电力电子技术实验指导书

合集下载

电力电子技术实验指导书

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用班级学号姓名同组人员实验任务一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。

2.掌握单结晶体管触发电路的调试步骤和方法。

3.详细学习万用表及示波器的使用方法。

二.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.MEL—03A组件5.双踪示波器(自备)6.万用表(自备)7. 电脑、投影仪三.实验线路及原理将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。

图1单结晶体管触发电路图四.注意事项双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。

为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。

当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。

五.实验内容1.实验预习(1)画出晶闸管的电气符号图并标明各个端子的名称。

(2)简述晶闸管导通的条件。

(3)示波器在使用两个探针进行测量时需要注意的问题。

2. 晶闸管特性测试请用万用表测试晶闸管各管脚之间的阻值,填写至下表。

+A K G-AKG3.单结晶体管触发电路调试及各点波形的观察按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。

合上主电源,即按下主控制屏绿色“闭合”开关按钮。

这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。

《电力电子技术》实验指导书_图文

《电力电子技术》实验指导书_图文

电力电子技术实验指导书适用专业:卓越自动化李建华编写江苏科技大学电子信息学院2014 年 9月前言《电力电子技术》课程是电气工程及其自动化专业和自动化专业的一门学科基础课,测控技术与仪器专业的专业选修课。

本课程的目的和任务是使学生了解电力电子技术的发展概况、技术动向和新的应用领域。

熟悉各种电力电子器件的特性和选用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计的基本计算方法及基本实验技能;熟悉各种常用电力电子装置的应用范围及技术经济指标。

同时为《电力传动自动控制系统》等课程打好基础。

实验环节是这门课程的重要组成部份,通过实验可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。

根据教学大纲要求,本课程实验共开出三相全控桥式整流电路、交流单相调压、直流降压斩波电路三个实验,均为综合性实验。

学生通过实验能掌握电力电子变流装置主电路、触发电路和驱动电路等的构成及调试方法及应用;熟悉并掌握基本实验设备、测试仪器的性能及使用方法;能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;能够综合实验数据,解释实验现象,编写实验报告。

实验一:三相桥式全控整流电路的性能研究实验学时:2实验类型:(设计研究实验要求:(必做一、实验目的1、加深对三相桥式整流电路电阻性负载,电阻、电感性负载时工作情况的理解。

2、对实验出现的问题进行分析并排除。

二、实验内容1、三相桥式全控整流电路接电阻性负载。

2、三相桥式全控整流电路接电阻、电感性负载。

三、实验原理、方法和手段三相桥式全控整流电路实验原理框图如图1-1所示。

控制电路直流电源单元提供+15V、-15V电源给正给定单元、三相脉冲移向电路单元(LY105。

正给定单元输出1作为LY105单元移向控制电压(Uct。

Ub1f接地,输出正桥触发脉冲。

LY121-1主电源输出(A2、B2、C2作为正组桥晶闸管主电路输入电源。

图1-1 三相桥式全控整流电路实验原理框图四、实验组织运行根据本实验的特点、要求和具体条件,采用集中授课形式。

电力电子技术实验指导书

电力电子技术实验指导书

同学们:这是我们电力电子技术实验指导参考书,请同学们结合实验内容和要求参考实验参考书完成预习报告和实验2021~2021学年第一学期电力电子技术实验指导参考书实验1 三相桥式全控整流电路的性能研究实验目的1、熟悉三相全控桥式整流电路的结构特点,以及整流变压器、同步变压器的连接;2、掌握KC785集成触发电路的应用;3、掌握三相晶闸管集成触发电路的工作原理与调试〔包括各点电压波形的测试与分析〕。

4、研究三相全控桥式整流供电电路〔电阻负载时〕,在不同导通角下的电压与电流波形。

二、实验电路与工作原理〔一〕三相全控桥式整流电路如图7-1所示。

图7-1三相晶闸管全控桥式整流电路〔单元7〕1、图中6个晶闸管的导通顺序如图7-2所示。

它的特点是:①它们导通的起始点〔即自然换流点〕;对共阴极的VT1、VT3、VT5,为uΑ、uB、uC 三个正半波的交点;而对共阳极的VT4、VT6、VT2,那么为三相电压负半波的交点。

②在共阳极和共阴极的管子中,只有各有一个导通,才能构成通路,如6-1、1-2、2-3、3-4、4-5、5-6、6-1等,参见图7-2。

这样触发脉冲和管子导通的顺序为1→2→3→4→5→6,间隔为60°。

③为了保证电路能启动和电流断续后能再触发导通,必须给对应的两个管子同时加上触发脉冲,例如在6-1时,先前已给VT1发了触发脉冲,但到1-2时,还得给VT1再补发一个脉冲〔在下面介绍的触发电路中,集成电路KC41C的作用,就是产生补脉冲的〕,所以对每个管子触发,都是相隔60°的双脉冲,见图7-2b〔当然用脉宽大于60°的宽脉冲也可以,但功耗大〕。

2、在图7-1中,TA为电流互感器〔三相共3个〕,〔HG1型,5Α╱2.5mΑ,负载电阻<100Ω〕,由于电流互感器二次侧不可开路〔开路会产生很高电压〕,所以二次侧均并有一个负载电阻。

〔二〕整流变压器与同步变压器的接线如图7-3所示。

(整理)电力电子实验指导书完全版

(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。

将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。

图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。

六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。

波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。

电力电子实验指导书完全

电力电子实验指导书完全

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。

将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。

图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。

六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形UVT ,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、UVT波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。

2.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。

电力电子技术实验指导书最新版

电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。

电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。

电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。

电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。

波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。

因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。

由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。

二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。

1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。

可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。

电力电子技术实验指导书

电力电子技术实验指导书

实验一 功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET 主要参数的测量方法 2.掌握MOSEET 对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法三.实验设备和仪器1. NMCL-07电力电子实验箱中的MOSFET 与PWM 波形发生器部分 2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档)图2-2 MOSFET实验电路五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源极电压。

在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。

将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。

读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。

★注意mosfet刚开启时的漏极电流距离完全开通时的漏极电流相差很远,因此在1mA之后的四个点之间的距离需要取大一些,这样才能测量出较为完整的特性曲线。

此步骤所测得的特性曲线又称为mosfet的转移特性曲线,完整的转移特性曲线示意图如下所示(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。

跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。

★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。

电力电子技术实验指导书(定)

电力电子技术实验指导书(定)

电力电子技术实验指导书1 电力电子技术实验概述《电力电子技术》是电气工程及自动化、工业自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是课程的重要组成部分。

通过实验,可以加深对理论的理解,培养和提高实际动手能力、独立分析和解决问题的能力。

1-1实验的特点和要求电力电子技术实验的内容较多,实验系统比较复杂,系统性较强。

电力电子技术实验是理论教学的重要的补充和继续,而理论教学则是实验教学的基础。

学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实际相结合,使认识不断提高、深化。

具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置的主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路;(2)熟悉并掌握基本实验设备、测试仪器的性能和使用方法;(3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;(4)能够综合实验数据,解释实验现象,编写实验报告。

1-2实验准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。

每次实验前都应先进行预习,从而提高实验质量和效率,则就有可能在实验时不知如何下手,浪费时间,完成不成实验要求,甚至损坏实验装置。

因此,实验前应做到:(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识;(2)本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;(3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等;(4)熟悉实验所用的实验装置、测试仪器等;1-3实验实施在完成理论学习、实验预习等环节后,就可进入实验实施阶段。

实验时要做到地下几点:(1)实验开始前,检查预习报告,了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验开始。

(2)熟悉本次实验使用的实验设备、仪器,明确这些设备的功能、使用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术实验指导书郑州轻工业学院电气工程实验中心2006年3月目录BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项 (2)实验一单相半控桥可控整流电路的研究 (5)实验二三相桥式全控整流电路的研究 (8)实验三单相交流调压电路的研究 (13)实验四 IGBT直流斩波电路的研究 (17)实验五 DC/AC单相半桥SPWM逆变电路性能研究 (21)BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项一、概述BZT—Ⅲ B型变流、交直流调速实验装置是华中师范大学机电厂研制生产的教学实验设备,该装置功能齐全,结构可靠,采用模块化设计,移动组合方便,面板布局直观。

测试点用专门的接线端子引至面板,便于接线调试,测量及显示仪表全部采用三位半数显表。

该装置供电力电子变流技术实验和交直流调速实验,也可供学生课程设计、毕业设计和有关科研使用。

二、总体结构本装置外形尺寸为1550×800×780。

实验桌上带有滑轮导轨的三个抽屉,分别装有实验所需的交直流电源、变压器、开关、熔断器及各种保护电路。

各路交直流电源的输出端子都引到控制面板接线柱及台阶插座上,控制开关及可调旋纽也全部安装在面板上,并画有各个独立环节的电路原理图。

实验电路全部画在各个模块面板上,接线柱、电位器也安装在电路相应的位置上,测试孔位置清晰、直观,通过模块和电源等共同构成相应的实验系统。

三、主要技术指标(1)输入电源:三相四线 380V 50Hz(2)装置容量:10KVA(3)实验电源:提供(a)三项四线制 380V交流电源。

(b)直流可调电源0―250V、8A。

(c)直流可调电源0―230V、8A。

(d)单相220V工作电源。

(e)直流稳压电源5V,1A;±15V,1A;30V,500mA(4)绝缘电阻:>5MΩ(5)漏电保护:漏电动作电流≥30mΑ四、面板操作功能及操作方法(1)面板操作功能说明:1、漏电保护开关。

2、总电源开。

3、总电源关。

4、单相调压手柄。

5、三相电源(主电路)开。

6、三相电源(主电路)关。

7、三相电路指示灯。

8、三相电路输出指示灯。

9、交流0―300V数字显示表。

10、直流0―300V数字显示表。

11、工作220V电源插座。

12、交流380V/220V输出接线柱。

13、急停开关。

14、交流0―220V输出接线柱。

15、直流0―220V输出接线柱。

16、交直流可调电压输出开关。

17、保险座(保险丝为10A)。

18、直流40V数字显示表。

19、直流电压5V,±15V,30V输出台阶插座。

20、保险座(保险丝为2A)。

21、直流电压开关。

22、转换开关。

23、逆变变压器输入端子。

24、逆变变压器输出接线柱。

25、斩波变压器输出接线柱。

26、三相同步电压52V输出端子。

27、供实验主电路电源380V/220V输出接线柱。

28、输出U、V、W电源指示灯。

29、同步变压器引出端子。

(2)操作方法:投入电源后应注意以下各点。

1.将[1]的扳把向上扳起,[7]指示灯全亮,[11]有220V电源。

2.按下[2],[8]指示灯全亮,[12]有380V/220V电压。

3.打开[16],[9] [10]显示为零,顺时针调节[3],[14] [15]有电压输出,[9] [10] 有相应的显示。

4.打开[21],[19]有直流电压输出,转换 [22],[18]有相应的显示。

5.按下[5],[28]指示灯全亮,[27]有380V/220V电压输出,[26]有三相52V同步电压输出。

6.按下[6],[28]指示灯灭,[26] ,[27]无输出电压。

7.关掉[21],[18]对应的输出与显示全无。

8.按下[13]或 [16],[8]指示灯灭,[12]无输出电压。

9.将[1]扳把朝下,[7] 指示灯灭,[11]无输出电压。

五、实验操作注意事项(1)实验前一定要预习有关实验内容,了解实验目的、方法和要求,熟悉本装置电源电路图的工作原理及正确使用方法。

(2)实验电路接线应合理,导线粗细长短适当,自锁紧插件松紧适宜,保证接线良好。

(3)接完线后应仔细检查并经指导老师确认无误后方可合闸通电。

(4)做实验时,人体不可接触带电线路。

接线或折线都必须在切断电源的情况下进行。

在做电机实验时,电动机励磁电源给定后,不允许在实验过场中调节,以防失磁非车。

(5)在实验过程中,若发现电网突然停电或发生异常情况,须立即切断全部电源开关。

若实验中接线偶然脱落,也应及时切断电源后才能把导线接回原处。

(6)实验结束后,应将实验台上的仪表、模块及各类设备、导线、工具等整理好。

实验一单相半控桥可控整流电路的研究一、实验目的1.熟悉单结管触发电路的工作原理,掌握调试步骤和方法。

2.研究分析单相半控桥可控整流电路在电阻及电阻电感性负载下的工作状态。

3.明确续流二极管的作用。

二、实验电路三、实验主要设备1.B ZT—Ⅲ B 型变流、交直流调速实验装置 1台2.双踪示波器 1台3.电阻器(灯板) 1台4.电抗器(单相自耦调压器代) 1台5.万用表 1块四、实验内容及步骤1.接线根据实验电路(图1—1)把线连接好。

注意电阻负载为外接灯板,电抗器为外接单相调压器。

2.单结晶体管触发电路的调试(单结晶体管触发电路原理见附录一)闭合S,触发电路电源接通,主电路电源先不接通。

用示波器分别观察并记录触发电路中整流输出A点、削波B点、锯齿波C点、单结晶体管D点及脉冲变压器输出脉冲波形。

调节移相电位器RP,观察锯齿波电压Uc的变化情况及脉冲的移相情况,估计触发电路移相范围。

并将测量结果填入表1内:3.电阻负载的研究接通主电路电源,将单相调压器调到0位,用示波器观察负载电压Ud,晶闸管两端电压Uv T的波形,调节移相电位器Rp,观察不同α角时Ud波形的变化情况,并记录Ud值,填入表2内,作出Ud=f(α)的曲线。

(α值可用示波器测算)表23.电阻电感性负载的研究将单相调压器顺时针调到最大位置。

观察在不同控制角下的输出电压Ud和输出电流Id 的波形。

改变电感量Ld的大小,观察Id波形的变化情况。

4.研究续流二极管的作用在电感性负载时,不接续流二极管,模拟触发电路故障,(可将控制角突然调到180°或将触发电路脉冲Ug的引线断开)使触发脉冲突然消失,观察失控现象并记录Ud波形。

接上续流二极管(可将面板上二极管V2接在输出负载两端),重复上述步骤,观察输出电压波形,与不加续流二极管的结果进行比较。

五、实验报告要求1.说明单结管触发电路的工作原理和调试方法,分析各点波形。

2.分析电阻负载和电阻电感性负载下的输出电压和电流的波形,作出Ud=f(α)的控制特性曲线。

3.分析失控现象和续流二极管的作用。

附录一单结晶体管触发电路单结晶体管触发电路原理如图1—2所示。

电源接通,从电源变压器输出60V交流电压经V1—V4二极管桥式整流,再经稳压管削波得到梯形波电压。

这些梯形波电压与主回路的交流电压同步,又是单结管的电源。

由单结晶体管VU和电容C、电阻R4、R5、脉冲变压器及三极管V2组成张弛振荡器,以产生触发脉冲。

三极管V2相当于一个可变电阻Rv2,它的等效电阻阻值随基极电位的改变而变化,改变基极电位V b2就相当于调整这个可变电阻。

V1、V2管构成复合放大,因此,调节Rp即可改变可变电阻Rv2的值,电容通过R4、Rv2充电。

当C上所充电压Uc很小(Uc<Up)时,单结管e-b1间,处于截止状态,呈现高阻抗,没有脉冲输出。

随着C的继续充电,上升到Uc≥Up时,单结管e-b1间变为导通。

由于导通时e-b1间呈低阻状态,C上所充的电压就通过e-b1、脉冲变压器原边线圈很快放电,故在脉冲变压器副边线圈就输出一个正向脉冲。

随着C的放电,Uc迅速降低,当下降到Uc<Uv时,单结管又截止,电容C又重新充电,重复上述过程。

电容C的如此循环充放电,使电容C上的电压波形为连续不断的锯齿波。

放电时通过脉冲变压器产生脉冲信号,因此对应于锯齿波的放电后沿,产生一连串的输出尖脉冲。

注:Up为单结晶体管的峰点为电压,Uv为谷点电压。

单结晶体管触发电路由于结构简单、易于调试,在实际中仍然得到较多应用。

但其缺点是输出功率较小、脉冲较窄,移相范围小。

实验二三相桥式全控整流电路的研究一、实验目的熟悉KC04集成触发电路的工作原理、接线,掌握其调试方法。

熟悉三相全控整流电路的接线,观察电阻负载、电阻电感性负载和反电势负载下电路的输出电压和电流的波形。

二、实验电路三、实验设备BZT-Ⅲ B型变流、交直流调速实验装置 1台直流电动机—发电机组 1台三相整流变压器 1台电抗器 1台电阻器(灯板) 1台双踪示波器 1台万用表 1块四、实验内容及步骤1.首先测定三相电源的相序,然后按图2-1把主电路和触发电路接好(通往主电路的电源连线可先断开)。

相序的测量方法可以采用双踪示波器,也可采用相序灯法或相序鉴别器。

2.闭合Q(即分别先后按装置电源箱面板上总电源及主电源“开”按纽),接通触发电路电源,用示波器观察1A—1E、2A—2E、3A—3E及-A、+A、–B、+B、-C、+C各点波形。

如锯齿波斜率不一致,可通过调节斜率电位器RP1—RP3使其一致,并将各点波形记录于下表。

3.电阻性负载按起动按纽,主电路接通电源。

调节移相电位器RP,用示波器观察输出电压Ud的波形及晶闸管VT1两端的电压波形,并记录触发角α分别为0°,30°,60°,90°,120°时的Ud值。

如若RP调到零位时,输出电压值不为零,可调节偏移电位器RP0使其为零。

人为颠倒三相电源(即U、V、W)的相序,观察输出电压波形是否正常。

4.电阻电感性负载按停止按纽,主电路断电,在d1、d2端换接上电阻电感性负载。

按起动按纽,接通主回路电源,观察不同α角时Ud、Id的波形,记录α=0°,30°,60°,90°时Ud值于表中。

改变Rd的数值,观察Id波形的脉动情况。

3.反电动势负载按停止按纽,按图在d1、d2端换接上电动机负载,接通主电路电源,调节移相电位器RP,使Ud值由0逐渐上升到额定值,用示波器观察Ud的波形。

短接平波电抗器,观察Ud波形有何变化。

(注:接通主电路电源前,应先接通直流电动机组的的额定励磁电源。

并使移相电位器给定电压为零,即使Ud为零)。

五、实验报告要求:1.总结三相桥式全控整流电路的调试步骤和方法。

2.整理实验中记录的波形,绘制电阻负载和电阻电感性负载时Ud =f(α)的控制曲线。

3.不同负载时,不同α与φ时电流连续与断续的情况分析。

附录二集成触发电路工作原理集成触发电路中主要器件就是 KC04晶闸管移相触发电路,它两路相位差180°的移相脉冲可以方便地构成三相全控桥式触发电路。

相关文档
最新文档