电力电子实验指导书完全版
电力电子实验指导书--

电力电子学实验指导书河北科技师范学院欧美学院机电系第一章挂箱介绍和使用说明一.MCL一31面板MCL一31由G(给定),零速封锁器(DZS),速度变换器(FBS)。
转速调节器(ASR),电流调节器(ACR)、仪表组成,1.G(给定):原理图如图1—1。
它的作用是得到下列几个阶跃的给定信号:(1)0V突跳到正电压,正电压突跳到0V;(2)0V突跳到负电压,负电压突跳到0V;(3)正电压突跳到负电压,负电压突跳到正电压。
正负电压可分别由RP1、RP2两多圈电位器调节大小(调节范围为0—±13V左右)。
数值由面板右边的数显窗读出。
只要依次扳动S1、S2的不同位置即能达到上述要求。
(1)若S1放在“正给定”位,扳动S2由“零”位到“给定”位即能获得0V突跳到正电压的信号,再由“给定”位板到“零”位能获得正电压到0V的突跳;(2)若S1放在“负给定”位,扳动S2,能得到0V到负电压及负电压到0V的突跳;(3)S2放在“给定”位,扳动S1,能得到正电压到负电压及负电压到正电压的突跳。
由脉冲控制及移相、双脉冲观察孔、一组可控硅、二组可控硅及二极管、RC吸收回路、平波电抗器L组成。
1.脉冲控制及移相:本实验台输出相位差为60O,经过调制的“双窄”脉冲(调制频率大约为3-10kHz),触发脉冲分别由两路功放进行放大,分别由U b1r和U blf进行控制。
当U blf接地时,第一组脉冲放大电路进行放大。
当U b1r接地时,第二组脉冲放大电路进行工作,脉冲移相由U ct端的输入电压进行控制,当U Ct端输入正信号时,脉冲前移,U Ct 端输入负信号时,脉冲后移,移相范围为10O~160O。
偏移电压调节电位器RP调节脉冲的初始相位,不同的实验初始相位要求不一样。
2.双脉冲及同步电压观察孔。
双脉冲观察孔输出经过调制的双脉冲。
同步电压观察孔输出相电压为30V左右的同步电压,用双踪示波器分别观察同步电压和双脉冲,可比较双脉冲的相位。
电力电子实验指导书

实验一 三相桥式全控整流及有源逆变电路实验一.实验目的1.掌握三相桥式全控整流电路的工作原理及波形。
2.掌握三相桥式有源逆变的工作原理及波形。
二.实验内容1.三相桥式全控整流电路及不同触发角时的各点波形。
2.三相桥式有源逆变电路及不同逆变角时的各点波形。
三.实验线路及原理实验线路如图1-1所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
四.实验设备及仪器1.MCL 系列教学实验台主控制屏 2.MCL -31低压控制电路及仪表组件 3.MCL -33触发电路及晶闸管主电路组件 4.MEL -03三相可调电阻器 5.二踪示波器 6.万用表五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开电源开关(钥匙开关),但不合主电源开关。
(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
注:将面板上的U blf (当三相桥式全控变流电路使用I 组桥晶闸管VT1~VT6时)接地,将I 组桥式触发脉冲的六个开关均拨到“接通”。
(4)将给定器输出U g 接至MCL-33面板的U ct 端,调节偏移电压U b ,在U ct =0时,使α=150o 。
2.三相桥式全控整流电路按图1-1接线,S 拨向左边短接线端,将Rd 调至最大(450Ω),然后合上主电源。
调节Uct ,使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2数值。
αcos 35.12U U d =(其中2U 为线电压)3.三相桥式有源逆变电路按图1-1调整接线,R d 调至最大,确认无误后合上主电源。
(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子实验指导书

《电力电子技术》实验指导书南阳师范学院物理与电子工程学院编订人:刘红钊实验一GTR、GTO、MOSFET、IGBT的特性与驱动电路研究一.实验目的1.熟悉GTR、GTO、MOSFET、IGBT的开关特性。
2.掌握GTR、GTO、MOSFET、IGBT缓冲电路的工作原理与参数设计要求。
3.掌握GTR、GTO、MOSFET、IGBT对驱动电路的要求。
4.熟悉GTR、GTO、MOSFET、IGBT主要参数的测量方法。
二.实验内容1.GTR的特性与驱动电路研究。
2.GTO的特性与驱动电路研究。
3.MOSFET的特性与驱动电路研究。
4.IGBT的特性与驱动电路研究。
三.实验设备和仪器1.NMCL-07C电力电子实验箱2.双踪示波器3.万用表(自备)4.教学实验台主控制屏四.实验方法1、GTR的特性与驱动电路研究(1)不同负载时GTR的开关特性测试(a)电阻负载时的开关特性测试GTR:将开关S2拨到+15V,PWM波形发生器的“21”与面板上的“20”相连,“24与“10”、“12”与“13”和“15”、“17”与GTR的“B”端、14”和GTR的“E”端、“18”与主回路的“3”相连、GTR“C”端与主回路的“1”相连。
E用示波器分别观察,基极驱动信号I B(“15”与“18”之间) 的波形及集电极电流I E(“14”与“18”之间) 的波形,记录开通时间ton,关断时间toff。
ton= us,toff= us(b)电阻、电感性负载时的开关特性测试除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将GTR的C端与“1”断开,而与“2”相连),其余接线与测试方法同上。
ton= us,toff= us(2不同基极电流时的开关特性测试(a)断开“13”与“15”的连接,将基极回路的“12”与“15”相连,其余接线同上,测量并记录基极驱动信号I B(“15”与“18”之间)及集电极电流I E(“14”与“18”之间)波形,记录开通时间ton,关断时间toff。
电力电子实验指导书完全

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形UVT ,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、UVT波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。
2.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。
电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。
电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。
电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。
波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。
因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。
本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。
由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。
二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。
1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。
可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。
电力电子实验指导书
实验一三相半波整流电路研究一实验目的1 熟悉晶闸管触发电路的工作原理、接线和各元件的作用。
2 观察并并理解掌握三相半波可控整流电路在电阻负载和电感负载的作用情况。
3 理解续流二极管的作用二实验电路见图1三实验设备同步变压器220V/60V灯板滑动变阻器电抗器示波器万用表四实验内容及步骤1 断开S1,接上电阻负载后,再闭合S1。
当触发角为0°时观测u d i d u vt波形并记录。
2同理,当触发角为60°时观测u d i d u vt 波形并记录。
3接上电感负载观察触发角为60°时观测u d i d u vt 波形并记录。
4电阻负载共阴极接法触发角为60°时观测u d i d u v 波形并记录。
五 参考文献 六思考题对比三种负载在触发角为60°时电压、电流波形。
分析波形异同的原因。
电感负载,考虑两倍的安全裕量,如何确定晶闸管的额定电压和额定电流。
如果00=α,A 相的触发脉冲消失。
绘制电阻负载下整流电压d u 的波形,并对波形加以文字描述实验二单相半波可控整流电路研究一实验目的1 熟悉晶闸管触发电路的工作原理、接线和各元件的作用。
2 观察并并理解掌握单相半波可控整流电路在电阻负载和电感负载的作用情况。
3 理解续流二极管的作用二实验电路见图2三实验设备同步变压器220V/60V灯板滑动变阻器电抗器示波器万用表四实验内容及步骤1 断开S1,接上电阻负载后,再闭合S1。
当触发角为0°时观测u d i d u vt波形并记录。
2同理,当触发角为60°时观测u d i d u vt波形并记录。
3当触发角为90°时观测u d i d u vt波形并记录。
4 接上电感负载观察触发角为0°90°时观测u d i d u vt波形并记录。
5接上电感负载与续流二极管观察触发角为0°90°时观测u d i d u vt波形并记录。
电力电子技术实验指导书V10.docx
电力电子技术实验装置简介................................................. -2 -电力电子技术实验的基本要求和安全操作说明 (6)第一章晶闸管部分 (8)实验一正弦波同步移相触发电路实验 (8)实验二锯齿波同步移相触发电路实验 (10)实验三单相半波整流电路实验 ............................................ -12 -实验四单相桥式半控整流电路实验 (75)实验五单相桥式全控整流及有源逆变电路实验 ........................... -18 -实验六三相半波可控整流电路实验 ...................................... -22 -实验七三相桥式半控整流电路实验 ...................................... -25 -实验八三相桥式全控整流及有源逆变电路实验 . (28)实验九单相并联逆变电路实验 (33)实验十单相交流调压电路的性能研究 (36)实验^一三相交流调压电路实验 (39)第二章全控型器件特性部分 (42)实验十二SCR、GTO、MOSFET、GTR、IGBT特性实验 (42)实验十三GTO、MOSFET、GTR、IGBT驱动与保护电路实验 (45)第三章控型器件典型线路部分 (48)实验十四单相交直交变频电路原理 (48)(单相正眩波脉宽调制(SPWM)逆变实验) (48)实验十五半桥型开关稳压电源的性能研究 (51)实验十八单相交流调功电路的性能研究 (65)电力电子技术实验装置简介一、概述:1、特点:1)实验装置采用挂件式结构,可根据不同的实验内容进行自由组合,故结构紧凑、使用方便灵活,并且可随着功能的扩展只需增加挂件即可.2)装置布局合理,外型美观,面板示意图明确、、清晰、直观,学生可通过面板的示意查寻故障,分析工作原理。
电力电子技术实验指导书(定)
电力电子技术实验指导书1 电力电子技术实验概述《电力电子技术》是电气工程及自动化、工业自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是课程的重要组成部分。
通过实验,可以加深对理论的理解,培养和提高实际动手能力、独立分析和解决问题的能力。
1-1实验的特点和要求电力电子技术实验的内容较多,实验系统比较复杂,系统性较强。
电力电子技术实验是理论教学的重要的补充和继续,而理论教学则是实验教学的基础。
学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实际相结合,使认识不断提高、深化。
具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置的主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路;(2)熟悉并掌握基本实验设备、测试仪器的性能和使用方法;(3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;(4)能够综合实验数据,解释实验现象,编写实验报告。
1-2实验准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。
每次实验前都应先进行预习,从而提高实验质量和效率,则就有可能在实验时不知如何下手,浪费时间,完成不成实验要求,甚至损坏实验装置。
因此,实验前应做到:(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识;(2)本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;(3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等;(4)熟悉实验所用的实验装置、测试仪器等;1-3实验实施在完成理论学习、实验预习等环节后,就可进入实验实施阶段。
实验时要做到地下几点:(1)实验开始前,检查预习报告,了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验开始。
(2)熟悉本次实验使用的实验设备、仪器,明确这些设备的功能、使用方法。
电力电子技术实验指导书Word
电力电子技术实验指导书宁夏大学物理电气信息学院自动化系编目录第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1)1.1 控制屏介绍及操作说明 (1)1.2 DJK01电源控制屏 (2)1.3 各挂件功能介绍 (3)第二章电力电子技术实验的基本要求和安全操作说明 (40)1.1 实验的特点和要求 (40)1.2 实验前的准备 (40)1.3 实验实施 (40)1.4 实验总结 (41)1.5 实验安全操作规程 (41)第三章电力电子技术实验 (43)实验一正弦波同步移相触发电路实验 (43)实验二单相桥式半控整流电路实验 (45)实验三单相桥式全控整流及有源逆变电路实验 (48)实验四三相桥式半控整流电路实验 (51)实验五三相桥式全控整流及有源逆变电路实验 (54)实验六单相交流调压电路实验 (58)实验七三相交流调压电路实验 (61)附录 (63)电源控制屏常见故障的诊断 (63)可供配置的电机参数 (63)DJK04过流保护的调试方法 (64)KC系列集成块原理说明 (65)DJK02和DJK02-1插座使用说明 (68)DJK01电源控制屏十芯、十二芯插座接线说明 (69)第一章 DJDK-1型电力电子技术及电机控制实验装置简介1.1 控制屏介绍及操作说明一、特点(1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。
(2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。
(3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。
(4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定;4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT 波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。
表1-12.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
4.单相半波可控整流电路接电阻电感性负载将负载改接成阻感性负载(由滑动变阻器Rd与平波电抗器串联而成,RTDL08实验箱提供电感)。
不接续流二极管VD,在不同阻抗角(改变Rd的电阻值)情况下,观察并记录α=30o、60o、90 o、120o时的Ud及U VT的波形。
接入续流二极管VD,重复上述实验,观察续流二极管的作用记录于下表1-2中。
计算公式:Ud=[0.45*U2*(1+cosα)]/2表1-2八、实验报告1.画出α=90o时,电阻性负载和电阻电感性负载的Ud、U VT波形;2.分析实验中出现的现象,写出体会。
九、注意事项1.在本实验中,触发脉冲是从外部接入RTDL08面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的触发脉冲开关拨向“断开”位置;2.实验报告及时上交;3.波形图注意横纵坐标(时间,电压)单位;4.实验完毕整理好导线及挂箱;5.先关闭电源再记录波形;6.实验台小蓝本实验情况记录;7.注意万用表的使用贯穿整个实验!!!测量电流和电压测量方法不同,防止短路。
实验二三相桥式全控整流电路实验一、实验目的1.加深理解三相桥式全控整流电路的工作原理;2.了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路及原理实验线路如下图所示。
主电路由三相全控变流电路;触发电路为RTDL08中的集成触发电路,由KC04、KC41、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
三相桥式整流电路的工作原理以及集成触发电路的原理可参考电力电子技术教材的有关内容。
图2-1 三相桥式全控整流电路及三相有源逆变电路三、实验内容1.三相桥式全控整流电路带大电感负载;2.观察整流状态下,模拟电路故障现象时的各电压波形。
四、实验设备1.电力电子实验台2.RTDL08实验箱3.RTDL11实验箱4.RTDJ37实验箱5.示波器;6.万用表。
五、预习要求1.阅读电力电子技术教材中三相桥式全控整流电路的有关内容,掌握三相桥式全控整流电路带大电感负载时的工作原理;2.学习有关集成触发电路的内容,掌握该触发电路的工作原理。
六、思考题1.如何解决主电路和触发电路的同步问题?在本实验中,主电路三相电源的相序能任意确定吗?七、实验方法1.RTDL08的调试(1)观察电源控制屏上三相交流电源的电压表指示值,三相是否平衡。
(2)将示波器探头接到“脉冲观察孔”和“锯齿波观察孔”,观察6个触发脉冲;(3)将RTDL08面板上的UIf(当三相桥式全控变流电路使用正桥VT1-VT6时)接地,将正组桥触发脉冲的6个开关拨到“接通”,用示波器观察晶闸管的门极与阴极的触发脉冲是否正常。
2.三相桥式全控整流电路(1)纯电阻性负载按图接线,接电源三相,相电压小于55V;同时,将负载电阻Rd调整到最大值,。
用示波器观察并记录α=30o,60o,90o时整流电压Ud和晶闸管两端电压U VT的波形,并记录相应的Ud、U VT数值于下表2-1中。
计算公式:Ud=2.34*U2*cosα(α≤60o)Ud=2.34*U2*[1+cos(π/3 + α)] (α>60o)(2)阻感性负载将负载变为阻感性负载(电感由RTDL08实验箱提供),用示波器观察并记录α=30o,60o,90o时整流电压Ud和晶闸管两端电压U VT的波形,并记录相应的Ud、U V T数值于下表2-2中。
表2-2计算公式:Ud=2.34*U2*cosα(3)模拟故障现象当α=60o时,将示波器所观察的晶闸管的触发脉冲钮子开关拨向“断开”位置,或将“UIf”端的接地线断开,模拟晶闸管失去触发的故障,观察并记录这时的Ud、U VT 的变化情况。
八、实验报告1.画出电路的移相特性Ud=f(α);2.画出α=30o,60o,90o,120o时的整流电压Ud和晶闸管两端电压U VT的波形;九、注意事项1.结束实验时,应先将电压表与电路分离,将电流表用线短接掉,以防止仪表的损坏;2.电源控制屏的电压指针不精确,需要使用万用表;3.实验报告及时上交;4.波形图注意横纵坐标(时间,电压)单位;5.实验完毕整理好导线及挂箱;6.先关闭电源再记录波形;7.实验台小蓝本实验情况记录。
实验三单相交流调压电路实验一、实验目的1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求;3.了解KC05晶闸管移相触发器的原理和应用。
二、实验线路及原理本实验采用了KC05晶闸管移相触发器。
该触发器适用于双向晶闸管或两个反并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。
单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,图3-1为其原理图。
图3-1 单相交流调压主电路三、实验内容1.KC05集成移相触发电路的调试;2.单相交流调压电路带纯阻性负载;3.单相交流调压电路带阻感性负载。
四、实验设备1.电力电子实验台2.RTDL08实验箱3.RTDL09实验箱4.RTDJ37实验箱5.示波器6.万用表五、预习要求1.阅读电力电子技术教材中有关交流调压器的内容,掌握交流调压器的工作原理;2.学习有关单相交流调压器及其触发电路的内容,了解KC05晶闸管触发芯片的工作原理及在单相交流调压电路中的应用。
六、思考题1.交流调压器在带电感性负载时可能会出现什么现象?为什么?如何解决?2.交流调压器有哪些控制方式?应用场合有哪些?七、实验方法1.KC05集成晶闸管移相触发器调试连接单相交流调压电路后,打开RTDL09电源开关,即将同步变压器的同步电压接入电路;用示波器观察Ug1、Ug2的波形。
调节电位器RP1,观察锯齿波斜率能否变化;调节RP2,观察输出脉冲的移相范围如何变化,移相能否达到180o。
2.单相交流调压器带纯阻性负载将RTDL08面板上的两个晶闸管反并联而构成交流调压器,将RTDL09上单相交流调压触发器的输出脉冲端“G1”、“K1”、“G2”和“K2”分别接至主电路相应晶闸管的门极和阴极,接上电阻性负载;用示波器观察负载电压、晶闸管两端电压U VT的波形。
调节电位器RP2,观察不同α角时各点波形的变化;并记录α=60o,90o,120o时的波形。
3.单向交流调压器接阻感性负载断开电源,改接阻感性负载。
合上电源,用示波器同时观察负载电压u;调节Rd的数值,使阻抗角Ψ为一定值;观察在不同α角时波形的变化情况,记录α>Ψ、α=Ψ、α<Ψ三种情况下负载两端电压u的波形。
八、实验报告1.整理、画出实验中记录下的各类波形;2.分析电阻电感负载时,α角与Ψ角相应关系的变化时调压器工作的影响;3.分析实验中出现的各种问题。
九、注意事项1.实验报告及时上交;2.波形图注意横纵坐标(时间,电压)单位;3.实验完毕整理好导线及挂箱;4.先关闭电源再记录波形;5.实验台小蓝本实验情况记录。
实验四三相交流调压电路实验一、实验目的1.加深理解三相交流调压电路的工作原理;2.了解三相交流调压电路带不同负载时的工作原理;3.了解三相交流调压电路触发电路的工作原理。
二、实验线路及原理本实验采用的三相交流调压器为三相三线制,由于没有中线,每相电流必须从另一相流出以构成回路。
交流调压器应采用宽脉冲或双窄脉冲进行触发。
实验装置中使用后沿固定、前沿可变的宽脉冲链。
实验线路如图4-1所示。
4-1三相交流调压主电路原理图三、实验内容1.三相交流调压器触发电路的调试2.三相交流调压电路带纯阻性负载四、实验设备1.电力电子实验台2.RTDL08实验箱3.RTZN08(交流电流表)4.RTDJ5.示波器6.万用表五、预习要求1.阅读教材中有关交流调压器的内容,掌握交流调压器的工作原理;2.了解如何使三相可控整流电路的触发电路适用于三相交流调压电路。
六、实验方法1.主控制屏调试及开关设置(1)开关设置: RTDL08的触发脉冲指示:“宽”;Ⅱ桥工作状态指示:“其他”。
(2)在“双脉冲”观察孔中观察后沿固定、前沿可调的宽脉冲链(同三相桥式全控整流电路的实验)。
2.三相交流调压器带电阻性负载使用正桥晶闸管VT1~VT6,按图3-10连成三相交流调压器主电路,其触发脉冲已通过内部连线接好,只要将正桥触发脉冲的6个开关拨至“接通”,“UIf”端接地即可。
接上三相电阻负载,接通电源,用示波器观察并记录α=0°、30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值添入下表4-1中。