近五年高考文科数学答案详细解析(3卷)(共5套)(2016-2020)

合集下载

高考文科数学(3卷):答案详细解析(最新,word版)

高考文科数学(3卷):答案详细解析(最新,word版)

2020年普通高等学校招生全国统一考试文科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知集合{}1235711=,,,,,A ,{}315|=<<B x x ,则A ∩B 中元素的个数为 A .2B .3C .4D .5【解析】∵{5,7,11}=A B ,∴A ∩B 中元素的个数为3. 【答案】B2.(复数)若)(11+=-z i i ,则z = A .1–iB .1+iC .–iD .i【解析】∵)(11+=-z i i ,∴1212--===-+i iz i i ,∴=z i . 【答案】D3.(概率统计)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .10【解析】原数据的方差20.01=s ,由方差的性质可知,新数据的方差为21001000.011=⨯=s .【答案】C4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(三角函数)已知πsin sin 13θθ++=(),则πsin =6θ+() A .12B .33C .23D .22【解析】∵π13sin sin cos 322θθθ+=+(), ∴π3331sin sin sin 3cos 1322θθθθθθ⎫++==+=+=⎪⎪⎭(), 31πcos sin 26θθθ+=+(), π316θ+=(),故π3sin 63θ+==().【答案】B6.(解析几何)在平面内,A ,B 是两个定点,C 是动点,若1⋅=AC BC ,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设(,0)-A a ,(,0)B a ,(,)C x y ,则(,)=+AC x a y ,(,)=-BC x a y ,2221⋅=-+=AC BC x a y ,即2221+=+x y a ,故点C 的轨迹为圆.【答案】A7.(解析几何)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2. 解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A7【答案】B8.(解析几何)点(0)1-,到直线()1=+y k x 距离的最大值为 A .1B .2C .3D .2【解析】解法一:点(0)1-,到直线()1=+y k x 的距离211+=+k d k ,则有222222(1)122=12111+++==+≤+++k k k kd k k k ,故2≤d . 解法二:已知点()01-,A ,直线()1=+yk x 过定点()10-,B ,由几何性质可知,当直线()1=+y k x 垂直直线AB 时,点()01-,A 到直线()1=+y k x 距离最大,最大值为线段AB 的长度,即max 2=d 【答案】B9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A9【答案】C10.(函数)设3log 2a =,5log 3b =,23c =,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】∵233332log 3=log 93==c ,33log 2log 8==a a <c .∵233552log 5log 253===c 355log 3log 27==b c <b .故a <c <b.【答案】A11.(三角函数)在ABC ∆中,2cos 3C =,4=AC ,3=BC ,则tan B = A 5B .25C .45D .85【解析】解法一:由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC , ∵(0,π)∈B ,∴245sin 1cos =-=B B ,sin tan 45cos ==BB B. 解法二:3=AB ,所以△ABC 是以B 为顶角的等腰三角形.过B 作BD ⊥AC ,易得tan 25=B 22tan2tan 451tan 2==-BB B . 【答案】C12.(三角函数)已知函数1()sin sin f x x x=+,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线π=x 对称D .f (x )的图像关于直线π2=x 对称 【解析】A :1sin 1(sin 0)-≤≤≠x x ,当1sin 0-≤<x ,()0<f x ,故A 错误.B :1()sin ()sin -=--=-f x x f x x,f (x )为奇函数,故B 错误. C :1(2π)sin ()()sin -=--=-≠f x x f x f x x,故C 错误.D :11(π)sin(π)sin ()sin(π)sin -=-+=+=-f x x x f x x x,故D 正确.【答案】D二、填空题:本题共4小题,每小题5分,共20分。

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(全国1卷)(2016年—2020年)说明:含有2016年—2020年的全国1卷高考文科数学试题以及答案详细解析(客观题也有答案详解)目录2020年普通高等学校招生全国统一考试文科数学(I卷)答案详解 (3)2020年普通高等学校招生全国统一考试文科数学(I卷) (19)2019年普通高等学校招生全国统一考试文科数学1卷 (29)2019年普通高等学校招生全国统一考试文科数学1卷答案详解 (39)2018年普通高等学校招生全国统一考试文科数学1卷 (50)2018年普通高等学校招生全国统一考试文科数学1卷答案详解 (60)2017年普通高等学校招生全国统一考试文科数学1卷 (71)2017年普通高等学校招生全国统一考试文科数学I卷答案详解 (81)2016年普通高等学校招生全国统一考试文科数学1卷 (93)2016年普通高等学校招生全国统一考试文科数学1卷答案详解 (103)2020年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B.{}1,5C.{}3,5 D.{}1,3【解析】∵{}14A x x =-<<,∴{1,3}A B = .【答案】D2.(复数)若312z i i =++,则z =A.0 B.1C. D.2【解析】∵3i i =-,∴1z i =+,∴z 【答案】C3.(立体几何)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512C.514+ D.512【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令mt a=,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(概率统计)设O 为正方形ABCD 的中心,在O,A ,B,C,D 中任取3点,则取到的3点共线的概率为A.15B.25C.12D.45【解析】如图A4所示,从O,A ,B,C,D 中任取3点的所有情况数为35C =10,取到的3点共线的情况有:AOC 、BOD ,共2种情况,所以所求的概率为51102==P.图A4【答案】A5.(概率统计)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx=+ B.2y a bx =+ C.xy a be =+ D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D选项.【答案】D6.(解析几何)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A.1B.2C.3D.4【解析】222(3)3x y -+=,设直线方程为2(1)y k x -=-,∴20kx y k -+-=,∴圆心(3,0)到该直线的距离为d ==,∴2max 8d =,故弦的长度的最小值为2==.【答案】B7.(三角函数)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C8.(函数)设3log 42a =,则4a -A.116B.19C.18D.16【解析】∵33log 4log 42a a ==,∴2439a ==,∴11449a a -==.【答案】B9.(算法框图)执行右面的程序框图,则输出的n =A.17B.19C.21D.23【解析】①输入10n S ==,,得1S S n =+=,100S ≤成立,继续;②输入31n S ==,,得4S S n =+=,100S ≤成立,继续;③输入54n S ==,,得9S S n =+=,100S ≤成立,继续;……由上述规律可以看出,S 是一个以a 1=1为首项,d =2为公差的等差数列的前m 项和,且21n m =-,故有21(1)2m m m S ma d m -=+=.当2100m S m =>,即11n >时,程序退出循环,此时2121n m =-=.【答案】C10.(数列)设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=A.12B.24C.30D.32【解析】设{}n a 的公比为q ,∵234123(+)2a a a q a a a ++=+=,∴2q =,∴55678123+(+)232a a a q a a a +=+==.【答案】D11.(解析几何)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则∆12PF F 的面积为A.72B.3C.52D.2【解析】由题可知1,2a b c ===,12(2,0),(2,0)F F -,解法一:设(,)P m n ,∵||2OP =,故有224m n +=,又∵点P 在C 上,故有2213n m -=,联立方程2222413m n n m ⎧+=⎪⎨-=⎪⎩,解得3||2n =,故∆12PF F 的面积为12113||||43222n F F ⋅=⨯⨯=.解法二:∵||2OP =,故点P 在以F 1、F 2为直径的圆上,故PF 1⊥PF 2,则22212||||(2)16PF PF c +==,又∵12||||22PF PF a -==,即222121212||||||||2||||4PF PF PF PF PF PF -=+-=,∴12||||6PF PF =,∴∆12PF F 的面积为1211||||6322PF PF =⨯=.图A11【答案】B12.(立体几何)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,2sin =ABr C,则12sin 2sin 6023==== OO AB r C r O 的半径2214R r OO =+=,∴球O 的表面积为24π64πR =.图A12【答案】A二、填空题:本题共4小题,每小题5分,共20分。

高考文科数学(3卷):答案详细解析(最新)

高考文科数学(3卷):答案详细解析(最新)

即 2 2 2 p 2 p 0 ,解得 p 1,∴C 的焦点坐标为 ( 1 , 0) . 2
解法二: DE 4 p , OD OE 4 4 p ,
∵OD⊥OE,∴ OD 2 OE 2 DE 2 ,即 2(4 4 p) 16 p ,解得 p 1,
∴C 的焦点坐标为 ( 1 , 0) . 2
B: f (x) sin x 1 f (x) ,f(x)为奇函数,故 B 错误. sin x
C: f (2π x) sin x 1 f (x) f (x) ,故 C 错误. sin x
D: f (π x) sin(π x) 1 sin x 1 f (x) ,故 D 正确.
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组
区间的中点值为代表);
(3)若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的
空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的
2×2 列联表,并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的
f
(x)
ex xa
.若
f
(1)
e 4
,则
a=_________.
【解析】
f (x)
ex (x a) ex (x a)2
(x a 1)ex (x a)2
,∴
f (1)
ae (1 a)2
e 4


a (1 a)2
1 4 ,解得 a
1.
【答案】1
打开导航窗口(书签),可以直接找到各个题目.
第 6 页 共 23 页
第 2 页 共 23 页
2020 年高考理科数学(全国 3 卷)答案详解及试题

近5年高考文科数学考试细目表(含2020年)

近5年高考文科数学考试细目表(含2020年)

题号16年全国I卷17年全国I卷18年全国I卷19年全国I卷1集合交运算集合运算、解一次不等式集合交集复数2复数四则运算样本的数字特征复数运算及模集合运算3古典概型复数四则运算及概念统计饼图信息指对数比较大小4解三角形几何概型、对称椭圆的离心率数学审美文化5椭圆的离心率双曲线、面积计算圆柱截面表面积函数图像6三角函数性质线面平行的判断函数切线方程统计(系统抽样)7三视图球表面积线性规划平面向量的线性运算三角函数8指对数比较大小函数图像三角函数性质平面向量9函数图像函数的单调性、对称三视图最短距离等差数列10程序框图程序框图立几线面角、体积双曲线11立几异面直线的夹角解三角形三角函数定义应用解三角形12导数已知单调性求参数范围椭圆、参数的取值范围分段函数解不等式直线与椭圆13平面向量的运算平面向量坐标运算函数求参数问题曲线的切线方程14三角函数求值求曲线的切线方程线性规划等比数列15直线与圆的位置关系三角恒等变换直线与圆求弦长三角函数16线性规划三棱锥的外接球,球表面积解三角形求面积立体几何(点面距离)17等差数列通项,等比数列证明并求和等比数列、等差数列等比数列、通项概率与统计18垂直等价证明,作正投影,求体积立几面面垂直、体积与侧面积立几翻折、面面垂直、体积等差数列19函数解析式、概率统计相关系数、均值与标准差概率统计分布直方图立体几何(线面平行、点面距离)20直线与抛物线直线与抛物线综合问题直线与抛物线、证角导数、零点21函数与导数的应用函数与导数的应用单调性、由不等式成立求参数范围函数与导数极值、单调区间、证明不等式直线与圆2016-2020年高考全国I卷数学试题考点细目表20年全国I卷集合交集复数运算求模四棱锥排列组合对数函数图像直线与圆的相交弦长三角函数图像指对数运算程序框图等比数列双曲线三棱锥外接球问题线性规划平面向量坐标运算曲线的切线方程数列频率、平均值的计算解三角形面面垂直、三棱锥的体积函数与导数的应用单调性、利用零点求参数范围椭圆的方程、直线与椭圆综合问题。

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(全国1卷)(2016年—2020年)说明:含有2016年—2020年的全国1卷高考文科数学试题以及答案详细解析(客观题也有答案详解)目录2020年普通高等学校招生全国统一考试文科数学(I卷)答案详解 (3)2020年普通高等学校招生全国统一考试文科数学(I卷) (19)2019年普通高等学校招生全国统一考试文科数学1卷 (29)2019年普通高等学校招生全国统一考试文科数学1卷答案详解 (39)2018年普通高等学校招生全国统一考试文科数学1卷 (50)2018年普通高等学校招生全国统一考试文科数学1卷答案详解 (60)2017年普通高等学校招生全国统一考试文科数学1卷 (71)2017年普通高等学校招生全国统一考试文科数学I卷答案详解 (81)2016年普通高等学校招生全国统一考试文科数学1卷 (93)2016年普通高等学校招生全国统一考试文科数学1卷答案详解 (103)2020年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B.{}1,5C.{}3,5 D.{}1,3【解析】∵{}14A x x =-<<,∴{1,3}A B = .【答案】D2.(复数)若312z i i =++,则z =A.0 B.1C. D.2【解析】∵3i i =-,∴1z i =+,∴z 【答案】C3.(立体几何)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512C.514+ D.512【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令mt a=,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(概率统计)设O 为正方形ABCD 的中心,在O,A ,B,C,D 中任取3点,则取到的3点共线的概率为A.15B.25C.12D.45【解析】如图A4所示,从O,A ,B,C,D 中任取3点的所有情况数为35C =10,取到的3点共线的情况有:AOC 、BOD ,共2种情况,所以所求的概率为51102==P.图A4【答案】A5.(概率统计)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx=+ B.2y a bx =+ C.xy a be =+ D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D选项.【答案】D6.(解析几何)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A.1B.2C.3D.4【解析】222(3)3x y -+=,设直线方程为2(1)y k x -=-,∴20kx y k -+-=,∴圆心(3,0)到该直线的距离为d ==,∴2max 8d =,故弦的长度的最小值为2==.【答案】B7.(三角函数)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C8.(函数)设3log 42a =,则4a -A.116B.19C.18D.16【解析】∵33log 4log 42a a ==,∴2439a ==,∴11449a a -==.【答案】B9.(算法框图)执行右面的程序框图,则输出的n =A.17B.19C.21D.23【解析】①输入10n S ==,,得1S S n =+=,100S ≤成立,继续;②输入31n S ==,,得4S S n =+=,100S ≤成立,继续;③输入54n S ==,,得9S S n =+=,100S ≤成立,继续;……由上述规律可以看出,S 是一个以a 1=1为首项,d =2为公差的等差数列的前m 项和,且21n m =-,故有21(1)2m m m S ma d m -=+=.当2100m S m =>,即11n >时,程序退出循环,此时2121n m =-=.【答案】C10.(数列)设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=A.12B.24C.30D.32【解析】设{}n a 的公比为q ,∵234123(+)2a a a q a a a ++=+=,∴2q =,∴55678123+(+)232a a a q a a a +=+==.【答案】D11.(解析几何)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则∆12PF F 的面积为A.72B.3C.52D.2【解析】由题可知1,2a b c ===,12(2,0),(2,0)F F -,解法一:设(,)P m n ,∵||2OP =,故有224m n +=,又∵点P 在C 上,故有2213n m -=,联立方程2222413m n n m ⎧+=⎪⎨-=⎪⎩,解得3||2n =,故∆12PF F 的面积为12113||||43222n F F ⋅=⨯⨯=.解法二:∵||2OP =,故点P 在以F 1、F 2为直径的圆上,故PF 1⊥PF 2,则22212||||(2)16PF PF c +==,又∵12||||22PF PF a -==,即222121212||||||||2||||4PF PF PF PF PF PF -=+-=,∴12||||6PF PF =,∴∆12PF F 的面积为1211||||6322PF PF =⨯=.图A11【答案】B12.(立体几何)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,2sin =ABr C,则12sin 2sin 6023==== OO AB r C r O 的半径2214R r OO =+=,∴球O 的表面积为24π64πR =.图A12【答案】A二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)

C.
D.




时,标志着已初步遏 ,






故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设

,设

因为

,则点 的轨迹为( ) D. 直线
所以

解得

所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :


故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;

,则

,由双勾函数的图象和性质得,

,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面


平面

. 是长方体,
所以

因为
是长方体,且

所以
是正方形,
所以



所以 平面

又因为点 , 分别在棱 , 上,
所以
平面

所以

(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .

2020年全国III卷文科数学高考试题及解析

2020年全国III卷文科数学高考试题及解析

2020年普通高等学校招生全国Ⅲ卷统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为()A.2 B.3 C.4 D.5解析:这是求A 和B 两个集合的交集,A 集合中的元素在(3,15)中的有5、7和11三个,所以正确答案为B,特别注意B 的不等式不包含等号,也即A 中的3不能包含进去。

点评:集合一般比较简单2.若)1z i i +=-,则z =()A.1i- B.1i + C.i - D.i 解析:1(1)(1)21(1)(1)2i i i i z i i i i ----====-++-所以z=i点评:这个是一个复数的化简,共轭复数的概念,还是基题,送分题。

3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为A.0.01B.0.1C.1D.10解析:设第一组数的平均值为x 则222121()()...()0.01n S x x x x x x =-+-++-=则10x1,10x2,....10xn 的平均值为10x22212222222(1010)(1010)...(1010)10(110()....10011n S x x x x x x x x x x S =-+-++-==-+-+=点评:考查统计方差的概念,特别要清楚,方差是不用开方的,而标准差是要开方的,4.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为()(其中In19≈3)A.60B.63C.66D.69解析:代入解方程即可以0.23(53)()0.951t KI t Ke --==+0.23(53)1110.9519t e ---==两边同取以19为底的对数ln190.23(53)t -=--解得t=66点评:本题结合时事,实际是取对数的形式,解指数方程,要求对对数和指数之间的转换非常熟练。

2016年高考全国3卷文数试题(含答案)解析版

2016年高考全国3卷文数试题(含答案)解析版

2016年普通高等学校招生全国统一考试文科数学(全国卷三)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在答题卡上。

2.答题前,考生务必将自己的、号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则C A B= (A ){48},(B ){026},,(C ){02610},,,(D ){0246810},,,,,(2)若43i z =+,则||zz = (A )1(B )1-(C )43+i 55(D )43i 55- (3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC =(A )30°(B )45°(C )60°(D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃。

下面叙述不正确的是(A )各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)815(B)18(C)115(D)130(6)若tanθ=13,则cos2θ=(A)45-(B)15-(C)15(D)45(7)已知4213332,3,25a b c===,则(A)b<a<c (B) a < b <c (C) b <c<a (D) c<a< b(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n= (A)3(B)4(C)5(D)6(9)在△ABC中,B=1,,sin43BC BC A π=边上的高等于则(A)310(B)1010(C)55(D)31010(10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81(11)在封闭的直三棱柱ABC -A 1B 1C 1有一个体积为V 的球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近四年高考文科数学试卷及答案解析
(全国 3 卷) (2016 年—2020 年)
说明:含有 2016 年—2020 年的全国 3 卷高考文科数学试题 以及答案详细解析(客观题也有答案详解)
目录
2020 年普通高等学校招生全国统一考试........................................................................................... 3 文科数学(3 卷)答案详解................................................................................................................. 3 2020 年普通高等学校招生全国统一考试......................................................................................... 16 文科数学(3 卷)试题....................................................................................................................... 16 2019 年普通高等学校招生全国统一考试......................................................................................... 25 文科数学 3 卷 试题........................................................................................................................... 25 2019 年普通高等学校招生全国统一考试......................................................................................... 35 文科数学 3 卷 答案详解................................................................................................................... 35 2018 年普通高等学校招生全国统一考试......................................................................................... 48 文科数学 3 卷 试题............................................................................................................................ 48 2018 年普通高等学校招生全国统一考试......................................................................................... 58 文科数学 3 卷 答案详解................................................................................................................... 58 2017 年普通高等学校招生全国统一考试......................................................................................... 71 文科数学 3 卷 试题........................................................................................................................... 71 2017 年普通高等学校招生全国统一考试......................................................................................... 81 文科数学 3 卷 答案详解.................................................................................................................. 81 2016 年普通高等学校招生全国统一考试......................................................................................... 92 文科数学 3 卷 试题........................................................................................................................... 92 2016 年普通高等学校招生全国统一考试....................................................................................... 103 文科数学 3 卷 答案详解................................................................................................................ 103 文档复制密码、学习资料库............................................................................................................ 114
A.2
B.3
C.4
【解析】∵ A B {5, 7,11},∴A∩B 中元素的个数为 3.
D.5
【答案】B
2.(复数)若 z(1 i) 1 i ,则 z=
A.1–i
B.1+i
C.–i
D.i
【解析】∵
z(1
i)
1i
,∴
z
1 1
i i
2i 2
i
,∴
z
i
.
【答案】D
3.(概率统计)设一组样本数据 x1,x2,…,xn 的方差为 0.01,则数据 10x1,10x2,…,10xn 的方差为
【答案】A
7.(解析几何)设 O 为坐标原点,直线 x=2 与抛物线 C: y2 2 px p 0 交于 D,E 两点,
若 OD⊥OE,则 C 的焦点坐标为
A. ( 1 , 0) 4
B. ( 1 , 0) 2
C. (1, 0)
D. (2, 0)
【解析】解法一:如图 A7 所示,由题意可知, D(2, 2 p ) , E (2, 2 p ) ,
打开标签,直接进入目录.
文档复制,请到最后一页查看密码!
两边取对数得, 0.23(t*
53)
In19
,解得
t*
In19 0.23
53
3 0.23
53
66
.
【答案】C
5.(三角函数)已知
sin
sin(
π 3

1
,则
sin(
π )= 6
1 A. 2
3 B. 3
2 C. 3
2 D. 2
【解析】∵
sin(
A.0.01
B.0.1
C.1
D.10
【解析】原数据的方差 s2 0.01,由方差的性质可知,新数据的方差为100s2 100 0.01 1 .
【答案】C 4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据
建 立 了 某 地 区 新 冠 肺 炎 累 计 确 诊 病 例 数 I(t)(t 的 单 位 : 天 ) 的 Logistic 模 型 :
2
图 A7 【答案】B
8.(解析几何)点 (0,1) 到直线 y k x 1 距离的最大值为
A.1
B. 2
C. 3
D.2
【解析】解法一:点 (0,1) 到直线 y k x 1 的距离 d k 1 ,则有
k2 1
d2=
(k 1)2 k2 1
k 2 1 2k k2 1
1
2k k2 1
2 ,故 d
2.
解法二:已知点 A(0, 1) ,直线 y k x 1 过定点 B(1,0) ,由几何性质可知,当直
线 y k x 1 垂直直线 AB 时,点 A(0, 1) 到直线 y k x 1 距离最大,最大值为
线段 AB 的长度,即 dmax 2 . 【答案】B 9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是
第 5 页 共 114 页
打开标签,直接进入目录.
文档复制,请到最后一页查看密码!
A. 6 4 2 B. 4 4 2
C. 6 2 3
D. 4 2 3
【解析】由三视图可知,该几何体为一个四面体,如图 A8 所示. 其表面积
S 3 2
3
2
2
2 62
3.
4
图 A9
【答案】C
10.(函数)设
OD (2, 2 p ) , OE (2, 2 p ) ,∵OD⊥OE,∴ OD OE ,
第 4 页 共 114 页
打开标签,直接进入目录.
相关文档
最新文档