暖通空调基础知识:溴化锂空调系统.doc
溴化锂制冷机组原理

溴化锂制冷机组原理
溴化锂制冷机组是一种常见的空调制冷设备,通过利用溴化锂在吸湿和脱湿的循环过程中释放热量来实现空调效果。
溴化锂制冷机组的工作原理如下:
1. 吸附过程:溴化锂吸收水分,形成溴化锂水合物。
空气中的湿度高时,溴化锂水合物会吸附更多水分。
这个过程是在吸湿器中进行的。
2. 解吸过程:当空气中湿度降低时,溴化锂水合物会释放吸收的水分。
这个过程是在脱湿器中进行的。
溴化锂会通过加热或减压的方式,将吸附的水分释放出来。
3. 冷凝过程:脱湿后的空气会进入冷凝器,通过冷却的方式使空气温度下降,将热量释放到外界。
4. 蒸发过程:经过冷凝的空气进入蒸发器,通过吹风机吹送到室内,使室内空气温度降低。
5. 再生过程:在脱湿器中释放的湿气通过再生回路送回吸湿器,回收部分吸附剂,再次进行吸湿循环。
通过不断循环上述步骤,溴化锂制冷机组可以不断吸湿和脱湿,使空气温度降低,从而达到制冷的效果。
暖通空调知识:溴化锂吸收式制冷机中的制冷剂循环[工程类精品文档]
![暖通空调知识:溴化锂吸收式制冷机中的制冷剂循环[工程类精品文档]](https://img.taocdn.com/s3/m/d947daf719e8b8f67c1cb9db.png)
暖通空调知识:溴化锂吸收式制冷机中的制冷剂循环[工程类精品文档]本文内容极具参考价值,如若有用,请打赏支持,谢谢!溴化锂吸收式制冷机中的制冷剂就是水。
水在制冷循环中状态不断改变,并利用其在蒸发时的吸热而产生制冷的。
首先,从发生器中产生的高压冷剂蒸汽在冷凝器中被冷却水冷凝成冷剂水。
因其压力较高,故通过一个节流阀送入蒸发器,在蒸发器中吸收管内冷媒水的热量而蒸发,蒸发后的冷剂蒸汽压力较低,通过挡水板送入吸收器以被较浓的溴化锂溶液吸收,而后又在发生器产生出压力较高的冷剂蒸汽,从而完成循环。
在溴化锂吸收式制冷机中,蒸发器中的压力非常低,以至于水在5℃时即达到饱和而蒸发,在蒸发时吸收管内冷媒水的热量而使其温度降低,从而达到制冷的目的。
一般而言,冷媒水进蒸发器的温度为12℃,放热后温度降低到7℃,由冷媒水泵送给用户使用。
在吸收器中吸收了低压水蒸汽的溴化锂溶液浓度变小,温度也较低,被溶液泵送往使之浓缩的发生器中,被管内流动的高压工作蒸汽加热至对应压力下的沸点,使之沸腾并产生冷剂蒸汽,因发生器中的压力较高,所以冷剂蒸汽的压力也较高,也就是说通过泵的升压和工作蒸汽的加热,使低压蒸汽的压力升高。
溶液沸腾产生出冷剂蒸汽后,浓度和温度都有所升高,又具有了吸收水蒸汽的能力。
因发生器中的压力比吸收器中的压力要高得多,故在送往吸收器中让其吸收水蒸汽时必须通过节流阀降压。
在吸收器中,溶液被喷淋在内通冷却水的传热管管簇上,因溶液在吸收水蒸汽时要放出大量的吸收热,故需大量的冷却水进行冷却,实验和理论都表明,溶液的浓度越高、温度越低,吸收水蒸汽的能力就越强,所以,在实际中,要努力提高其浓度、降低其温度,但要注意避免因浓度过高、温度过低而结晶。
另外,从图中不难看出,一方面稀溶液温度较低,送往发生器后需消耗能量对其加热;而另一方面,浓溶液的温度较高,在吸收器中需冷却才能有较强的吸收水蒸汽的能力,所以,如能使浓溶液和稀溶液进行热交换,无疑可提高机组的性能系数。
溴化锂机组工作原理

溴化锂机组工作原理溴化锂机组是一种常用的空调系统,它利用溴化锂溶液的特性来实现空气的冷却和加湿。
本文将详细介绍溴化锂机组的工作原理。
1. 溴化锂机组的基本组成溴化锂机组由以下几个主要组成部分构成:- 蒸发器:用于将空气冷却和加湿的部分。
蒸发器内部有一系列的蒸发管,通过这些蒸发管将溴化锂溶液喷洒在空气上,使其蒸发并吸收空气中的热量,从而实现空气的冷却和加湿。
- 冷凝器:用于冷却溴化锂溶液。
冷凝器内部有一系列的冷凝管,通过这些冷凝管将溴化锂溶液冷却至较低温度,以便再次进入蒸发器进行循环使用。
- 溴化锂溶液循环系统:包括溴化锂溶液的储存罐、泵和管道等。
溴化锂溶液通过泵被抽取至蒸发器,然后经过蒸发和冷凝过程后再次回到储存罐中,形成循环。
- 风机:用于循环空气,并将空气送入蒸发器和冷凝器中。
风机通过产生气流,使空气与溴化锂溶液接触,从而实现空气的冷却和加湿。
2. 溴化锂机组的工作过程溴化锂机组的工作过程可以分为以下几个步骤:- 步骤1:空气进入蒸发器。
当空调系统启动时,风机将室内空气吸入蒸发器。
蒸发器内的蒸发管上喷洒的溴化锂溶液会迅速蒸发,吸收空气中的热量,从而使空气冷却和加湿。
- 步骤2:溴化锂溶液被抽回储存罐。
经过蒸发后的溴化锂溶液会被泵抽回储存罐中,以便进行下一轮的循环使用。
- 步骤3:空气进入冷凝器。
冷凝器内的冷凝管将溴化锂溶液冷却至较低温度。
当空气通过冷凝器时,它会与冷凝管上的溴化锂溶液接触,从而使空气进一步冷却。
- 步骤4:冷却后的空气被送入室内。
经过冷凝后的空气被风机送入室内,从而实现空调效果。
3. 溴化锂机组的工作原理溴化锂机组的工作原理基于溴化锂溶液的吸湿性和蒸发冷却效应。
溴化锂溶液具有很强的吸湿性,当溴化锂溶液喷洒在蒸发管上时,它会吸收空气中的水分,从而实现加湿效果。
同时,溴化锂溶液在蒸发过程中会吸收空气中的热量,使空气冷却。
经过冷凝后的溴化锂溶液再次进入蒸发器,循环使用,从而实现空调系统的持续运行。
溴化锂机组工作原理

溴化锂机组工作原理
溴化锂机组是一种常见的空调系统,它采用了吸收式制冷技术,通过溴化锂溶
液和水的吸收与释放来实现制冷和加热的功能。
下面我们将详细介绍溴化锂机组的工作原理。
首先,溴化锂机组由吸收器、发生器、冷凝器和蒸发器四个主要部件组成。
整
个工作过程是一个闭合循环,通过这四个部件的协同作用,完成了制冷和加热的过程。
在工作时,溴化锂机组首先通过发生器将溴化锂溶液加热至高温,使其分解成
溴化锂和水。
溴化锂会被吸收器中的水吸收,释放出大量的热量。
接着,溴化锂溶液被泵送至冷凝器,通过冷却水的作用,使其冷却成溴化锂溶液和水蒸气的混合物。
这时,溴化锂溶液中的溴化锂开始重新溶解,释放出吸收时所吸收的热量,同时水蒸气被冷凝成液体。
然后,冷凝器中的液体溴化锂溶液被送往蒸发器,通过蒸发器的蒸发作用,将
其吸收的热量释放到周围环境中,从而实现制冷效果。
同时,蒸发器中的水蒸气被吸收器吸收,形成新的溴化锂溶液,重新进入循环。
通过这样的循环过程,溴化锂机组可以实现对空调系统的制冷和加热功能。
当
需要制冷时,机组通过控制发生器和冷凝器的工作状态,使溴化锂溶液在吸收器和蒸发器之间完成循环,从而达到制冷效果;而当需要加热时,通过改变发生器和冷凝器的工作状态,使溴化锂溶液在吸收器和发生器之间完成循环,实现加热效果。
总的来说,溴化锂机组利用溴化锂溶液和水的吸收与释放过程,通过发生器、
吸收器、冷凝器和蒸发器四个主要部件的协同作用,实现了空调系统的制冷和加热功能。
这种制冷方式具有节能、环保的特点,因此在工业和商业领域得到了广泛的应用。
制冷与空调技术课件——溴化锂吸收式制冷机

mm
m
以下 以下 以下
5pp m
以下
少
5pp m
以下
三、停机操作
➢ 1.溴化锂吸收式制冷机组的暂时停机操作通常按如下程序进行:
1)关闭蒸汽截止阀,停止向高压发生器供汽加热,并通知锅炉房停止送汽。
2)关闭加热蒸汽后,冷剂水不足时可先停冷剂水泵的运转,而溶液泵, 发生泵、冷却水泵,冷媒水泵应继续运转,使稀溶液与浓溶液充分混合, 15~20分钟后,依次停止溶液泵、发生泵、冷却水泵、冷媒水泵和冷却塔 风机的运行。
5)检查制冷机组各阀门的密封情况,防止停车时空气泄入机组内。
6)记录下蒸发器与吸收器液面的高度,以及停车时间。
三、停机操作
➢ 3.溴化锂吸收式制冷机组的自动停机操作:
1)通知锅炉房停止送汽。
2)按“停止”按钮,机器自动切断蒸汽调节阀,机器转入自 动稀释运行。
3)发生泵、溶液泵以及冷剂水泵稀释运行大约15分钟之后, 稀释低温自动停车温度断电
蒸发器-吸收器结构
溶液换热器
a)对流换热 b)横掠管簇换热
形管节流装置
小孔节流装置
自动抽气装置原理图
1—冷剂分离 器
2—手动截止 阀
3—电磁阀 4—阻油室 5—真空泵 6—电动机
机械真空泵抽气装置
1-放气 阀
2-储气 室
3-引射 器
4-抽气 管
5-回流 阀
6-溶液 泵
溴化锂吸收式制冷机的操作
溴化锂吸收式制冷系统
发生器 冷凝器 蒸发器 吸收器
吸收式制冷循环
1-冷凝器 2-蒸发器 3-发生 4-吸收器 5-冷却水管 6-蒸汽管 7-载冷剂管 8-溶液泵 9-制冷剂泵 10-调节阀
为单效溴冷机原理流程图
溴化锂机组工作原理

溴化锂机组工作原理溴化锂机组是一种常用的空调系统,它利用溴化锂的化学反应来实现空气的冷却和加热。
溴化锂机组工作原理如下:1. 蒸发器:溴化锂机组的蒸发器是一个重要的组件,它位于室内空调系统中。
当空气通过蒸发器时,蒸发器内的溴化锂溶液会与空气发生吸附和反应。
这个过程会使空气温度降低,并且湿度也会得到控制。
2. 吸附剂:溴化锂机组中的吸附剂是溴化锂溶液,普通为溴化锂和水的混合物。
吸附剂的作用是吸附空气中的水份子,并将其分离出来。
这个过程被称为吸附。
3. 蒸发过程:在蒸发器中,溴化锂溶液会吸附空气中的水份子,形成溴化锂和水的混合物。
然后,这个混合物会通过加热的方式进行蒸发,将水份子从溴化锂中分离出来。
这样,蒸发器中的空气温度就会下降。
4. 冷却过程:在蒸发过程中,空气的温度会下降,因为水份子被从空气中分离出来。
这样,溴化锂机组可以通过蒸发器来实现空气的冷却。
冷却后的空气会被送回室内,从而降低室内的温度。
5. 再生过程:在蒸发器中,溴化锂溶液会吸附空气中的水份子,形成溴化锂和水的混合物。
当蒸发器中的溴化锂浓度达到一定程度后,需要对其进行再生。
在再生过程中,溴化锂会被加热,将吸附的水份子从溴化锂中分离出来。
这样,溴化锂就可以重新被用于蒸发器中的吸附过程。
总结:溴化锂机组通过利用溴化锂的化学反应来实现空气的冷却和加热。
在蒸发器中,溴化锂溶液会吸附空气中的水份子,形成溴化锂和水的混合物。
然后,通过加热的方式将水份子从溴化锂中分离出来,实现空气的冷却。
再生过程中,溴化锂会被加热,将吸附的水份子从溴化锂中分离出来,使溴化锂可以重新被用于蒸发器中的吸附过程。
溴化锂机组的工作原理使其成为一种高效、可靠的空调系统。
溴化锂机组工作原理

溴化锂机组工作原理溴化锂机组是一种常用的空调系统,它利用溴化锂吸收式制冷循环原理来实现空调效果。
下面将详细介绍溴化锂机组的工作原理。
1. 溴化锂溶液循环系统溴化锂机组的核心是溴化锂溶液循环系统,它由吸收器、发生器、冷凝器和蒸发器组成。
溴化锂溶液是一种具有吸湿性的化合物,它可以通过吸湿来吸收空气中的水分,从而实现制冷效果。
2. 吸收器吸收器是溴化锂机组中的关键组件之一。
它通常由两个部份组成:溴化锂溶液和吸收器。
吸收器中的溴化锂溶液通过吸湿作用吸收空气中的水分,从而形成含有水分的溴化锂溶液。
3. 发生器发生器是溴化锂机组中的另一个关键组件。
它通过加热溴化锂溶液,使其释放出吸收的水分。
发生器中的溴化锂溶液在加热的作用下,水分逐渐蒸发出来,形成干燥的溴化锂溶液。
4. 冷凝器冷凝器是溴化锂机组中的一个重要组件。
它通过冷却发生器中的蒸汽,使其凝结成液体。
冷凝器中的冷却剂(普通为水)通过与蒸汽接触,将蒸汽冷却下来,从而形成液体。
5. 蒸发器蒸发器是溴化锂机组中的最后一个组件。
它通过蒸发冷却剂,吸收周围空气中的热量,从而降低空气的温度。
蒸发器中的冷却剂在与空气接触的过程中,从液体状态转变为蒸汽状态,吸收热量,从而实现制冷效果。
6. 工作原理溴化锂机组的工作原理可以简单概括为以下几个步骤:- 步骤1:吸收器中的溴化锂溶液通过吸湿作用吸收空气中的水分,形成含有水分的溴化锂溶液。
- 步骤2:含有水分的溴化锂溶液进入发生器,通过加热使其释放出吸收的水分,形成干燥的溴化锂溶液。
- 步骤3:干燥的溴化锂溶液进入冷凝器,与冷却剂接触,蒸汽凝结成液体。
- 步骤4:冷凝后的溴化锂溶液进入蒸发器,与空气接触,吸收空气中的热量,从而降低空气的温度。
- 步骤5:蒸发器中的冷却剂蒸发成蒸汽,再次回到吸收器中,循环往复。
通过这个循环过程,溴化锂机组能够实现制冷效果,从而达到空调的目的。
总结:溴化锂机组利用溴化锂溶液的吸湿性质,通过吸收和释放水分来实现制冷效果。
溴化锂原理

溴化锂原理溴化锂是一种重要的化学物质,具有广泛的应用价值。
它是由锂和溴两种元素组成的化合物,化学式为LiBr。
溴化锂在空调、制冷、热泵等领域有着重要的用途,其原理主要涉及到物质的溶解、结晶和吸热放热等基本化学过程。
首先,溴化锂在空调和制冷领域中被广泛应用。
在空调系统中,溴化锂是一种吸收式制冷剂,它通过溶解和结晶的过程,实现了制冷循环。
当溴化锂溶解在水中时,会吸收大量的热量,使得水的温度降低。
而当溴化锂和水蒸气接触时,溴化锂会结晶并释放吸收的热量,使得水蒸气冷凝成液体。
这样循环往复,就能够实现空调系统中的制冷效果。
其次,溴化锂在热泵领域也有着重要的应用。
热泵是一种能够实现制热和制冷的设备,而溴化锂则是其中的重要工质之一。
在热泵制冷过程中,溴化锂吸收蒸发器中蒸发的水蒸气,从而实现制冷效果。
而在热泵制热过程中,溴化锂释放吸收的热量,使得水蒸气冷凝成液体,从而实现制热效果。
这种通过溴化锂的吸热放热过程实现制冷和制热的原理,为热泵的运行提供了基础支持。
除了在空调、制冷和热泵领域,溴化锂还在其他领域有着广泛的应用。
比如在化工生产中,溴化锂作为一种重要的催化剂和干燥剂,被广泛用于有机合成和干燥反应中。
此外,在医药和食品工业中,溴化锂也被用作防腐剂和抗菌剂。
这些应用都是基于溴化锂在溶解、结晶和吸热放热等化学过程中的特性。
总的来说,溴化锂的原理主要涉及到物质的溶解、结晶和吸热放热等基本化学过程。
它在空调、制冷、热泵以及化工、医药、食品等领域有着广泛的应用,为人们的生活和生产提供了重要的支持。
对于溴化锂的原理和应用,我们需要深入了解其化学特性和物理过程,以更好地发挥其作用,为社会发展和人类福祉做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暖通空调基础知识:溴化锂空调系统
溴化锂机组是利用热能作为机组的能源、通过溴化锂和水之间的吸收与释放、由水作为制冷剂循环来达到制冷的目的。
根据提供热能的方式,溴化锂机组又分为直燃型(燃油、燃煤气或燃天然气)、蒸汽型(热网蒸汽或自备锅炉提供蒸汽)和热水型(热网热水或自备锅炉提供热岁),由于不通热网,因此只能为直燃型。
由于水做制冷剂、溴化锂做吸收剂,使得制冷主机的特性完全不同于其他空调:
其优点如下:
1)系统的能源主要为热能,因此配电容量小(约为常规电制冷的1/3,冰蓄冷系统的1/2),运行耗电量小。
(但在停电时仍然不能运行,采用自备发电机只能保证部分水泵,整个系统不能供冷,无法象冰蓄冷系统开水泵全融冰可以供冷。
如果出现2003年夏季的限电使用开一半机组,则达不到空调效果,而冰蓄冷可以保证空调效果)
2)用于有废热产生的场合较为可行,如钢厂、纺织厂等,欧美发达国家溴化锂机组的应用均在有废热的场合。
3)(直燃型)冷热一体,不需另外配置采暖设备(采暖时就是一台燃气锅炉,但热效率比单独的燃气锅炉低一些)。
4)机房占地面积比冰蓄冷稍小。
不足之处:
1)由于溴化锂机组的特性,制冷量存在衰减(年衰减约为3%~8%),因此溴化锂机组的容量设计时按15%的余量配置。
2)制冷主机的出水温度高,实际运行高于8℃(众多的实际工程就均如此),空调效果差、制冷速度慢、上班前启动时间长,降低了大楼的品位。
同时由于供水温度高,必须加大末端设备的容量才能达到降低室内温度的效果,增大了投资。
3)溴化锂是具有腐蚀性的无机盐,容易造成机组的腐蚀和制冷量的衰减。
4)效率低,能效比(COP)约为0.81.2,属于节电不节能型产品,运行能耗高、运行费用高,在能源紧张的现在,发达国家根本就不提倡使用(除非有废热)。
5)由于采用水作制冷剂,必须确保系统真空度,但由于工艺以及实际运行后会产生不凝性气体,导致真空度下降,制冷量衰减。
6)溴化锂机组部分负荷运行时卸载能力差,因此部分负荷时容易造成大马拉小车状况,浪费运行费用。
如果只有部分区域冷负荷较小时机组甚至无法启动(低于机组的40%负荷即无法运行)。
当要求的冷量很小,远低于溴化锂机组能够启动运行的容量时无法供冷。
在部分负荷下运行,如果机组调节不好,溴化锂易结晶造成系统难以运行。
7)冷却水系统大于常规电制冷系统,冷却塔是冰蓄冷系统的2倍(详见后设备配置比较),补水量大,在屋顶的布置更难以处理。
冷却水管大,管道井也大。
8)由于溴化锂机组的特殊性,运行维护复杂。
日常的维护保养工作特别重要,如果保养不好,制冷量的衰减更快,因此日常的维护管理人员要求具有较高的专业水平,费用远高于电制冷系统。
9)溴化锂溶液必须每年保养更换,费用大。
现场更换容易造成系统不洁制冷效果下降。
10)机组尺寸大,需要更大的检修空间和通道。
11)油、气的价格持续走高且供应紧张,运行费用很高。
12)油气必须考虑消防因素,管理不方便。