高等代数课件(北大版)第六章线性空间§6.5
合集下载
高等代数北大三版向量空间

I. 涉及两个集合(其中一个集合……). II. 涉及两种运算(什么样的运算?). III. 满足8条运算性质.
惠州学院数学系
2. 向量空间的定义-抽象出的数学本质
定义1 设F是一个数域,V是一个非空集合.我们把V中的 元素称为向量,V称为向量空间,如果下列条件成立:
闭合性: (c1) V上有(闭合的)加法运算,即:对任意u,v属于V, 一定有u+v属于 V. (c2) F上的数对V上的向量有 (闭合的)数乘运算,即:对任意F中数 和V中元素v, 一定有: v属于V. 加法的性质: (a1) u+v= v +u,对所有u和v属于V. (a2) u+(v+w)= (u+v)+w, 对所有u、v和w属于V. (a3) V中存在一个向量பைடு நூலகம்记作o, 它满足:v+o= v 对所有V中的v. (a4) 给定V中每一个向量v, V中存在一个向量u满足:
➢ 向量空间产生有着丰富的数学背景,又在许多领域(包 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构.
➢ 向量空间是我们遇到的第一抽象的代数系统. 所谓代数 系统,就是带有运算的集合.通过本章的学习,初步熟悉 用公理系统处理代数问题的思维方法、逻辑推理的方法.
惠州学院数学系
§6.1 向量空间的定义和例子
(c1) f(x)+g(x) F[x], 任给f(x),g(x) F[x]. (c2) af(x) F[x],任给 aF,f(x)F[x]. (a1) f(x)+g(x)= g(x) + f (x), 任给f(x),g(x) F[x].
惠州学院数学系
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
惠州学院数学系
2. 向量空间的定义-抽象出的数学本质
定义1 设F是一个数域,V是一个非空集合.我们把V中的 元素称为向量,V称为向量空间,如果下列条件成立:
闭合性: (c1) V上有(闭合的)加法运算,即:对任意u,v属于V, 一定有u+v属于 V. (c2) F上的数对V上的向量有 (闭合的)数乘运算,即:对任意F中数 和V中元素v, 一定有: v属于V. 加法的性质: (a1) u+v= v +u,对所有u和v属于V. (a2) u+(v+w)= (u+v)+w, 对所有u、v和w属于V. (a3) V中存在一个向量பைடு நூலகம்记作o, 它满足:v+o= v 对所有V中的v. (a4) 给定V中每一个向量v, V中存在一个向量u满足:
➢ 向量空间产生有着丰富的数学背景,又在许多领域(包 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构.
➢ 向量空间是我们遇到的第一抽象的代数系统. 所谓代数 系统,就是带有运算的集合.通过本章的学习,初步熟悉 用公理系统处理代数问题的思维方法、逻辑推理的方法.
惠州学院数学系
§6.1 向量空间的定义和例子
(c1) f(x)+g(x) F[x], 任给f(x),g(x) F[x]. (c2) af(x) F[x],任给 aF,f(x)F[x]. (a1) f(x)+g(x)= g(x) + f (x), 任给f(x),g(x) F[x].
惠州学院数学系
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
第五节 线性子空间

§6.5 线性子空间
二、线性子空间的判定
线性空间一个非空子集要满足什么条件才能成 为线性子空间?
设 W 是 V 的子集合. 因为 V 是线性空间. 所 以对于原有的运算, W 中的向量满足线性空间定 义的八条规则中的 1) , 2) , 5) , 6) , 7) , 8) . 为了使W 自身构成一线性空间,主要的条件是要求W 对于V 中原来运算的封闭性,以及规则 3) 与 4)成立. 即
线上.
§6.5 线性子空间
z
k P2(kx1,ky1,kz1) P1(x1,y1,z1 )
o
y
x y 4 .5 线性子空间
例 7 证明集合 W = { (0 , x2 , x3 , … , xn ) | x2 , x3 , … , xn R } 是 Rn 的子空间,并求它的一个基,确定它的维
证毕
§6.5 线性子空间
定理 3 设 W 是数域 P 上 n 维线性空间 V 的
一个 m 维子空间,1 , 2 , … , m 是 W 的一个基 ,
那么这组向量必定可扩充为整个空间的基. 也就是
说在 V 中必定可以找到 n - m 个向量m +1 , m + 2 , …, n ,使得 1 , 2 , … , n 是 V 的基 .
可以扩充为整个空间的基. 根据归纳法原理,定理得证.
证毕
例 8 在 P 4 中,求向量组 1 , 2 , 3 , 4 生
成的子空间的基与维数.
1 (1,1,0,1) , 2 (0,1,2,4) , 3 (2,1,2,2) , 4 (0,1,1,1) .
§6.5 线性子空间
L(1 , 2 , … , m , m +1 )
二、线性子空间的判定
线性空间一个非空子集要满足什么条件才能成 为线性子空间?
设 W 是 V 的子集合. 因为 V 是线性空间. 所 以对于原有的运算, W 中的向量满足线性空间定 义的八条规则中的 1) , 2) , 5) , 6) , 7) , 8) . 为了使W 自身构成一线性空间,主要的条件是要求W 对于V 中原来运算的封闭性,以及规则 3) 与 4)成立. 即
线上.
§6.5 线性子空间
z
k P2(kx1,ky1,kz1) P1(x1,y1,z1 )
o
y
x y 4 .5 线性子空间
例 7 证明集合 W = { (0 , x2 , x3 , … , xn ) | x2 , x3 , … , xn R } 是 Rn 的子空间,并求它的一个基,确定它的维
证毕
§6.5 线性子空间
定理 3 设 W 是数域 P 上 n 维线性空间 V 的
一个 m 维子空间,1 , 2 , … , m 是 W 的一个基 ,
那么这组向量必定可扩充为整个空间的基. 也就是
说在 V 中必定可以找到 n - m 个向量m +1 , m + 2 , …, n ,使得 1 , 2 , … , n 是 V 的基 .
可以扩充为整个空间的基. 根据归纳法原理,定理得证.
证毕
例 8 在 P 4 中,求向量组 1 , 2 , 3 , 4 生
成的子空间的基与维数.
1 (1,1,0,1) , 2 (0,1,2,4) , 3 (2,1,2,2) , 4 (0,1,1,1) .
§6.5 线性子空间
L(1 , 2 , … , m , m +1 )
第六章 线性空间与线性变换

(7) (k + l)α=kα+lα , k,l ∈ F ; (8) k(lα )=(kl)α ,
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
高等代数【北大版】课件

线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.
高等代数北大版64

,?
n
)
? ? ??
a2 an
? b2 M ? bn
? ? ??
若? 1,? 2,L ,? n 线性无关,则
? a1 ?
? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaM2n ????
?
(?
1,?
2 ,L
,?
n
)
? ? ??
bbMn2 ????
?
? a1 ? ? b1 ?
? ? ??
aaMn2 ????
1)? 1,? 2 ,L ,? n ? V ,a1,a2,L , an , b1,b2,L , bn ? P
? a1 ?
? b1 ?
? a1 ? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaMn2 ????
?
(?
1
,?
2
,L
,? n )????bbMn2 ???? ? (? 1,? 2,L
§6.4 基变换与坐标变换
一、向量的形式书写法
1、V为数域 P上的 n 维线性空间,? 1,? 2 ,L ,? n 为
V 中的一组向量, ? ? V ,若
? ? x1? 1 ? x2? 2 ? L ? xn? n
则记作
? x1 ?
?
? (? 1 ,? 2 ,L
,?
n
)
? ? ??
xxMn2 ????
§6.4 基变换与坐标变换
二、基变换
1、定义 设V为数域P上n维线性空间,?1 ,?2 ,L ,?n ;
?1?,?2?,L ,?n? 为V中的两组基,若
高等代数第6章线性空间

a ∈ A表示a是A的元素, a ∈ A a∈A)表示a不是A的元素, (或
集合的表示法:列举ຫໍສະໝຸດ ; 集合的表示法:列举法;描述法{1,,,...,n,...} 23 {a ∈ C 存在正整数n,使得a = 1} |
n
集合的运算
M ∩ N = {x | x ∈ M且x ∈ N} M ∪ N = {x | x ∈ M或x ∈ N}
二、简单性质
的零元素) (1) 定义条件 3°中 0( 称为 的零元素)是唯 ° ( 称为V的零元素 一的. 一的. (2) 对于任意 α ∈ V,定义条件 °中 α’ (称为 ,定义条件4° α的负元素 )是唯一的.记为 α 。 是唯一的.记为(3) 0α = 0,k0 = 0. , . (4) 若kα = 0,则k = 0,或α = 0. , 或 . 证 若 k ≠ 0,则k-1(kα) = k-10 = 0. 而 则 k-1(kα) = (k-1k)α = 1α = α, 所以, 所以 α = 0. . (5) 每个向量 α 的负向量等于 (−1)α −
如果上述运算满足如下8条运算性质 则称V 如果上述运算满足如下 条运算性质, 则称 条运算性质 数域P上的 上的线性空间 是 数域 上的线性空间
1°加法交换律:α +β = β + α ; 加法交换律: 2°加法结合律:(α +β )+ γ = α + (β + γ); °加法结合律: ; 3°存在向量 ,使得对任一个向量α ,都有 °存在向量0, 都有 α+0=α; 4°对任一个向量α , 存在向量α ’,使得 ° α + α ’ = 0. 5°1的数乘 1α = α ; 的数乘: ° 的数乘 6°数乘结合律:k(lα) = (kl)α ; °数乘结合律: 7°数乘分配律:k(α +β ) = kα + kβ; °数乘分配律: 8°数乘分配律:(k + l)α = kα + lα. °数乘分配律: 中的向量, ∈ 其中α, β, γ 是V中的向量,k,l∈P. 中的向量
高等代数课件 第六章

空间 M n (F)的非空子集。又中M n (F) 的运算是矩阵的
加法及数与矩阵的乘法,而两个上三角形的和仍是一 个上三角形矩阵,一个数与一个上三角形矩阵的乘积 仍是上三角形矩阵,所以,由子空间的定义 ,U是
的 M n (F) 一个子空间。
W {A M n (F) | | A | 0}不是 M n (F) 的子空间, 因为n阶单位矩阵I及 – I ∈W,但 I (I ) O W
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
§6.1 向量空间的定义和例子
一、 引例——定义产生的背景
例1 设 F 是一个数域,F mn表示上m×n矩阵的集合, 回忆一下 F mn 上所能够施行的运算(教材P182):只有 加法和数乘两种,并且满足(教材P183):
6.2.1 子空间的概念 6.2.2子空间的交与和. 二、教学目的 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的 子空间. 3.掌握子空间的交与和的概念. 三、重点、难点 子空间的判别,子空间的交与和.
一、 子空间的概念
设V是数域F上一个向量空间. W是V 的一个非空 子集.对于W 中任意两个向量α,β,它们的和α+β是 V中一个向量. 一般说来,α+β不一定在W 内.如果W
中任意两个向量的和仍在W内,那么就说,W 对于V
的加法是封闭的.
同样,如果对于W中任意向量α和数域F中任意
数a,aα仍在W内,那么就说,W 对于标量与向量的
乘法是封闭的.
定理6.2.1 设W是数域F上向量空间V的一个 非空子集.如果W 对于V 的加法以及标量与向量乘法 是封闭的,那么本身也作成上一个向量空间.
加法及数与矩阵的乘法,而两个上三角形的和仍是一 个上三角形矩阵,一个数与一个上三角形矩阵的乘积 仍是上三角形矩阵,所以,由子空间的定义 ,U是
的 M n (F) 一个子空间。
W {A M n (F) | | A | 0}不是 M n (F) 的子空间, 因为n阶单位矩阵I及 – I ∈W,但 I (I ) O W
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
§6.1 向量空间的定义和例子
一、 引例——定义产生的背景
例1 设 F 是一个数域,F mn表示上m×n矩阵的集合, 回忆一下 F mn 上所能够施行的运算(教材P182):只有 加法和数乘两种,并且满足(教材P183):
6.2.1 子空间的概念 6.2.2子空间的交与和. 二、教学目的 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的 子空间. 3.掌握子空间的交与和的概念. 三、重点、难点 子空间的判别,子空间的交与和.
一、 子空间的概念
设V是数域F上一个向量空间. W是V 的一个非空 子集.对于W 中任意两个向量α,β,它们的和α+β是 V中一个向量. 一般说来,α+β不一定在W 内.如果W
中任意两个向量的和仍在W内,那么就说,W 对于V
的加法是封闭的.
同样,如果对于W中任意向量α和数域F中任意
数a,aα仍在W内,那么就说,W 对于标量与向量的
乘法是封闭的.
定理6.2.1 设W是数域F上向量空间V的一个 非空子集.如果W 对于V 的加法以及标量与向量乘法 是封闭的,那么本身也作成上一个向量空间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6
,2 , ,r V 设V为数域P上的线性空间, 1
令 W { k k k k P , i 1 , 2 , , r } 1 1 2 2 r r i
则W关于V的运算作成V的一个子空间.
, , , 即 的一切线性 1 2 r 组合所成集合.
2019/3/18
, W , k P , 其次, 3
( x y , x y , , x y , 0 ) W 则有 1 1 2 2 n 1 n 1 3
k ( k x , k x , , k x , 0 ) W 1 2 n 1 3
故,W3为V的一个子空间,且维W3 =n-1 ,
2019/3/18
数学与计算科学学院
2、线性子空间的判定
V 定理:设V为数域P上的线性空间,集合 W
(W ),若W对于V中两种运算封闭,即
W , k P ,有 kW
, W , 有 W ;
则W是V的一个子空间.
V ( W ) ,则 推论:V为数域P上的线性空间,W
, W ,, a b P , a b W . W是V的子空间
2019/3/18
数学与计算科学学院
证明:要证明W也为数域P上的线性空间, 即证W中的向量满足线性空间定义中的八条规则. 由于 WV ,规则1)、2)、5)、6)、7)、8) 是显然成立的.下证3)、4)成立.
2019/3/18
例4
n元齐次线性方程组
a a 1 1x 1 a 1 2x 2 1nx n 0 a a 2 1x 1 a 2 2x 2 2nx n 0 a x a x a x 0 sn n s1 1 s2 2
( *)
的全部解向量所成集合W对于通常的向量加法和数 量乘法构成的线性空间是 n 维向量空间 Pn 的一个子 空间,称W为方程组(*)的解空间.
数学与计算科学学院
一、线性子空间
1、线性子空间的定义
V ( W ) 设V是数域P上的线性空间,集合 W
若W对于V中的两种运算也构成数域P上的线性空间, 则称W为V的一个线性子空间,简称为子空间. 注:① 线性子空间也是数域P上一线性空间,它也 有基与维数的概念. ② 任一线性子空间的维数不能超过整个空间的 维数.
而在 W2中任取两个向量 , ,设
( x , x , , x ) , ( y , y , , y ) 1 2 n 1 2 n
( x y , x y , , x y ) 1 1 2 2 n n
但 是 () x y () x yx () y 1 1 2 2 n n
i i
( x , x , , x , 0 ) ,( y , y , , y , 0 ) 1 2 n 1 1 2 n 1
( 0 , , 0 , 1 , 0 , 0 ) , i 1 , 2 , , n 1
数学与计算科学学院
就是W3的一组基.
2019/3/18
W { ( x , x , ,, x 0 ) x P , i 1 , 2 , , n 1 } 3 1 2 n 1 i
W { ( x , x , , x ) x x x 1 , x P } 2 1 2 n 1 2 ni
若为Pn的子空间,求出其维数与一组基. 解:W1 、W3是Pn的子空间, W2不是Pn的子空间. 事实上,W1 是n元齐次线性方程组 ① 的解空间. 所以,维W1 =n-1,①的一个基础解系
子集合 W {0} 是V的一个线性子空间,称之为V的 零子空间.线性空间V本身也是V的一个子空间. 这两个子空间有时称为平凡子空间,而其它的 子空间称为非平凡子空间. 例2 设V为所有实函数所成集合构成的线性空间,
则R[x]为V的一个子空间. 例3 P[x]n是P[x]的的线性子空间.
数学与计算科学学院
数学与计算科学学院
二、一类重要的子空间 ——生成子空间
(1 ) W 封闭,有 ,即W中元素的负元素就是
它在V中的负元素,4)成立.
∵W ,∴ . 且对 , 由数乘运算 W W
( )W 由加法封闭,有 0 ,即W中的零元
就是V中的零元, 3)成立.
2019/3/18
数学与计算科学学院
例1
设V为数域P上的线性空间,只含零向量的
2019/3/18
数学与计算科学学院
x x x 0 1 2 n
Байду номын сангаас
( 1 , 0 , 1 , 0 ,, 0 ) , ( 1 ,1 , 0 ,, 0 ) ,
( 1 , 0 ,, 0 , 1 ) 就是W 的一组基.
n 1
1
2
,
1
则
数学与计算科学学院
第六章 线性空间
§1 集合· 映射 §2 线性空间的定义 与简单性质 §3 维数· 基与坐标 §4 基变换与坐标变换
§5 线性子空间
§6 子空间的交与和 §7 子空间的直和 §8 线性空间的同构 小结与习题
2019/3/18
数学与计算科学学院
§6.5 线性子空间
一、线性子空间 二、生成子空间
2019/3/18
( x x x ) ( y y y ) 1 1 2 1 2 n 1 2 n
W , 故W2不是Pn的子空间. 2
2019/3/18
下证W3是Pn的子空间.
首 先 0 ( 0 , 0 , , 0 ), W W 3 3
设
(a 注 ① (*)的解空间W的维数=n-秩(A),A ij ) s n;
② (*)的一个基础解系就是解空间W的一组基.
2019/3/18
数学与计算科学学院
例5
判断Pn的下列子集合哪些是子空间:
W { ( x , x , , x ) x x x 0 , x P } 1 1 2 n 1 2 n i