概率论与数理统计1~6章总结

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

(完整)概率论与数理统计知识点总结!,推荐文档

(完整)概率论与数理统计知识点总结!,推荐文档

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:nn n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n nn A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A P A 2所含样本点数: 363423=⋅⋅C1696436)(2==∴A P A 3所含样本点数:4433=⋅C161644)(3==∴A P 注:由概率定义得出的几个性质: 1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:n n A A A A A A ⋂⋂⋂=⋃⋃⋃......2121 n n A A A A A A ⋃⋃⋃=⋂⋂⋂ (2121)§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计各章重点知识整理.pptx

概率论与数理统计各章重点知识整理.pptx
1.定义 如果试验 E 满足:(1)样本空间的元素只有有限个,即 S={e1,e2,…,e n};(2)每一个基本事
件的概率相等,即 P(e1)=P(e2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.
2.计算公式 P(A)=k / n 其中 k 是 A 中包含的基本事件数, n 是 S 中包含的基本事件总数.
P(A)=0 .
(2)有限可加性 对于 n 个两两互不相容的事件 A1,A2,…,An , P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An) (有限可加性与可列可加性合称加法定理)
(3)若 A B, 则 P(A)≤P(B), P(B-A)=P(B)-P(A) .
(4)对于任一事件 A, P(A)≤1, P(A)=1-P(A) .
y
fX
hyhy
0
y
其它
其中h(y)是 g(x)的反函数 , = min (g (-),g ()) = max (g (-),g ()) .
如果 f (x)在有限区间[a,b]以外等于零,则 = min (g (a),g (b)) = max (g (a),g (b)) .
第三章 二维随机变量及其概率分布
n PB
PA
i
B
i
.
i 1
六.事件的独立性
2
学海无 涯
1.两个事件 A,B,满足 P(AB) = P(A) P(B)时,称 A,B 为相互独立的事件.
(1)两个事件 A,B 相互独立 P(B)= P (B|A) .
(2)若 A 与 B,A 与 B , A与 B, , A 与 B 中有一对相互独立,则另外三对也相互独立.

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()((n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk knk kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论与数理统计1~6章总结

概率论与数理统计1~6章总结

A (BC) (A B)(A C)
摩根律 AB A B A B A B
2.随机事件的概率 ①概率和频率 概率的定义:若对随机试验 E 所对应的样本空间 中的每一事件 A,均赋予一实数 P(A), 集合函数 P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设 A1,A2,…, 是一列两两互不相容的事件,即 AiAj=,(ij), i , j=1, 2, …,
离散型随机变量 随机变量 非离散型奇异型连(续混型合型)
2.离散型随机变量
若随机变量 X 取值 x1, x2, …, xn, … 且取这些值的概率依次为 p1, p2, …, pn, …, 则称 X 为离散型 随机变量,而称
n!
n1!....nm !
eg: 30 名学生中有 3 名运动员,将这 30 名学生平均分成 3 组,求: (1)每组有一名运动员的概率; (2)3 名运动员集中在一个组的概率。 解:设 A:每组有一名运动员;B: 3 名运动员集中在一组
N (S)
C C C 10 10 10 30 20 10
Hale Waihona Puke 10!成互斥事件(互不相容事件):事件 A 与事件 B 互斥——AB=Φ;事件 A 与事件 B 不能同时发
生,两个事件没有公共的样本点
对立事件:事件 A 不发生,由所有不属于 A 的样本点组成,记作 A or Ac
差事件:差事件 A-B 发生 ——事件 A 发生且事件 B 不发生;由属于事件 A 但不属于事件 B
P(A)具有如下性质 (1) 0 P(A) 1; (2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B) 抽球问题 设盒中有 N 个球,其中有 M 个白球,现从中任抽 n 个球,则这 n 个球中恰有 k 个白球的概 率是

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 的样本点,记作 A B or B A 相等事件 B A且 A B 即 A=B,事件 A 与事件 B 含有相同的样本点
和事件:和事件 A∪B 发生——A 发生或 B 发生;事件 A 与事件 B 至少有一个发生,由事件
A 与事件 B 所有样本点组成
积事件:积事件 AB 发生——事件A和事件B同时发生;由事件 A 和事件 B 的公共样本点组
30! 10!
10!
3! 27! P( A) 9! 9! 9! 50
N (S) 203
P(B) 3 C277C2100C1100 N(S)
随机取数问题 eg:从 1 到 200 这 200 个自然数中任取一个, (1)求取到的数能被 6 整除的概率 (2)求取到的数能被 8 整除的概率 (3)求取到的数既能被 6 整除也能被 8 整除的概率 解:N(S)=200, N(1)=[200/6]=33, N(2)=[200/8]=25,N(3)=[200/24]=8 (1),(2),(3)的概率分别为:33/200,1/8,1/25 条件概率 已知事件 A 发生的条件下,事件 B 发生的概率称为 A 条件下 B 的条件概率,记作 P(B|A) 若事件 A、B 是古典概型的样本空间 S 中的两个事件,其中 A 含有 nA 个样本点,AB 含有 nAB 个样本点,则
A (BC) (A B)(A C)
摩根律 AB A B A B A B
2.随机事件的概率 ①概率和频率 概率的定义:若对随机试验 E 所对应的样本空间 中的每一事件 A,均赋予一实数 P(A), 集合函数 P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设 A1,A2,…, 是一列两两互不相容的事件,即 AiAj=,(ij), i , j=1, 2, …,
的样本点组成;Байду номын сангаас质 A B A B,
完备事件组: A1, A2, , An
(1)A1, A2, , An 互不相容
(2)A1 A2
An
A B A AB
④事件之间的运算律
交换律 结合律 分配律
A B B A AB BA
(A B) C A (B C)
A(B C) ( AB) ( AC)
有 P( A1 A2 … )= P(A1) +P(A2)+….
(1.1),则称 P(A)为事件 A 的概率。
概率的性质:
(1) 有限可加性:设 A1,A2,…An , 是 n 个两两互不相容的事件,即 AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件 AB,则 P(A)≥P(B)
②古典概型
满足下列两个条件的实验称为古典概型也叫等可能概型
1.有限性:样本空间 S={e1, e 2 , … , e n }; 2.等可能性:(公认)P(e1)=P(e2)=…=P(en). 古典概型中的概率:设事件 A 中所含样本点个数为 N(A) ,以 N()记样本空间 中样本点
总数,则有 P( A) N ( A) N ()
(3)事件差 A、B 是两个事件,则 P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件 A、B,有 P(AB)=P(A)+P(B)-P(AB) 该公式可推广到任意 n
个事件 A1,A2,…,An 的情形; (3) 互补性:P(A)=1- P(A);
(5) 可分性:对任意两事件 A、B,有 P(A)=P(AB)+P(AB ) .
P(A)具有如下性质 (1) 0 P(A) 1; (2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B) 抽球问题 设盒中有 N 个球,其中有 M 个白球,现从中任抽 n 个球,则这 n 个球中恰有 k 个白球的概 率是
p
CM k
C nk N M
CN n
一般地,把 n 个球随机地分成 m 组(n>m),要求第 i 组恰有 ni 个球(i=1,…m),共有分法:
n!
n1!....nm !
eg: 30 名学生中有 3 名运动员,将这 30 名学生平均分成 3 组,求: (1)每组有一名运动员的概率; (2)3 名运动员集中在一个组的概率。 解:设 A:每组有一名运动员;B: 3 名运动员集中在一组
N (S)
C C C 10 10 10 30 20 10
10!
第一章随机事件与概率
1.随机事件及其运算
①随机事件:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性
的事件叫做随机事件(random Events ),简称事件(Events).通常用大写英文字母 A、B、C
等表示。
②基本事件及样本空间
随机试验中的每一个可能出现的试验结果称为这个试验的一个 样本点 ,记作 。
频率:若随机事件 A 在 n 次试验中发生了 m (
) 次,则量 m/n 称为事件 A 在
n 次试验中发生的频率,记作 fn ,即:
.
必然事件的频率为 1,不可能事件的频率为 0。 频率的性质:
(1) 0 fn(A) 1; (2) fn(S)=1; fn( )=0 (3) 可加性:若 AB= ,则 fn(AB)= fn(A) +fn(B). 试验次数 n 增大时, fn(A) 逐渐趋向一个稳定值。可将此稳定值记作 P(A),作为事件 A 的 概率

互斥事件(互不相容事件):事件 A 与事件 B 互斥——AB=Φ;事件 A 与事件 B 不能同时发
生,两个事件没有公共的样本点
对立事件:事件 A 不发生,由所有不属于 A 的样本点组成,记作 A or Ac
差事件:差事件 A-B 发生 ——事件 A 发生且事件 B 不发生;由属于事件 A 但不属于事件 B
全体样本点组成的集合称为这个试验的样本空间,记作 Ω。
基本事件
仅含一个样本点的随机事件称为基本事件.
含有多个样本点的随机事件称为复合事件.
特例—必然事件—记作Ω
特殊的“随机事件”—不可能事件—记作∅
不包含任何样本点,不可能发生
③事件的关系与运算
子事件:事件的包含
事件A是事件B的子事件则:事件 A 发生必然导致事件 B 发生,事件 A 的样本点都是事件
相关文档
最新文档