静电的起电机原理及其防治的方法

静电的起电机原理及其防治的方法
静电的起电机原理及其防治的方法

静电的起电机道理及其防治的方法

不知道诸位能否有过这样的阅历,当你用手去触摸一个金属物体的时辰,手感到猛的麻了一下。对,是静电。试想一下,假如此刻您触摸的不是其余的东西,而是您的CPU,内存能够是硬盘甚么的,呵呵,怎么样,不止是手麻了一下吧?

静电在咱们的保存中大约说是无处不在。着实早在公元前600年,希腊的Thales就已经发明并记载了静电,只无非在那个时辰人们称之为“鬼火”罢了。跟着光阴的推移,此刻,人们进入了一个数字化的全国里,各式各式的电子配备充斥在各个范围,尤其是在PC高度遍及的神童。咱们知道,共计机搜罗有大量的微功耗、低电平、高集成度、高电磁活络度的电路和元器件,以是,共计机是最简单受到静电损害的电子配备之一。

在探求静电对共计机的损害畴前,笔者以为有重要对静电的起电机理做一下简单的陈诉。物体的静电带电景象也叫静电起电,按照伏特——赫姆霍兹假说,大约把静电起电机理分为打仗、连系、抵触三个进程。而咱们平日保存中所碰见的静电景象也绝大荣华是固体和固体的打仗——连系起电。它的起电现实主假如指固体和固体之间的打仗——连系起电机理,即是指两种差别的固体亲密打仗、连系明日,将带上标记类似、电量相等的电荷,撤消固体和固体打仗——连系起电外,还有剥离起电、团结起电、电解起电等等。

共计机在使用进程中能在元器件外表积聚大量的静电电荷。最榜样的即是浮现器在使用事后用手去触摸浮现屏幕就会发生猛烈的静电放电景象,这即是浮现器屏幕上的电荷和咱们人体上所带异号电荷发生中和时所发作的静电放电景象,至于静电放电的定义,这里就不再论述,乘兴致的读者大约自行查阅质料。因为静电放电进程是电位、电流随机瞬时变动的电磁辐射,以是,不论是放电能量较小的电晕放电,仍是放电能量较大的火款式放电,都大约发作电磁辐射。而咱们在后头已经提到共计机自己搜罗有大量的高电磁活络度的电路以及元器件,以是,在使用进程中假如碰到静电放电景象(ESP),泛起的终于是不成猜想的。静电放电景象对共计机的损害可分为硬性损伤和软性损伤,硬性损伤即是指因为ESP过于强烈而导致的如显卡、CPU、内存等电磁活络度很高的元器件被击穿,从而无奈正常任务以至彻底报废。静电放电所组成的硬性损伤的破欠安程度主要取决于静电放电的能量及元器件的静电减速度,也和损害源和减速器件之间的能量耦合方法,彼此地位无关。软性损伤则是指因为静电放电时发作的电磁干扰(其电磁脉冲频谱可达Mhz~Ghz)组成的存储器内部存储过错、比特数位移位,从而发作如死机、非法操作、文件丢失、硬盘欠安道发作等隐性过错,绝对硬性损伤,它更难被发明。

如何解除静电损害是财富范围十分重要的一个课题。而为了咱们的爱机,咱们也要奋力的解除机器上的静电。起首,要解除咱们自己的静电。静电具有电压高、电场强的特性,在枯燥的低温状况下对地绝缘良好的人在脱衣服时,人体就带有数万伏的电压。有人曾经做过执行,当一个人私家在覆盖有PVC薄膜的椅子顶面疾速地坐下站立明日,他身体上所带静电电压为18Kv。这已经远远的凌驾了共计机芯片所能遭受的抗静电放电的耐压值。分外是当人体对地泄露电阻越大(如穿绝缘鞋底或地面绝缘)人体静电越简单积聚,组成较高的人体静电电位,这时人体的静电放电和静电损害就愈易发生。解除人体静电很简单,只要用手摸一下大地或和大地相连的导体就能监禁掉身体上的静电。而共计机上的静电如何迷失?静电迷失的末端毕竟是OK正负电荷的中和,OK静电迷失的路径主要有两条:一是经由空气,使物体上的电荷和大气中的异号电荷中和,另外一条即是经由带电体自己和大地相连的物体的传导感化使电荷向大地泄露,和大地中的异号电荷发生中和,又称静电接地。说到这里各人可要留心了,尤其是保具备城市里居住在楼房上的朋友,请看:根据我国无关标准(JXB110-91,GJB2527-95)和文献对静电接地做了严厉的定义:所谓的静电接地是指物体经由导电,防静电质料或其余制品和大地在电气上牢靠连接,确保静电导体和大地的电位相近。好了,看看你自己所接的地线吧(没接的朋友就不用看了)合适国标吗?着实在静电学上,即是对静电接地的方法及用料申请也是有着严厉的规定,比喻规定接地装置要有接地体,接地干线和接地支线组成,并对接地质料的长度,宽度都有很严厉的规定,但对于我等DIYer来说,假如按照那些标准来OK接地的话,估计有点儿不太现实,咱们只能敷衍了事了。一根铁丝即是咱们最好的质料,具体的接中央法我就不在这里频频了。

然则,不论咱们怎么接地,有一点是必重要留心的,那即是一定要保证接地体和大地在电气上是相连的。对于居住在楼房里的朋友来说,直接把导体引入土壤是不太简单OK的,咱们大约将做为导体的铁丝等质料接于自来水管壁上,此刻有的楼房还布有专门的接地线,这样更好。至于暖气片,则要看它的管道能否和大地不异(笔者地点的楼房的暖气管道就架在地面)。也或者有的朋友就对这样的接法不太放心,比方说万一机器漏了电,能够地线遭了雷击(不会这么巧吧?),那咱们的爱机岂不不幸透了?那您就在您的地线顶面串连一只开关好了,想让静电迷失的时辰只要一扳开关,真正的随心所欲。

更多对付静电的常识,请咨询人体静电消除器https://www.360docs.net/doc/294127812.html,/

静电的起电机原理及其防治的方法

静电的起电机道理及其防治的方法 不知道诸位能否有过这样的阅历,当你用手去触摸一个金属物体的时辰,手感到猛的麻了一下。对,是静电。试想一下,假如此刻您触摸的不是其余的东西,而是您的CPU,内存能够是硬盘甚么的,呵呵,怎么样,不止是手麻了一下吧? 静电在咱们的保存中大约说是无处不在。着实早在公元前600年,希腊的Thales就已经发明并记载了静电,只无非在那个时辰人们称之为“鬼火”罢了。跟着光阴的推移,此刻,人们进入了一个数字化的全国里,各式各式的电子配备充斥在各个范围,尤其是在PC高度遍及的神童。咱们知道,共计机搜罗有大量的微功耗、低电平、高集成度、高电磁活络度的电路和元器件,以是,共计机是最简单受到静电损害的电子配备之一。 在探求静电对共计机的损害畴前,笔者以为有重要对静电的起电机理做一下简单的陈诉。物体的静电带电景象也叫静电起电,按照伏特——赫姆霍兹假说,大约把静电起电机理分为打仗、连系、抵触三个进程。而咱们平日保存中所碰见的静电景象也绝大荣华是固体和固体的打仗——连系起电。它的起电现实主假如指固体和固体之间的打仗——连系起电机理,即是指两种差别的固体亲密打仗、连系明日,将带上标记类似、电量相等的电荷,撤消固体和固体打仗——连系起电外,还有剥离起电、团结起电、电解起电等等。 共计机在使用进程中能在元器件外表积聚大量的静电电荷。最榜样的即是浮现器在使用事后用手去触摸浮现屏幕就会发生猛烈的静电放电景象,这即是浮现器屏幕上的电荷和咱们人体上所带异号电荷发生中和时所发作的静电放电景象,至于静电放电的定义,这里就不再论述,乘兴致的读者大约自行查阅质料。因为静电放电进程是电位、电流随机瞬时变动的电磁辐射,以是,不论是放电能量较小的电晕放电,仍是放电能量较大的火款式放电,都大约发作电磁辐射。而咱们在后头已经提到共计机自己搜罗有大量的高电磁活络度的电路以及元器件,以是,在使用进程中假如碰到静电放电景象(ESP),泛起的终于是不成猜想的。静电放电景象对共计机的损害可分为硬性损伤和软性损伤,硬性损伤即是指因为ESP过于强烈而导致的如显卡、CPU、内存等电磁活络度很高的元器件被击穿,从而无奈正常任务以至彻底报废。静电放电所组成的硬性损伤的破欠安程度主要取决于静电放电的能量及元器件的静电减速度,也和损害源和减速器件之间的能量耦合方法,彼此地位无关。软性损伤则是指因为静电放电时发作的电磁干扰(其电磁脉冲频谱可达Mhz~Ghz)组成的存储器内部存储过错、比特数位移位,从而发作如死机、非法操作、文件丢失、硬盘欠安道发作等隐性过错,绝对硬性损伤,它更难被发明。 如何解除静电损害是财富范围十分重要的一个课题。而为了咱们的爱机,咱们也要奋力的解除机器上的静电。起首,要解除咱们自己的静电。静电具有电压高、电场强的特性,在枯燥的低温状况下对地绝缘良好的人在脱衣服时,人体就带有数万伏的电压。有人曾经做过执行,当一个人私家在覆盖有PVC薄膜的椅子顶面疾速地坐下站立明日,他身体上所带静电电压为18Kv。这已经远远的凌驾了共计机芯片所能遭受的抗静电放电的耐压值。分外是当人体对地泄露电阻越大(如穿绝缘鞋底或地面绝缘)人体静电越简单积聚,组成较高的人体静电电位,这时人体的静电放电和静电损害就愈易发生。解除人体静电很简单,只要用手摸一下大地或和大地相连的导体就能监禁掉身体上的静电。而共计机上的静电如何迷失?静电迷失的末端毕竟是OK正负电荷的中和,OK静电迷失的路径主要有两条:一是经由空气,使物体上的电荷和大气中的异号电荷中和,另外一条即是经由带电体自己和大地相连的物体的传导感化使电荷向大地泄露,和大地中的异号电荷发生中和,又称静电接地。说到这里各人可要留心了,尤其是保具备城市里居住在楼房上的朋友,请看:根据我国无关标准(JXB110-91,GJB2527-95)和文献对静电接地做了严厉的定义:所谓的静电接地是指物体经由导电,防静电质料或其余制品和大地在电气上牢靠连接,确保静电导体和大地的电位相近。好了,看看你自己所接的地线吧(没接的朋友就不用看了)合适国标吗?着实在静电学上,即是对静电接地的方法及用料申请也是有着严厉的规定,比喻规定接地装置要有接地体,接地干线和接地支线组成,并对接地质料的长度,宽度都有很严厉的规定,但对于我等DIYer来说,假如按照那些标准来OK接地的话,估计有点儿不太现实,咱们只能敷衍了事了。一根铁丝即是咱们最好的质料,具体的接中央法我就不在这里频频了。

维姆胡斯感应起电机原理详解

维姆胡斯感应起电机原理 丁炳亮 一、小电荷的放大 假如我们需要一个带1C 电量的小球,但是手头上只有一个带0.1C 电量的小球,如何能使小球的电量增加呢?下面将用一种非常简单的方法就可以使小球带的电量增加很多倍。 (第一步) (第二步) (第三步)

刚开始只有小球A是带少量电荷的,经过第二、第三步后得到了带电量比小球A多小球B1、B2。重复二、三步骤可以得到带更多电量的小球。上面实验中旁边的小球称为施感小球,中间两个小球用金属导杆连接在一起构成了电偶极子,移去连接小球的金属导杆再移开旁边的施感小球即可得到两个带异种电荷且电荷量略比施感小球多些的小球。当然,如果施感小球离中间两个小球太远就不一定能得到比施感小球多的电荷量。假设施感小球带的电荷量为Q1,一个施感小球能使电偶极子一边的小球得到电荷量为KQ1(可以肯定K是小于1),电场具有叠加性,则左右两个施感小球能使电偶极子一边的小球得到电荷量为2KQ1。2KQ1>Q1才能保证重复实验二、三步电荷量是不断增加的,即K>1/2。另外,需注意是先移开连线中间小球的金属导杆再移开施感小球,否则中间两个小球不能得到感应电荷。这点将在后面解释感应电机为什么反转不起电。 二、电荷的收集与存储 为了能得到更多的电荷需要在小球带的电荷达到一定量时用装置存储起来,但是一次只收集存储其中的一对小球,也就是说要轮流收集两对小球上的电荷,因为要留一对做为下一步的施感小球。存储电荷用的是一个特殊电容器(耐电压高,电容量小),称为莱顿瓶。如果莱顿瓶一直连在小球上则一有些电荷就会被存储,施感小球的电荷量一直上不去,使得产生电荷速度缓慢。所以需要在小球电荷达到一定量才开始收集存储。实现该目的的方法就是利用间隙放电,如下图中的集电梳,集电梳与小球之间有一定的间隙,当小球电荷量达到一定量时,间隙放电,才开始对莱顿瓶充电。 电刷 莱顿瓶

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

维氏起电机

维氏起电机 【实验目的】 演示起电现象,了解产生电荷的原理及其应用,观察电容器(莱顿瓶)的电容量 的变化情况。 【实验器材】 维氏起电机,包括由起电盘、放电球、莱顿瓶、感应电刷、皮带轮、集电梳、连接片,起电圆盘涂有许多片铝箔,如图37-1所示。 图37-1 【实验原理】 感应起电机是一种能连续取得并可积累较多正、负电荷的实验装置。莱顿瓶是个电容,用来储电。感应起电机在左右各有一莱顿瓶,两莱顿瓶集聚不同种电荷, 作为电源的正负极。 当顺时针摇动转轮上的摇柄时,由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与 Q2有大小之分。图37-2所示。 当圆盘转过90°时,S1与反面电刷B'相对,此时S2'、S1'分别与S1、S2相对。假设Q1>Q2,由于S1'与S2'之间有电刷连接,会引起自由电子移动,使得S1' 带正电荷,S2'带负电荷,图37-2(b)。 当圆盘再转过45°时,S1、S2分别顺时针转至与电极相接的悬空电刷E2、E1处,并在该处放电使E1、E2带正电荷,这些正电荷又被积聚在莱顿瓶C1、C2中, 图37-2(c)。

当圆盘再转过45°即S1转到与正面电刷B相对应时,S1与S1?相对,S2与S2'相对,刚经过放电的S1与S2恰好不再带有电荷。S2?带负电使得S2感应带正 电,又由于与 图37-2 图37-3 金属刷上铜丝摩擦也使它带正电,在二者共同作用下S2带上了正电荷;对于S1来说,S1'上的正电荷使其感应带负电荷,由于金属刷的连接作用,S2所带的正

感应起电机实验报告

感应起电机实验报告 篇一:感应起电机原理 感应起电机工作原理 及应用概述 学院:信息工程学院 班级:计01. 2班 组长:冯明浩0154038 小组成员:贾铮0154042 闫玮蓉0154054 张星0154056 日期:2002年12月20日 课题研究介绍 名称:感应起电机工作原理及应用概述 内容: 一、感应起电机基本结构。 二、感应起电机正转、反转状态下的工作原理。 三、拓展试验。

资料收集:冯明浩贾铮闫玮蓉张星 资料整理:贾铮 论文撰写:冯明浩贾铮闫玮蓉张星 主讲:闫玮蓉 试验操作:冯明浩 参考书目:《大学物理·电磁学》清华大学出版社张三慧主编《静电防护技术手册》电子工业出版社张宝铭主编《大不列颠百科全书》第五卷 参考网站: /retype/zoom/1b56b6d4b9f3f90f76c61b52 ?pn=3&x=0&y=0&raww=553&rawh=350 &o=png_6_0_0_439_282_337_213__&ty pe=pic&aimh=&md5sum=bfc23c0255ea7 e56ae71b40e01c0c6de&sign=8cbda26375 &zoom=&png=24362-125522&jpg=0-0” target=“_blank”>点此查看 这是因为没有莱顿瓶后其电容减小了,

可由公式U=Q/C解释:要产生电火花,两小球间电压约为几万伏,当C减小时,悬空电刷仅需要集聚很少电荷就可使电压升高到放电要求,故与原来相比,放电频率会加大。但是由于小球上每次放电所放出的电量减少了,相应电流也会减小,因而电火花很小。 二、感应起电机正转、反转状态下的工作原理 当顺时针摇动转轮上的摇柄时,分开的两个小球之间会有电火花产生,同时会听到噼里啪啦的放电声。这就是感应起电机的放电现象。这样的现象是如何产生的呢?下面我们就介绍一下它的原理。 由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与Q2有大小之分。如图:S1转过45°1===> S

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

(静电起电原理)静电起电机

范德格拉夫起电机工作原理 我们大多数人都见过这个能让人们的头发直立的、称作范德格拉夫起电机的设备。该设备看起来就像一个安装在底座上的大铝球,您可以从下图中看到它的效果。 Photo courtesy -->约翰·兹维萨和他的儿子近距离体验范德格拉夫起电机! 您是否曾经想知道这个设备到底是什么、它是如何工作的、发明它的目的是什么以及您自己如何制作一台这样的设备?当然,它不是为了让人们的头发直立而发明的……或者,您是否曾经在干燥的冬日里拖着赤足走过地毯,然后在碰到某个金属物体时受到从未有过的电击?您是否曾想了解静电和静电贴纸的奥秘? 如果您曾思考过上述任一问题,那么本文将为您提供完美的答案。在本篇博闻网文章中,我们将对范德格拉夫起电机和静电进行一般性的讨论。您甚至将学会如何制作自己的范德格拉夫起电机! 要了解范德格拉夫起电机以及它的工作方式,您需要了解静电。我们几乎全都熟悉静电,因为我们能在冬天看到并感觉到它。在干燥的冬日,静电能够在我们的身体中累积,并且使电火花从我们的身体跳到金属物体或其他人的身体上。当电火花跳跃时,我们能够看到、感觉到它,并听到电火花的声音。 词根英语中“electron”(电子)一词来自于希腊语中意思为amber(琥珀)的单词!

在科学课上,您还可能用静电做过一些实验。例如,如果您用丝绸摩擦玻璃棒或用毛线摩擦琥珀,那么玻璃和琥珀将产生静电荷,能够吸引小的纸片或塑料。 要了解在身体或玻璃棒产生静电荷时发生了什么事情,您需要了解组成我们日常所见之万物的原子。所有物质都由原子组成,原子本身由带电粒子组成。原子具有由中子和质子组成的原子核。它们还具有由电子组成的“外壳”。通常,物质呈电中性,这意味着电子和质子的数量相等。如果原子具有的电子数超过质子数,则原子带负电。如果它的质子数超过电子数,则带正电。 一些原子保持电子的能力比其他原子强。物质保持电子能力的强弱决定了它在摩擦电序中的位置。如果一种材料在与其他材料接触时更容易放弃电子,则它在摩擦电序中具有更高的正电性。如果一种材料在与其他材料接触时更容易“捕获”电子,则它在摩擦电序中具有更高的负电性。 下表显示了您可以在家中找到的许多材料的摩擦电序。摩擦电序中的正电性材料位于顶部,负电性材料位于底部: 人手(尽管通常过于潮湿)极强正电性 兔皮 玻璃 人的头发 尼龙 毛线 毛皮 铅 丝绸 铝 纸 棉花 钢电中性 木头 琥珀 硬橡胶 镍、紫铜 黄铜、银 金、铂

电动机的工作原理及其在生活中的应用

电动机是第二次科技革命中的最重要的发明之一,它至今仍在我们的社会生产、生活中起着极为重要的作用,机床、水泵,需要电动机带动;电力机车、电梯,需要电动机牵引。家庭生活中的电扇、冰箱、洗衣机,甚至各种电动玩具都离不开电动机。电动机已经应用在现代社会生活的各个方面。 对于电动机的工作原理,我引用了中学课本中的以下内容。我们知道,磁体在磁场中会受到力的作用。通电螺线管有磁性,像一个磁体,也会受到磁场的作用力。电动机就是利用这一原理制成的。 实际的直流电动机都有多个线圈,每个线圈都接在一对换向片上。有的直流电动机还用电磁铁来产生强磁场。 电动机构造简单、控制方便、体积小、效率高、功率可大可小,广泛地应用在社会生活中。以下我简单地说明一下电梯、手机震动以及冰箱压缩机的工作原理。 电梯在工作时,曳引绳两端分别连着轿厢和对重,缠绕在曳引轮和导向轮上,曳引电动机通过减速器变速后带动曳引轮转动,靠曳引绳与曳引轮摩擦产生的牵引力,实现轿厢和对重的升降运动,达到运输目的。 手机震动利用的是偏心电动机,也就是普通电动机头上装了一个凸轮,而凸轮的重心并不在电动机的转轴上,在转动时,由于离心力的作用,拿在手机里的手机就感觉是振动了。 冰箱和空调都是利用制冷压缩机达到制冷目的的。制冷系统内制冷剂的低压蒸汽被压缩机吸入并压缩为高压蒸汽后排至冷凝器。同时轴流风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为高压液体。高压液体经过过滤器、节流机构后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量。同时贯流风扇使空气不断进入蒸发器的肋片间进行热交换,并将放热后变冷的空气送向室内。如此室内空气不断循环流动,达到降低温度的目的。而压缩机的核心部件就是电动机。 电动机从发明之日起,一个多世纪以来,对人类社会的发展产生了极大的推动作用,大大提高了社会生产力水平,至今仍在整个社会机器大生产时代发挥着极为重要的作用。 科技的发展总是带动社会的变革,从而推动整个人类社会的发展。今天,我们仍然要大力发展科学技术,使有益于社会向更好的方向发展的科技成果更快、更好地应用于社会生产中,更大程度地促进社会的发展。 艾驰商城是国内最专业的MRO 工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上

电机分类 结构和原理

电机知识学习总结 1基本知识介绍 1.1直流、单相交流、三相交流 1.2交流下有“同步和异步”的区别 同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。 同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。 异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。 区别:(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。 同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动。因此同步电机需要鼠笼绕组启动。转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。 1.3永磁、电磁、感磁(构成定子、转子) 永磁——永磁铁 电磁——通电线圈 感磁——无电闭合绕组、鼠笼 永磁和电磁大多数情况下可以互换,感磁需要有旋转磁场的场合才能用,在三相同步电机中经常作为启动与电磁/永磁共用于转子。 1.4有刷无刷 电机有刷和无刷对电机结构影响很大,刷指的是转子通电时的电刷换向器、或者滑环。

织物感应静电测试仪原理

织物感应静电测试仪原理 做为测量对象的静电可认为有两种类型。一种是工厂某地已经产生的;另一种是在实验室的基础研究中使之产生的。前者需要正确地掌握带电状况,考虑此时所具有的诸条件,找出排除故障的适当方法。后者要求能准确地控制实验条件,得到有再现性的实验结果。为此,必须充分理解测量的方法,进而预先研究分析产生静电的因素,也是完全必要的. 1.感应起电 感应起电通常是对导体来说的。这里介绍的是电介质在静电场中由极化而使其带电的方法,也把它称为感应起电。在电场中,电介发生极化,极化后的电介质,其电场将周围介质中的某种自由电荷吸向自身和电介质上与之符号相反的束缚电荷中和。外电场撤走后,电介质上的两种电荷已无法恢复中性,因而带有一定量的电荷,这就是感应起电. 放电衰减 物体带电后,内部电荷的逸散符合指数衰减规律。 Q=Q0e-t/ε0εrρr (1) 将电量衰减的时间常数τ=ε0εrρr代入(1)式得:Q=Q0e-t/τ(2) 电量衰减时间常数τ可用静电衰减测量仪来测量,而在实际的纤维和织物的静电测试中,人们直接取电量衰减至原测试值的一半(Q=1/2Q0)时所用的时间,也就是静电半衰期t1/2表征静电荷的逸散能力。它是衡量纤维消除静电荷性能的一个重要指示,将式(2)加以变换得 τ=t/lnQ0/Q (3) 以Q=Q0/2代入式(3)得到静电半衰期t1/2与电量衰减时间常数τ之间的关系:

t1/2= 1/1.44·τ=0.69τ 2.试验方法 使被测试样起电的方法有很多种。在试验当中,需要一种能够提供稳定的并能够穿透一定空间(空气)的电源,以及在检测中受环境的影响比较小的条件下进行。这种办法就是电晕放电和比较电极法检测。. 2.1电晕放电 需要说明的是场带电和扩散带电需要高浓度的单极性离子。由于它们相互排斥和高的迁移率,这种离子寿命很短。因此要用这些带电方法,必须要连续不断地产生离子。放射性的放电、紫外线照射、火焰及电晕放电能在空气中产生离子。只有最后一种方法——电晕放电能产生高浓度的单极离子以使试样保持稳定带电状态。 为产生电晕放电,必须建立一个不均匀的电场。像针与平板之间、空气和其它通常是良好的绝缘体,但在电场强度足够高的区域中空气受到电离并成为可导电的。根据场的几何形状不同,这种电荷可能是电弧放电或电晕放电。 在电晕区域,电子被加速到相当高的速度,可以在撞击一个空气分子时把一个电子撞出来,于是产生一个正离子和一个电子。在电晕区域内是以自维持雪崩的形式发生这个过程,从而在导线周围产生了浓密的自由电子云和正离子云,这叫电晕放电。 2.2非接触式的测量方法 静电电位的测量分为接触式和感应式两种。 由于物体所带的静电大都有静电压高,而电流小,且一次性损耗后不易再补上的特点。所以接触性仪表大都采用了光反射法,不仅体积较大,量度不精确,使用范围也受到了限制。 直接感应仪表测量法是用电容分压原理。它的精度取决于电压表固有电容和测试板对地的分布电容,且感应电荷会通过表内电阻而逐步泄漏。因此,电压表上读出的电压将随时间逐渐衰减。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

静电感应起电机

静电感应起电机 工作原理 当顺时针摇动转轮上的摇柄时,分开的两个小球之间会有电火花产生,同时会听到噼里啪啦的放电声。这就是感应起电机的放电现象。这样的现象是如何产生的呢?下面我们就介绍一下它的原理。 由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与Q2有大小之分。如图: (1) 转过90° (2) 转过45° (3) 转过45° (4) 转过45° (5) 转过45° (6) 转过45° (7)当圆盘转过90°时,S1与反面电刷Bˊ相对,此时S2ˊ、S1ˊ分别与S1、S2相对。假设Q1>Q2,由于S1ˊ与S2ˊ之间有电刷连接,会引起自由电子移动,使得S1ˊ带正电荷,S2ˊ带负电荷。 当圆盘再转过45°时,S1、S2分别顺时针转至与电极相接的悬空电刷E2、E1处,并在该处放电使E1、E2带正电荷,这些正电荷又被积聚在莱顿瓶C1、C2中。 当圆盘再转过45°即S1转到与正面电刷B相对应时, S1与S1ˊ相对,S2与 S2ˊ相对,刚经过放电的S1与S2恰好不再带有电荷。S2ˊ带负电使得S2感应带正电,又由于与金属刷上铜丝摩擦也使它带正电,在二者共同作用下S2带上了正电荷;对于S1来说,S1ˊ上的正电荷使其感应带负电荷,由于金属刷的连接作用,S2所带的正电荷会导致电子移动(如图4)使S1带负电,这样,虽然有摩

擦产生的正电荷也会被以上两种作用所产生的负电荷抵消,因此S1还是带负电荷。 圆盘再转过45°时,S1ˊ与S2ˊ恰好分别转到悬空电刷E2ˊ与E1ˊ处。带正电的S1ˊ在E2ˊ处放电后不再带电,E2ˊ上的负电荷被中和使E2ˊ带正电,这些正电荷被莱顿瓶C2积聚到放电叉T2的放电小球上;带负电的S2ˊ在E1ˊ处放电后也不再带电,且E1ˊ上的正电荷被中和使E1ˊ带负电,这些负电荷被莱顿瓶C1积聚到放电叉T1的放电小球上。 如果圆盘又转过45°, S1又与S2ˊ相遇,S2与S1ˊ相遇,且此时S1﹑S2与反面电刷Bˊ相对,S1ˊ﹑S2ˊ分别在E2、E1处放电后不再带电。此时的电荷变化与过程(4)相似, 因此与S1相对的S2ˊ带正电荷, 与S2相对的S1ˊ带负电荷。 当圆盘再转过45°,此时S1﹑S2恰好分别转到悬空电刷E1﹑E2处。S1在E1 处放电使得负电荷被积聚到放电叉T1的放电小球上,S2在,E2处放电使得正电荷被积聚到放电叉T2的放电小球上。之后转动摇柄,电荷的变化情况将重复过程(3)~(7),由于两盘的逆向旋转,转至与电极相接的悬空电刷E2、E2ˊ处的金属片将全部带正电,转至与电极相接的悬空电刷E1、E1ˊ处的金属片将全部带负电。莱顿瓶C2感应到放电小球T2上的正电荷会越来越多,而被莱顿瓶C1感应到放电小球T1上的负电荷也会越来越多,当小球聚集一定电荷时,就会产生放电现象。在莱顿瓶盖内放电叉与悬空电刷之间的空气也会被电离,使放电叉与悬空电刷在短时间内相当于一个导体,将事先聚集在莱顿瓶中的电荷大部分中和之后,再一次重复上述过程。 但是,起电机并不是从一开始就可以放电的,因为空气被击穿需要一定的电压,这就需要积聚一定的电荷,而放电叉T1、T2上电荷的积累需要一定时间,所以当起电机长时间不用后要摇动摇柄一定时间后T1、T2间的电压才能达到击穿电压而产生放电现象。 那么,反向转动摇杆时是否也会达到相同的效果呢?回答是否定的,因为反转时虽然起电机原理和正转一样,但由于正反两面的铝片在摩擦起电后都没有再经过另一侧电刷,而是直接在悬空电刷处放电,使两个莱顿瓶带有同种电荷,因此不会放电。

H桥电机驱动原理与应用

H 桥电机驱动原理与应用 我们首先来看马达是如何转动的呢?举个例子: 你手里拿着一节电池,用导 线将马达和电池两端对接,马达就转动了;然后如果你把电池极性反过来会怎么 样呢?没有错,马达也反着转了。 OK 这个是最基本的了。现在假设你想用一块指甲盖大小的微控制芯片 (MCU >你又如何控制马达的呢?首先,你手上有一个固态的状态开关——一个 晶体管一一来控制马达的开关。 提示:如果你用继电器连接这些电路的时候, 要在继电器线圈两端并一个二 极管。这是为了保护电路不被电感的反向电动势损坏。二极管的正极(箭头)要 接地,负极要接在MCI 连接继电器线圈的输出端上。 电路连接好后,你可以用一个逻辑输出的信号来控制马达了。 高电平(逻辑 1)让继电器导通,马达转动;低电平(逻辑 0)让继电器断开,马达停止。 在电路相同的情况下,把马达的“极性”反过来接,我们可以控制马达的翻 转和停止。 问题来了:如果我们要同时需要马达能够正转好反转, 怎么办?难道每次都 要把马达的连线反过来接? 我们先来看另一个概念:马达速度。当我们在其中一种状态下,频繁的切换 开关状态的时候,马达的转速就不再是匀速,而是变化的了,相应的扭矩也会改 变。 通常反应出来的是马达速度的变化。 +JS

我们想要同时控制正反向的话,就需要更多的电路——没错,就是H桥电路。H桥电路的“ H'的意思是它实际电路在电路图上是一个字幕H的样式。下图就是一个用继电器连接成的H桥电路。 处于“高”位置的继电器是控制电源流入的方向,称之为“源”电路;处于“低”位置的继电器是控制电源流入地的方向,称之为“漏”电路。 现在,你将左上电路(A)和右下电路(D)接通,马达就正转了(如下图)此时各个端口的逻辑值为A-1、B-0、C-0、D-1. 1| i c) ARID ran-st ia-n

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

带电体吸引小物体的原理(1)

带电体吸引小物体的探讨 摘要:带电体能吸引小物体的原因是小物体在带电体的电场作用下也带上了电,金属类的小物体和电介质类的小物体带电的原理不同。 关键词:带电体吸引小物体静电感应电介质极化 在中学物理教材里面讲到带电体能吸引轻小物体,为什么带电体会吸引轻小物体的呢?在教学中发现很多学生对这个问题的理解存在疑问。 带电体的周围存在电场,使轻小物体在靠近它的一端出现异种电荷,在远离它的一端出现等量的同种电荷。两电荷之间的作用力是跟它们的电量的乘积成正比,跟它们间的距离的平方成反比。因此,带电体对较近的异种电荷的吸引力大于对较远的同种电荷的排斥力,所以带电体能吸引轻小物体。构成轻小物体的物质不同,它两端出现等量异种电荷的情况也不同。 通常讲的小物体包括金属和电介质。金属在靠近带电体的时候会发生静电感应现象从而带上电。电介质是指不导电的物质,内部没有可以移动的电荷。若把电介质放入静电场场中,电介质原子中的电子和原子核在电场力的作用下在原子范围内作微观的相对位移,而不能象导体中的自由电子那样脱离所属的原子作宏观的移动。达到静电平衡时,电介质内部的场强也不为零。这是电介质与导体电性能的主要差别。 一、带电体吸引导体类小物体的原理 电荷能够从产生的地方迅速转移或传导到其他部分的物体称作导体,如金属、电解液、人体、地球等。带电体靠近金属小物体靠近小金属物体时,在外电场的作用下向与电场方向相反的方向移动,使导体在靠近带电体的一面出现与带电体异种的电荷,远的一端出现与带电体同种的电荷,这种现象叫静电感应。小金属物在带电体的电场作用下发生静电感应现象,小金属物体就变成了一个两端带异种电荷的带电体。从宏观上看,小金属物体由于两端带等量异种电荷而表现出不带电,但是从微观分析小金属物的受力可以发现带电体给小金属物两端的异种电荷的库伦力并不能相平衡。如图1示,假设一带正电小球靠近一个小金属物,小金属物左端将带 上负电,右端带上等量的正电。由于右端比左端离带电球距离更大,因此F 1>F 2 ,小 金属物受的合力方向指向带电球,这个合力使小金属物往带电球靠近,直到被吸引到带电体上。实验证明起电机上的带电金属球靠近铁屑时,铁屑马上会在电场的影响下有震动,有的会直立起来,再靠近点时,就会有被吸到金属球上,且马上被弹下来的现象,可以清晰的听到被弹下来的铁屑打在纸上的啪啪声。产生这个现象的原因是:带电金属球上的电荷是自由电荷可以转移给铁屑,使得铁屑与带电金属球带同种电荷,因此铁屑在吸到带电金属球上后会受到斥力而马上落下来。

关于开尔文起电机的实验笔记

关于开尔文起电机的实验笔记: 绝缘对于装置的重要性: 在理想状况下,由于系统的绝缘性非常好,两 铝锅之间所能达到的电位差会非常高,达到数万 伏.但是,在实际实验的过程中,系统的绝缘性不

可能非常好,也就是说,电荷会因为尖端放电、溶 液表面与空气的电荷交换以及系统与地面之间的 漏电等原因而不断流失,则两铝锅之间的电位差 存在一个最大值.随着两铝锅之间的电位差不断 增加,静电感应会不断强化,但同时电荷流失速度 也不断加快.当电荷的积累与电荷的流失达到平 衡时,两铝锅之间的电位差也就达到最大 5月16日星期四 经过小组内的探讨,我们决定做一个简易的开尔文起电机。所需要的材料有: 一个1.5L的可乐瓶,2个易拉罐,若干导线(带架子),一个带磁铁的塑料平台,铁架台,静电计,万用表(用来检测电路通断),两个金属桶,2个点滴器(用来引流)。 在做实验的过程中发现静电计完全没有反应,推测是电荷被导走,所以没有电荷积累。通过思考和查资料发现是由于装置的绝缘没有做好,导致装置中的金属裸露在空气中,又因为空气湿度较高,富含大量正负离子,所以能够很快的与起电机产生的少量电荷中和,导致现象很不明显。(参考开尔文起电机在潮湿环境中的研究)。所以,第一天我们完成了整个装置的滴水线路部分(主要将点滴器与塑料瓶连通)。 5月23日星期四 为保证装置与空气良好绝缘,我们做了如下处理: 1.将用易拉罐瓶身做的感应圆环用漆包线缠绕的塑料圆环代替,保证了绝缘性 2.用塑料保温壶盖代替金属桶 3.将导线的裸露在外面的架子用电工胶布包裹 4.在下端储水盒的表面用一层油覆盖,避免水面直接与空气接触 为增强水的导电性能,在自来水中加入了一定量的NaCl,以增加其中含有的自由离子浓度 但不幸的是,做实验时发现,仍旧没有明显现象,经过思考发现是由于装置绝缘做的太好,导致起电机不能再通过自然方式带电,所以需要人工加一定量的初始电荷或电压。尝试了实验室中的范式起电机,但由于它年久失修,所以起电效果很不明显。所以,我们在网上订购了一台感应起电机。 5月26日 将感应起电机的一个金属杆与线圈的一端相连,另一个线圈与另一个金属杆相连,使得将装置连接好后,发现当启动感应起电机时,水滴的流速明显加快,有种被“吸”出来的感觉,而且水滴在线圈平面处发生明显的偏转,甚至还有向上偏转的水滴。但当感应起电机停止后,上述现象也消失了。 这令我们非常的困惑,初步推测还是漏电的原因,经过仔细的观察,发现可能是由于感应起电机裸露的金属球将电荷导走。于是,我们又做了一次探究——在转动感应起电机的过程中,将连接在其上的架子去掉。但不幸的是,一旦装置与感应起电机的连接断开,现象便消失了。又重新做了几次,发现依旧如前。

云的起电理论

关于云的起电理论很多,但目前还没有一种理论能够圆满地解释上述的所有问题,因为大气的运动在实验室里是模拟不出来的。下面介绍几种比较完善的理论。 (1)温差起电理论 一般情况下,如果一块物体冷热不均,热端带负电,冷端带正电。云中的冰晶、水滴、冰雹等因接触、碰并、破碎、摩擦等作用,使得冰晶带正电,水滴、冰雹等带负电。冰晶的密度小于水滴,小而轻,漂浮在云的上部。 (2)感应起电理论 在晴天电场的作用下,云滴被极化,使它们下半部带正电,上半部带负电,通过云内的运动,产生上正下负两个主要的电荷中心,两个中心建立后,方向向下的电场得以加强,便会产生一个正反馈机制。 (3)切割磁力线理论 北半球的云一般自西向东移动,而地球的磁力线则是由南极指向北极根据右手定则判断,正电荷向上移动,负电荷向下运动。 (4)破碎起电理论 水滴在气流的剧烈运动中分裂成带负电的较大颗粒和带正电的较小颗粒,后者被上升气流带到高空。 云底带少量的正电:地面的感应或地面的尖端物体带的正电荷被强烈的上升气流带入云底。 雷电的形成机理是大气物理学的一个分支。主要研究电离层以下大气中发生的各种电现象和它们的产生与相互作用过程的规律及应用。大气电学有两大主要部分:晴天电学和扰动天气电学。晴天电学主要研究晴天大气电场、大气电导率、地空电流和全球大气电平衡等;扰动天气电学主要研究雷雨云电结构和起电机制、雷与闪电过程、尖端放电过程与避雷方法等。大气电场 把地表面视为下极板、电离层导电层视为上极板,组成巨大球形电容两极板中间的大气基本不含电荷,上极板导电层含有正电荷,下极板的地表面含负电荷,这巨大电容器中间的电场称大气电场。规定大气电场方向从低电位的地面朝上(与物理学静电学规定相反)。尽管雷雨云移到某处时,雷雨云底部与相对应下垫面间的电场方向是向下的,但对全球而言,雷雨云区所占比例很小(约1%),故总体大气电场的方向是朝上的。晴天电场常被看作正常大气电场,其场强随纬度增大而增强、随离地面高度而变小,全球平均看,陆区地表面附近电场强度为120伏/米左右,海面上则约为130伏/米。在工业区污染严重、气溶胶粒子多的地方,晴天电场强度可达300~400伏/ 米。晴天电场场强随高度减弱是很强烈的,在10公里高度处的值仅为地面值的3%即约4伏/米。晴天电场强度有日变化和年变化。陆面在地方时04-06时和12-16时出现极小值,07─10时和19─21时为极大值;一年之中,冬季为极大值、夏季为极小值。在海面和两极地区,在世界时19时出现极大值,04时左右为极小值,这些地区大气电场年变化不明显。 大气电导率和离子迁移率 大气不仅含中性分子和原子,还含有一些离子,这些离子分为轻离子(由几个分子聚集在一起而带一个正电荷或负电荷,直径约千分之一微米)和重离子(荷电的气溶胶粒子,常带一个正电荷或负电荷,比轻离子大成千上万倍)。描述大气离子在电场中移动快慢的参数称迁移率,由于大气离子基本上都只带一个单位电荷,所以在同样的电场强度的电场中,轻离子的迁移率要比重离子的大得多。例如在场强为1伏/厘米的电场中,大气轻离子移动速率为115厘米/秒,而重离子的移动速率只是这个数的几百分之一。

相关文档
最新文档