稀有气体发现简史[1]

合集下载

稀有气体的发现史

稀有气体的发现史

稀有气体的发现史(一)稀有气体是化学元素中最稳定的一族元素,它们在自然界中含量稀少,因此得名。

稀有气体在化学工业、电子工业、特殊用途等领域都有广泛的应用。

下面详细介绍稀有气体的发现史。

稀有气体的发现可以追溯到1894年,当时英国化学家瑞利(Lord Rayleigh)在研究氮气时,发现了一种新的气体,他称之为“氩”(argon)。

氩是一种无色、无味、无臭的气体,它在空气中的含量非常低,只有约1%。

瑞利的发现打开了化学世界的一个新领域,也为我们了解元素周期表奠定了基础。

随着时间的推移,科学家们逐渐发现了更多的稀有气体。

1898年,瑞利的学生拉姆齐(William Ramsay)发现了氦(helium),这是一种存在于地球大气中的气体,但是它的含量非常低,只有约5%。

拉姆齐还发现了氪(krypton)和氖(neon),它们在空气中都含量极低,但都具有重要的应用价值。

在接下来的几十年里,科学家们继续研究稀有气体,并发现了更多的元素。

1932年,加拿大化学家奥斯特瓦尔德(Ernst Ostwald)发现了氡(radon),这是一种具有放射性的稀有气体。

1951年,美国化学家吉姆(Joel Gimbel)发现了砹(astatine),这是一种非常稀有的元素,只有极少量存在于地球上。

稀有气体的发现史中,科学家们采用了不同的方法和技术。

最初,他们通过化学分析的方法发现了氩、氦、氖等元素。

后来,随着科技的发展,科学家们开始使用更高级别的实验技术来探测稀有元素。

例如,他们使用分光光度计来分析不同元素的光谱,使用气球法来测量大气中的稀有气体含量。

这些技术和方法不仅帮助科学家们发现了更多的稀有元素,还为化学科学的发展做出了重要贡献。

稀有气体的发现和应用历史不仅为化学科学的发展做出了重要贡献,也为我们了解自然界的奥秘提供了重要的线索。

从氩的发现到今天,稀有气体已经成为许多领域中不可或缺的材料,包括电灯泡、半导体工业、激光技术等。

稀有气体的发现史

稀有气体的发现史

物体得到了比它正常的份量更多的电,
1 780 年 的 一 天 , 意 大 利 解 剖 学 教
它就被称之为带正电; 如果一个物体少 授伽伐尼在实验室里观察一只与钳子
及镊子环相接触的青蛙腿时, 室外的闪 电竟致使青蛙腿发生一阵痉挛!
伽伐尼觉得非常奇怪, 之后他花了 12 年的时间来研究这种现象, 并得出 结论:“青蛙腿痉挛现象是‘动 物 电 ’的 表现, 这是一种在电流回路中产生的现 象。”不过, 这个结论根本无法解释电流 的产生原因。
由上述的稀有气体发现史, 可以知 道, 在科学实验中不放过一点点细微的 差异, 锲而不舍, 以及认真严肃的科学 态度和一丝不苟的科学作风, 是科学工 作者成功的重要因素。
漫话电流的发现
文 林楚 荐
公元前 6 世纪, 古希腊人发现用毛 于它正常份量的电, 它就被称之为带负
皮摩擦过的琥珀能吸引绒毛、碎 麦 杆 之 电。放电就是正电流向负电的过程。”
林 通 过 大 量 实 验 进 一 步 揭 示 了 电 的 性 时感到一阵猛烈的电击。原来从金属线
质, 并第一次使用“电流”这个术 语 。 按 上传下来的“天电”与人工电完全相同!
照 他 的 观 点 , 电 是“ 一 种 没 有 重 量 的 流
1 753 年, 富兰克林根据自己的研
体, 存在于所有的物体之中。如果一个 究发明了避雷针。
瑞姆赛有关, 首先他和 瑞 礼 在 1894 年 发 现 了 氩 , 1895 年 继 杨 森 、洛 克 伊 尔 在 发现太阳光谱中的氦以后, 他是第 1 个 从地球上找到氦的人。而氖、氪 和 氙 是 他与崔弗斯合作所得的成果。即使在 1900 年 发 现 氡 以 后 , 瑞 姆 赛 还 与 英 国 的索迪教授在 1903 年确定 氡 是 由 镭 蜕 变以后的产物, 并确认这个放射性气体 是一种新元素, 因此瑞姆赛不愧是稀有 气体的开创者。

稀有气体的发现史

稀有气体的发现史

稀有气体的发现史1868年,天文学家在太阳的光谱中发现一条特殊的黄色谱线D3,这和早已知道的钠元素的D1和D2两条黄色谱线不同,由此预言在太阳中可能有一种未知元素存在。

后来将这种元素命名为“氦”,意为“太阳元素”。

20多年后,拉姆赛证实了地球上也存在氦元素。

1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。

他认为这种气体可能是氮气或氩气,但没有继续研究。

拉姆赛知道这一实验后,用钇铀矿重复了这一实验,得到少量气体。

在用光谱分析法检验该气体时,原以为能看到氩的谱线,却意外地发现一条黄线和几条微弱的其他颜色的亮线。

拉姆赛把它与已知的谱线对照,没有一种同它相似。

经过苦苦思索,终于想起27年前发现的太阳上的氦。

氦的光谱正是黄线,如果这两条黄线能够重合,那么钇铀矿中放出的气体应是太阳元素氦了。

拉姆赛十分谨慎,请当时英国最著名的光谱专家克鲁克斯帮助检验,证实拉姆赛所得的未知气体即为“太阳元素”气体。

1895年3月,拉姆赛在《化学新闻》上首先发表了在地球上发现氦的简报,同年在英国化学年会上正式宣布这一发现。

后来,人们在大气中、水中、天然气中、石油气中以及铀和外的矿石中,甚至在陨石中也发现了氦。

1902年,德米特里·门捷列夫接受了氦和氩元素的发现,并这些稀有气体纳入他的元素排列之内,分类为第0族,而元素周期表即从该排列演变而来。

拉姆赛继续使用分馏法把液态空气分离成不同的成分以寻找其他的稀有气体。

他于1898年发现了三种新元素:氪、氖和氙。

氡气于1898年由弗里德里希·厄恩斯特·当发现,最初取名为镭放射物,但当时并未列为稀有气体。

直到1904年才发现它的特性与其他稀有气体相似。

1904年,瑞利和拉姆赛分别获得诺贝尔物理学奖和化学奖,以表彰他们在稀有气体领域的发现。

瑞典皇家科学院主席西德布洛姆致词说:“即使前人未能确认该族中任何一个元素,却依然能发现一个新的元素族,这是在化学历史上独一无二的,对科学发展有本质上的特殊意义。

稀有气体

稀有气体

稀有气体稀有气体在通电时,会发出有颜色的光稀有气体元素指氦、氖、氩、氪、氙、氡以及不久前发现的Uuo7种元素,又因为它们在元素周期表上位于最右侧的零族,因此亦称零族元素。

稀有气体单质都是由单个原子构成的分子组成的,所以其固态时都是分子晶体。

稀有气体的得名稀有气体的单质在常温下为气体,且除氩气外,其余几种在大气中含量很少(尤其是氦),故得名“稀有气体”,历史上稀有气体曾被称为“惰性气体”,这是因为它们的原子最外层电子构型除氦为1s外,其余均为8电子构型(ns2np6,均为上标),而这两种构型均为稳定的结构。

因此,稀有气体的化学性质很不活泼,所以过去人们曾认为他们与其他元素之间不会发生化学反应,称之为“惰性气体”。

然而正是这种绝对的概念束缚了人们的思想,阻碍了对稀有气体化合物的研究。

1962年,在加拿大工作的26岁的英国青年化学家N.Bartlett合成了第一个稀有气体化合物Xe[PtF6],引起了化学界的很大兴趣和重视。

许多化学家竞相开展这方面的工作,先后陆续合成了多种“稀有气体化合物”,促进了稀有气体化学的发展。

而“惰性气体”一名也不再符合事实,故改称稀有气体。

稀有气体的发现六种稀有气体元素是在1894-1900年间陆续被发现的。

发现稀有气体的主要功绩应归于英国化学家莱姆赛(Ramsay W,1852-1916)。

二百多年前,人们已经知道,空气里除了少量的水蒸气、二氧化碳外,其余的就是氧气和氮气。

1785年,英国科学家卡文迪许在实验中发现,把不含水蒸气、二氧化碳的空气除去氧气和氮气后,仍有很少量的残余气体存在。

这种现象在当时并没有引起化学家的重视。

一百多年后,英国物理学家雷利测定氮气的密度时,发现从空气里分离出来的氮气每升质量是1.2572克,而从含氮物质制得的氮气每升质量是1.2505克。

经多次测定,两者质量相差仍然是几毫克。

可贵的是雷利没有忽视这种微小的差异,他怀疑从空气分离出来的氮气里含有没被发现的较重的气体。

浅谈稀有气体

浅谈稀有气体
稀有气体在大气层的含量极少它们的化学性质极不活泼原来被称为惰性气体随着科学技术的发展1962年在加拿大工作的英国青年化学家巴特列特bartlett1932首先合成出第一个惰性气体的化合物六氟合钳酸氤xeptf6动摇了人们长期禁锢的思想引起了化学界极大的兴趣和重视
浅谈 稀 有 气体
河 南省汤 阴县实验中学 司文英
充 到灯管 里当保 护气 ,有些还能发 出色彩艳丽 的光 ,因此 ,人们 对
它们情有独钟 。
最迟被发现的稀有气体是氡 ,具有很强 的放射性 ,而半 衰期较
短 ( 1 2 2 R n 的半衰期最长 ,也只有 3 . 8 天) ,实验和应 用较为困难 , 但 它可用 于恶性 肿瘤 的治疗 。
内容提要 :随着工业生产和科学技术的发展 , 稀有气体越来 越广 泛地应 用在工 业、医学 、尖端科学技术 以至 日常生活里 。而化学教学也
要时时与生产生活相结合 ,使得学生们不但 了解更多的化学知识 ,同时也对化学这 —学科产 生浓厚 的兴趣 。
关键词 :稀有气体 元素 用途
填充气体 氦 氖
原意 “ 新 的” ) 、氩 A r ( 拉丁文原意 “ 懒惰 ” )、 氪K e ( 拉丁文原意
“ 隐藏 ” )和氙 x e( 拉丁文原意 “ 奇异” ) 、 氡 R n( 拉丁文原意 ” 射
气” 1 气体 。除氦外 , 稀有气体 原子 的最 外层都 是由充满的 n s和 n p 轨道组成 的。因此 ,它们都具有稳 定的 8电子构型 ( 氦原子只有两 个 电子 ) , 这些元素 的化学性质很不活泼 , 不仅难于与其他元素化合 , 其自 身也是 以单个原 子的形式存在 。 人们正是利用它们的这种特性 ,
性 质极 不活泼 ,原来 被称为惰性气体 ,随着科学技术的发展 ,1 9 6 2 年, 在加拿大工作 的英 国青年化学家 巴特列特( B a r t l e t t N , 1 9 3 2 ) -  ̄先合 成 出第 一个惰性气体的化合物——六氟合铂酸氙 X e [ P t F 6 】 , 动摇 了

氢 稀有气体

氢  稀有气体

用途


燃烧值/kJ· -1 kg
氢 气(H2)
戊硼烷(B5H9) 戊 烷(C5H12)
120918
64183 43367
2、氢化物
(1)氢化物的合成
合成二元氢化物的三种常用方法是: 元素直接化合:2E + H2(g) → 2 EH 例如,2Li(l) + H2(g) → 2LiH(s) BrØnsted 碱的加合质子:E- + H2O(ag) → EH + OH例如,Li3N(s) + 3 H2O(l) → 3Li(OH) (aq) + NH3(g) 卤化物或拟卤化物与氢化物之间的复分解: E’H + EX → E’X + EH 例如,LiAlH4 + SiCl4 → LiAlCl4 + SiH4
(kJ•mol–1)
H2O和D2O之间沸点的差异反映了O· · —O 氢 ·H 键不如 O··· D—O氢键强。相同化学环境下键焓高于 键焓的现象在很大程度上是由零点能(指量子在绝对 温度的零点下仍会保持震动的能量 )的差别引起的。 零点能低时键焓相对比较高,零点能高时键焓相对比 较低。氢同位素造成的性质差别大得足以找到某些实 际应用。例如,由于D2O中D–O键的键焓相对比较高 ,电解速率应当低,其结果是在电解水而得到的残液 中得以富集。 利用重水与水的差别,富集重水,再以任一种从 水中制 H2 的方法从 D2O 中获得 D。 慢中子轰击锂产生T:
【思考】潜在储氢材料——化合物 A 是第二周期两种氢化物形成 的路易斯酸碱对,是乙烷的等电子体,相对分子质量30.87,常温 下为白色晶体,稳定而无毒。刚刚融化的 A 缓慢释放氢气,转变 为化合物B(乙烯的等电子体)。B 不稳定,易聚合成聚合物 C (聚乙烯的等电子体)。C 在155oC释放氢气转变为聚乙炔的等电 子体,其中聚合度为3的化合物 D 是苯的等电子体。高于500oC时 D 释放氢气,转变为化合物 E,E 有多种晶型。 (1)写出 A、B、C、D、E 的化学式。

稀有气体的发现史

稀有气体的发现史

稀有气体的发现史作者:王壮凌来源:《发明与创新(学生版)》2007年第12期稀有气体在自然界中的含量很少,并且不容易和其他物质作用,因此发现它们是一件很困难的事。

稀有气体的发现前后共经历了一个多世纪,整个过程既曲折又有趣。

在地球上,人类首先发现的稀有气体是氩。

早在1785年之前就已经先发现氢的英国化学家卡文迪许在空气中通入过量的氧气,用放电法使空气中的氮气和氧气反应生成一氧化氮,然后用碱溶液吸收它,剩余的氧再用红热的铜除去。

但即使把所有的氮气和氧气都除去了,仍然存在着少量的残余气体。

卡文迪许报导了他观察到的这项实验结果,但在当时并没有引起其他化学家的注意,他本人也没有再进一步研究。

其实,在这“残余气体”内就隐藏着另外一族的化学元素。

如此一来,发现新元素的机会就这样从他身边溜走了。

大约再过一个世纪后,英国物理学家瑞礼男爵三世在研究大气中各种气体的密度时,发现从空气中除去氧以后,所得到“氮气”的密度是1.2572克/公升,然而从氮化物中制得氮的密度是1.2507克/公升。

虽然,两者之间的差异只显现在第三位小数上,但已经超过了当时的实验误差范围。

瑞礼并无法给予合理的解释,便把这个实验事实公布于世,征求解答。

后来,英国化学家瑞姆赛爵士开始了这项新研究,经过瑞礼和瑞姆赛反复精确地实验,最后都得到一种空气的残余气体,这种气体的体积约占原空气体积的1%,而且比氮气稍重,经过光谱分析后才断定这种气体是一种新元素。

在1894年,瑞礼和瑞姆赛宣布了这一元素的发现,并且把它定名argon,有“懒惰”的意思,中文的译名是氩。

这也就是在科学界中广被传说的“第三位小数的胜利”。

氦的发现有些凑巧,它是唯一先在地球以外发现到的一种元素。

1868年8月10日在印度发生日全食,法国天文学家杨森在观测这次日全食时,从太阳光谱中得到一条波长587.49纳米的橙黄色光谱线。

同时,英国天文学家简克伊尔也在不同的场合从太阳光谱中得到相同的发现。

稀有气体发现简史[1]

稀有气体发现简史[1]

稀有气体发现简史周期表中零族元素有氦、氖、氩、氪、氙和氡一共六种,它们都是气体。

六种稀有气体元素是在1894-1900年间陆续被发现的。

发现稀有气体的主要功绩应归于英国化学家莱姆赛(RamsayW,1852-1916)。

下面我们按元素发现的先文案后顺序,分别简介这六种元素的发现经过。

氩Ar早在1785年,英国著名科学家卡文迪什(CavendishH,1731-1810)在研究空气组成时,发现一个奇怪的现象。

当时人们已经知道空气中含有氮、氧、二氧化碳等,卡文迪什把空气中的这些成分除尽后,发现还残留少量气体,这个现象当时并没有引起化学家们应有文案的重视。

谁也没有想到,就在这少量气体里竟藏着一个化学元素家族。

100多年后,英国物理学家瑞利(Rayleigh J W S,1842-1919)在研究氮气时发现从氮的化合物中分离出来的氮气每升重1.2508g,而从空气中分离出来的氮气在相同情况下每升重1.2572g,这0.0064g的微小差别引起了瑞利的注意。

他与化学家莱姆赛合作,把空气中文案的氮气和氧气除去,用光谱分析鉴定剩余气体,终于在1894年发现了氩。

由于氩和许多试剂都不发生反应,极不活泼,故被命名为Argon,即“不活泼”之意。

中译名为氩,化学符号为Ar。

氦He早在1868年,法国天文学家简森(Janssen P 文案JC,1824-1907)在观察日全蚀时,就曾在太谱上观察到一条黄线D,这和早已知道的钠光谱的D1和D2两条线不相同。

同时,英国天文学家洛克耶尔(Lockyer JN,1836-1920)也观测到这条黄线D。

当时天文学家认为这条线只有太阳才有,并且还认为是一种金属元素。

所以洛克耶尔把这个元素取名为Helium,这是由两个字拼起来的,helio是希腊文太阳神的意思,后缀-ium是指文案金属元素而言。

中译名为氦。

1895年,莱姆赛和另一位英国化学家特拉弗斯(Travers MW,1872-1961)合作,在用硫酸处理沥青铀矿时,产生一种不活泼的气体,用光谱鉴定为氦,证实了氦元素也是一种稀有气体,这种元素地球上也有,并且是非金属元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稀有气体发现简史
周期表中零族元素有氦、氖、氩、氪、氙和氡一共六种,它们都是气体。

六种稀有气体元素是在1894-1900年间陆续被发现的。

发现稀有气体的主要功绩应归于英国化学家莱姆赛(RamsayW,1852-1916)。

下面我们按元素发现的先后顺序,分别简介这六种元素的发现经过。

氩Ar
早在1785年,英国著名科学家卡文迪什(CavendishH,1731-1810)在研究空气组成时,发现一个奇怪的现象。

当时人们已经知道空气中含有氮、氧、二氧化碳等,卡文迪什把空气中的这些成分除尽后,发现还残留少量气体,这个现象当时并没有引起化学家们应有的重视。

谁也没有想到,就在这少量气体里竟藏着一个化学元素家族。

100多年后,英国物理学家瑞利(Rayleigh J W S,1842-1919)在研究氮气时发现从氮的化合物中分离出来的氮气每升重1.2508g,而从空气中分离出来的氮气在相同情况下每升重1.2572g,这0.0064g的微小差别引起了瑞利的注意。

他与化学家莱姆赛合作,把空气中的氮气和氧气除去,用光谱分析鉴定剩余气体,终于在1894年发现了氩。

由于氩和许多试剂都不发生反应,极不活泼,故被命名为Argon,即“不活泼”之意。

中译
名为氩,化学符号为Ar。

氦He
早在1868年,法国天文学家简森(Janssen P JC,1824-1907)在观察日全蚀时,就曾在太阳光谱上观察到一条黄线D,这和早已知道的钠光谱的D1和D2两条线不相同。

同时,英国天文学家洛克耶尔(Lockyer JN,1836-1920)也观测到这条黄线D。

当时天文学家认
为这条线只有太阳才有,并且还认为是一种金属元素。

所以洛克耶尔把这个元素取名为Helium,这是由两个字拼起来的,helio是希腊文太阳神的意思,后缀-ium是指金属元素而言。

中译名为氦。

1895年,莱姆赛和另一位英国化学家特拉弗斯(Travers MW,1872-1961)合作,在用硫酸处理沥青铀矿时,产生一种不活泼的气体,用光谱鉴定为氦,证实了氦元素也是一种稀有气体,这种元素地球上也有,并且是非金属元素。

氪Kr、氖Ne、氙Xe
由于氦和氩的性质非常相近,而且它们与周期系中已被发现的其它元素在性质上有很大差异,莱姆赛根据周期系的规律性,推测出氦和氩可能是另一族元素,在它们之间一定有一个性质和氦、氩相近的家族。

果然,在1898年5月30日莱姆赛和特拉弗斯在大量液态空气蒸发后的残余物中,用光谱分析首先发现了比氩重的氪,他们把它命名为Krypton,即隐藏之意。

隐藏于空气中多年才被
发现。

1898年6月,莱姆赛和特拉弗斯在蒸发液态氩时收集了最先逸出的气体,用光谱分析发现了比氩轻的氖。

他们把它命名为neon,源自希腊词neos,意为新,即从空气中发现的新气体。

中译名为氖。

也就是现在氖灯里的气体。

1898年7月12日,莱姆赛和特拉弗斯在分馏液态空气,制得了氪和氖后,又把氪反复地分次萃取,从其中又分出一种质量比氪更重的新气体,他们把它命名为
Xenon,源自希腊文xenos,意为陌生人,即为人们所生疏的气体,因为它在空气中的含量极少,仅占总体积的一亿分之八。

氡Rn
氡是一种具有天然放射性的稀有气体,它是镭、钍和锕这些放射性元素在蜕变过程中的产物,因此,只有这些元素发现后才有可能发现氡。

1899年,英国物理学家欧文斯(Owens R B)和卢瑟福(RutherfordE,1871-1937)在研究钍的放射性时发现钍射气,即氡-220。

1900年,德国人道恩(Dorn F E)在研究镭的放射性时发现镭射气,即氡-222。

1902年,德国人吉赛尔(Giesel FO,1852-1927)在锕的化合物中发现锕射气,即氡-219。

直到1908年,莱姆赛确定镭射气是一种新元素,和已发现的其它稀有气体一样,是一种化学惰性的稀有气体元素。

其它两种射气,是它的同位
素。

1923年国际化学会议上命名这种新元素为radon,中文音译成氡,化学符号为Rn。

至此,氦、氖、氩、氪、氙、氡六种稀有气体作为一个家族全被发现了,它们占据了元素周期表零族的位置。

这个位置相当特殊,在它前面是电负性最强的非金属元素,在它后面是电负性最小的金属活泼性最强的金属元素。

由于这六种气体元素的化学惰性,很久以来,它们被称为"隋性气体"。

人类的认识是永无止境的,经过实践的检验,理论的相对真理性会得到发展和完善。

1962年,在加拿大工作的英国青年化学家巴特列特(Bartlett N,1932~)首先合成出第一个惰性气体的化合物──六氟合铂酸氙Xe[PtF6],动摇了长期禁锢人们思想。

"隋性气体"也随之改名"稀有气体"。

稀有气体的性质和用途
稀有气体的性质
稀有气体的化学性质是由它的原子结构所决定的。

除氦以外,稀有气体原子的最外电子层都是由充满的ns和np轨道组成的,它们都具有稳定的8电子构型。

稀有气体的电子亲合势都接近于零,与其它元素相比较,它们都有很高的电离势。

因此,稀有气体原子在一般条件下不容易得到或失去电子而形成化学键。

表现出化学性质
很不活泼,不仅很难与其它元素化合,而且自身也是以单原子分子的形式存在,原子之间仅存在着微弱的范德华力(主要是色散力)。

稀有气体的熔、沸点都很低,氦的沸点是所有单质中最低的。

它们的蒸发热和在水中的溶解度都很小,这些性质随着原子序数的增加而逐渐升高。

稀有气体的原子半径都很大,在族中自上而下递增。

应该注意的是,这些半径都是未成键的半径,应该仅把它
们与其它元素的范德华半径进行对比,不能与共价或成键半径进行对比。

氦是所有气体中最难液化的,温度在2.2K以上的液氦是一种正常液态,具有一般液体的通性。

温度在2.2K 以下的液氦则是一种超流体,具有许多反常的性质。

例如具有超导性、低粘滞性等。

它的粘度变得为氢气粘度的百分之一,并且这种液氦能沿着容器的内壁向上流动,再沿着容器的外壁往下慢慢流下来。

这种现象对于研究和验证
量子理论很有意义。

稀有气体的用途
稀有气体广泛应用到光学、冶金和医学等领域中。

例如:氦氖激光器、氩离子激光器等在国防和科研上有着广泛的用途。

氖在放电管内放射出美丽的红光,加入一些汞蒸气后又发射出蓝光,所以,氖被广泛用来制造霓虹灯。

氙在电场的激发下能放出强烈的白光,高压长弧氙灯经常用于电影摄影、舞台照明等。

在冶金工业中,氩和氦的最
大用途是为熔焊不锈钢等提供惰性气氛。

氪、氙和氡还能用于医疗上,氙灯能放出紫外线,氪、氙的同位素还被用来测量脑血流量等。

氦还被用来代替氢充填气象气球和飞船,由于它不燃烧,比氢安全得多。

由于氦的沸点低,还被用于超低温技术。

相关文档
最新文档