未定义书签测试地点......................................... 错误!未定义书签测试进度......................................... 错误!未定义书签4测试环境............................ 错误!未定义书签。
测试环境拓扑图................................ 错误!未定义书签测试设备要求..................................... 错误!未定义书签ESX服务器...................................... 错误!未定义书签共享磁盘阵列..................................... 错误!未定义书签测试相关软件..................................... 错误!未定义书签网络设备......................................... 错误!未定义书签5测试步骤............................ 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VDI_Win7普通2 VDI_Win7高级1
VDI_Win7高级2
CCCC-02 CCCC-03
CCCC-04
10.6.54.136 10.6.54.137
10.6.54.138
产品
VMware
软件名称
Esxi 6.0 U2 、vCenter 6.0、AD、DNS Connect Server、Security Server
主机名
Esxi VM_AD_TEST view_vCenter VM_Connect_TEST VSS CCCC-01
IP地址
10.6.54.130 10.6.54.131 10.6.54.132 10.6.54.133 10.6.54.142 10.6.54.135
备注
域控制器、DNS vCenter View 登录门户及管理 View安全连接服务器
测试结果
通过 通过 通过 通过
显示效果
系统软件兼容性测试
测试项目
终端设备兼容性
测试描述
支持PC终端设备 支持(iphone/ipad/adnroid)
测试结果
通过 通过 通过 通过 通过 通过
系统兼容性
支持Windows 7 支持Windows 2008/2012
协议支持
支持PCoIP、RDP 支持Auto CAD、3dMAX、revit
网络连接
千兆以太网
虚拟化环境
AD/vCenter/DNS服务器
ห้องสมุดไป่ตู้
Connect server服务器
Security connect服务器 2台普通桌面/2台高级桌面
网络规划
名称
Esxi 域控制器 vSphere管理平台 View 连接服务器 View 安全服务器 VDI_Win7普通1
业务软件兼容性测试
基本功能测试; 显示效果测试; 系统/软件兼容性测试;
外设兼容性测试;
基本功能测试
测试项目
虚拟桌面访问方式 虚拟桌面管理
测试描述
能以PC、移动终端、笔记本访问虚拟 桌面
测试结果
通过
支持对虚拟桌面的控制(重启、关闭、 注销),可在服务器端对虚拟系统桌 通过 面进行激活和冻结操作 支持用户分组,对不同用户组进行权 限管理
通过 通过 通过 通过
桌面分配控制
桌面分配支持按用户及用户组分配方 式,根据不同用户分配不同的硬件资源 桌面分配支持按用户及用户组分配方 式
认证管理
支持与AD的集成认证
显示效果测试
测试项目
测试描述
支持屏幕32位色 支持最大2560*1600的屏幕分辨率 是否支持分辨率自动调节 在无需硬件加速卡(GPU)的情况下 流畅运行Windows 7 Aero效果
公司名称 XXX工程局有限公司
人员信息 XXX
VMware XXX信息科技有限公司
XXX XX
虚拟化环境架构
Virtual Horizon :
采用H3C R390硬件服务器 采用Nvdia K1000图形加速卡
硬件底层虚拟化
vSphere 6.0 U2
本地存储
2块500G SAS 10K硬盘 2块600G SAS 10K硬盘
VMware Horizon 7 测试报告
VMware Horizon
VMware Horizon View™ 是业界最为领先的桌面虚拟化平台,是专为以安全托管 服务的形式交付桌面而构建的唯一解决方案。VMware Horizon View 以经过验证的 VMware vSphere™ 的强大功能为基础,只有该产品提供了各种组织降低成本、简化 管理和提高最终用户满意度所需的平台、管理工具和丰富的用户体验。 利用 VMware Horizon View桌面虚拟化 构建基于服务器的桌面解决方案,可以解 决 PC 桌面面临的各种难题。同时,借助 View桌面虚拟化,在使用 VMware ESX 软 件虚拟化的服务器上运行的虚拟机中,可以构建完整的桌面环境-操作系统、应用程 序和配置。 VMware Horizon View 使用虚拟化切断了桌面和关联的操作系统、应用程序和硬 件之间的联系。通过将桌面操作系统、应用程序和用户数据封装到相互隔离的层次, 此解决方案允许 IT 人员独立地更改、更新和部署每个组件,从而获得更高的业务灵 活性并缩短响应时间。最终获得的访问模型将更加灵活,能够提高安全性、降低运营 成本和简化桌面管理。
业务软件渲染测试
本地、远程软件渲染测试:
虚拟系统测试成绩:00:26:09
用户PC Server测试成绩:00:07:09
结论: 本次渲染测试由于用户的PC Server服务器配置高于整个测试环境的硬 件服务器配置,所以结果参考性不大,后期再进行类此测试建议采用与 虚拟桌面系统配置相近的PC来进行测试对比。
Microsoft
Windows 7 64bit、Windows server 2012
测试流程
登录测试; 业务软件使用测试; 业务软件渲染测试;
通过虚拟系统桌面录制的一段视频;
登录测试
本地登录测试:
移动终端登录测试:
广域网登录测试:
结论:
无论在本地还是广域网,都可以流畅的打开虚拟系统桌面。
业务软件使用测试
本地、远程软件使用测试:
结论: 在与三航大厦七楼郑维尧同事沟通后,我们得出:使用虚拟系统桌面和本地的同一个软件来对同一个 文件的编辑查看,流畅度很相近,虚拟系统桌面基本达到用户的需求。 对于洋山项目组同事提出的软件使用顿卡现象,我们在后期进行了追踪,发现用户是在虚拟系统桌面 远程打开本地文件,本地文件(几百兆左右)会通过网络传到本地,由于网络带宽限制导致使用起来 卡卡的,后期在将文件传到虚拟系统本地以后再次编辑查看文件发现流畅度良好,问题解决。
软件兼容性
C3D、tekla支持QQ、云盘、广讯通、 办公office 通过
外设兼容性测试
测试项目
U盘 移动硬盘 耳麦
测试描述
测试目标
验证对各种终端设备的支持情况;
验证虚拟桌面平台功能是否可以满足业务要求; 验证虚拟桌面系统与用户环境的兼容性; 进而得出桌面虚拟化方案的可行性结论;
时间、人员安排
日期
2016.5.16-18 2016.5.19-25 2016.5.26-2016.6.3
进度
初步搭建测试环境 首轮测试完毕,开研讨会讨论 末轮测试结束,整理信息