中考第二轮复习(27)——辅助圆问题
初中考数学专题总复习《圆》辅助圆最值问题

∠PBC=∠PCD,则线段PD的最小值为( B )
A. 5
B. 1
C. 2
D. 3
第6题图
7. (2019-2020南宁九年级期末)如图,在矩形ABCD中,AB=4,AD=6,点F 是BC边上的一个动点,连接AF,过点B作BE⊥AF于点G,交射线CD于点E, 连接CG,则CG的最小值为__2__1_0___2.
第5题图
模型三 隐形圆最值
模型分析 类型一 直角对直径 如图①,△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的 O(不包含A、B两点).
图①
注:作出辅助圆是关键,计算时结合求点圆、线圆最值等方法进行相关计算.
6. 如图,在矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足
5
作OE⊥OF,OE、OF分别交AB、BC于点E、F,则EF的最小值为____2____.
第9题图
10. 如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,BE平分
∠ABD交CD于点E,则
CE CD
2 的最小值是____2____.
第10题图
第7题图
类型二 定弦定角 如图②,△ABC和△ABD中,AB的长度为定值(定弦),点C、D在AB的同侧,且 ∠C=∠D(定角),我们把这样的模型根据其特征称为“定弦定角”模型,且A、B、 C、D四点共圆.
图②
注:作出辅助圆是关键,再结合圆中最长的弦是直径,及求点圆、线圆最值等 方法进行相关计算.
8. 如图,在边长为 2 3的等边△ABC中,点D、E分别是边BC、AC上两个动点, 且满足AE=CD,BE、AD相交于点P,连接CP,则线段CP的最小值为( B )
0
d-r
中考数学专题复习—道是无圆却有圆(构造辅助圆)

中考复习之——道是无圆却有圆(构造辅助圆)许多几何问题虽然与圆无关,但是若能根据问题的条件、图形特点添补圆或找出潜在的圆,就能充分运用圆的丰富性质为解题服务,使问题获得简解或巧解,下列情形不妨作出辅助圆。
一、定点定长隐藏圆:1.有公共端点的等线段;2.与“等腰三角形”相关问题的讨论;3.解与“旋转”相关的问题。
二、定弦定角隐藏圆:1.与“直角、垂直”相关问题的探讨;2.其他特殊角(30°,45°,60°,120°等)问题的探讨。
三、判定四点共圆的方法:①平面内到某一定点等距离的几个点在同一个圆上。
②同斜边的直角三角形各个顶点共圆。
③同底同侧张角相等的三角形各个顶点共圆。
④一组对角互补的四边形的各个顶点共圆。
⑤一个外角等于内对角的四边形各个顶点共圆。
⑥对角线AC 、BD 相交于点P ,若PA ·PC=PB ·PD ,则四边形各个顶点共圆。
★常用方法归类:一、找定点,寻定长→现“圆形”1.如图,正方形ABCD 的边长为2,将长为2的线段QF 的两端放在正方形相邻两边上同时滑动,点Q 从点A 出发,沿A →B →C →D →A 方向滑动到点A 为止;同时点F 从点B 出发,沿B →C →D →A →B 方向滑动到点B 为止,在这个过程中,线段QF 的中点M 所经过的路线围成的图形面积为 。
2.在矩形ABCD 中,已知AB=2cm ,BC=3cm ,现有一根长为2cm 的小棒EF 紧贴着矩形的边,按逆时针方向滑动一周,则小棒EF 的中点P 在运动过程中所围成的图形面积为 。
3.如图,在矩形ABCD 中,AB=2,AD=3,点E、F 分别为AD 、DC 边上的点,且EF=2,G 为EF 中点,P 为BC边上的一个动点,则PA+PG 的最小值为 。
4.(自贡)如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 边上的动点,将ΔEBF 沿EF 所在直线折叠得到ΔEB ’F ,连接B ’D ,则B ’D 的最小值为 。
巧解初中几何问题——以构造辅助圆为例

2023年12月下半月㊀解法探究㊀㊀㊀㊀巧解初中几何问题以构造辅助圆为例◉江苏省靖江市外国语龙馨园学校㊀徐㊀乐㊀㊀圆是初中数学平面几何中非常重要的一个知识点,与初中数学中其他几何问题有着紧密的联系.所以在解决几何问题时,一些无法利用常规思路求解的综合问题可以尝试通过构造辅助圆的方式来解决.因此,在初中数学几何问题解题教学中,教会学生如何正确使用辅助圆来巧解几何问题是教师需要重点研究的问题.下面将通过例题对辅助圆的应用进行说明.1角的问题例1㊀在әA B C 中,A B =A C ,øA B C 的平分线交A C 于点D ,已知B C =B D +A D ,求øA 的度数.分析:根据题中所给已知条件,可以判定әA B C为等腰三角形,但是想要根据已知条件通过常规方式求øA 的度数存在一定困难.结合题中所给的角平分线,可以联想圆中共顶点的角的问题,作әA B D 的外图1接圆,与әA B C 的B C 边交于点E ,连接D E ,如图1.根据B D 是øA B C 的角平分线,可以知道A D =D E ,同时还能得到这个辅助圆为四边形A B E D 的外接圆.根据圆内接四边形的对角互补的性质可得øA B C =øE D C ,根据әA B C 为等腰三角形可知øA B C =øE D C =øC ,于是可得øB E D =2øC ,且әE D C 为等腰三角形.所以D E =C E ,则A D =D E =C E ,然后结合B C =B E +A D 得到B D =B E ,所以øB D E =øB E D =2øC .这样就可以在әB D E 中计算øC 的度数,即12øC +2øC +2øC =180ʎ,所以øC =40ʎ,最后计算得出øA =100ʎ.在初中数学几何问题中构造辅助线需要充分结合试题的情况来进行.本题中辅助圆的构造就是结合了本题所给定的角平分线的关系,根据相等的圆周角所对应的弧和弦长相等的性质来实现;然后通过辅助圆及相关线段关系来与相关角取得联系;最后利用三角形的性质求解.教师要对学生进行相应的引导,让学生掌握通过角的关系来构造辅助圆,进而借助辅助圆解决问题.2线段长度的问题图2例2㊀如图2所示,在R t әA B C中,A B ʅB C ,A B =6,B C =4,P 是R t әA B C 内部的一个动点,且满足øP A B =øP B C ,则线段C P 的最小值为(㊀㊀).A.32㊀㊀㊀㊀㊀㊀B .2C .81313D.121313图3分析:根据A B ʅB C 可以知道øA B C =90ʎ,结合øP A B =øP B C 可得到øA P B =90ʎ,所以әA B P 是直角三角形.根据直角三角形中斜边的中线等于斜边的一半以及圆的直径所对的圆周角是90ʎ,可知点P 在以A B 为直径的圆上.以A B 的中点O 为圆心,A B 为直径作圆,如图3所示.这样就可得到当P C 的值最小时,点P 正好在线段O C 上.因为A B =6,所以O B =3.在R t әO B C 中,B C =4,根据勾股定理得到O C =5,于是可求出P C 的最小值为2.所以正确答案是选项B .例2的解题关键是需要判断点P 的轨迹,首先根据试题中所给定的关系得到øA P B =90ʎ,结合直角三角形的性质和圆的性质很容易判断出点P 在以直线A B 为直径的圆上,然后就能够求解最小值.因此,在解题的过程中,只有认真分析题目条件,才能顺利找到解题思路.教师在进行解题教学时需要教会学生如何根据题目中所给定的已知条件来进行分析,从而找到解题思路.很多几何问题都是需要在解题的过程中才能够找到相应的解题思路,并不是通过对试题的观察就能得到解题思路的.因此结合已知条件来对试97解法探究2023年12月下半月㊀㊀㊀题中存在的关系进行分析,在解题的过程中发现解题思路,是解决问题最好的方式.教师需要引导学生先根据已知条件尝试找到解题的思路,进而解决问题.3三角形相似的问题例3㊀әA B C 中,A D 是øB A C 的外角平分线,交B C 的延长线于点D ,求证:B D D C =A BA C.分析:A B ,A C 是әA B C 的两条边,而B D ,D C则是线段B D 上的两条线段,根据所学的知识,要证明B D D C =A BA C ,线段成比例关系可以通过证明三角形相似来解决.因此需要将线段B A 延长至点F ,连接D F ,构建出әB A C ʐәB D F ,得到A B A C =B DD F,然后证明C D =D F 就可以了,从而将证明的关键转化为证明C D =D F .结合题意,øB A C 的外角平分线交B C的图4延长线于点D ,如图4,根据例题1中的方式构造әA C D 的外接圆,B A 的延长线与圆交于点F ,连接D F .根据圆的性质可以得到C D =D F ,通过相似三角形的证明就可以解决问题.几何问题中需要求证的结论存在线段比例关系或者线段等积关系时,都会涉及三角形相似或者全等的证明,通过构造圆为三角形相似或者全等提供条件,实现对问题的求解.在这个过程中,需要充分结合例题1和例题2中辅助圆构造的方式来找到相应的关系.4动点的问题图5例4㊀如图5所示,边长为3的等边三角形A B C ,D ,E 分别是B C ,A C 边上的两个动点,且B D =C E ,A D ,B E 交于点P ,求点P 的运动路径长和C P 的最小值.分析:首先需要对点P 的运动路径进行判定.根据等边三角形的相关性质和B D =C E 可以得到әA B D ɸәB C E ,这样就得到øC B E =øB A D ,然后通过øC B E +øA B P =60ʎ得到øB A P +øA B P =øA P E =60ʎ,于是øA P B =120ʎ.可以发现在点D 和点E 移动的过程中,øA P B =120ʎ是恒成立的,所以可以认为点P 在A B 为弦的圆上.假设弦A B 所在圆的圆心为O ,连接O P ,O A ,O B ,根据圆的性质㊁әA B C 的边长为3可计算出圆O 的半径O A =3,然后计算出点P 的运动路径长度为233π,C P 的最小值为3.解:由A B =B C ,øA B D =øB C E ,B D =C E 得әA B D ɸәB C E .由øC B E +øA B P =60ʎ,得øB A P +øA B P =øA P E =60ʎ.所以øA P B =120ʎ.故点P 的运动轨迹是以A B 为弦的圆上的一段弧.图6如图6所示,作әA B P 的外接圆,圆心为O ,连接O A ,O B ,O P ,O C .由O A =O B ,A C =B C ,得әA O C ɸәB O C .所以øO A C =øO B C ,øA C O =øB C O =12øA C B =30ʎ,øA O C =øB O C =12øA P B =60ʎ.故øO A C =90ʎ.根据勾股定理,可得O A =3,O C =23.所以,弦A B 所对的弧长为3ˑ23π=233π;当O ,P ,C 三点共线时,C P 最小,且最小值为3.在三角形的动点问题中,如果动点与一条线段所构成的角度固定,则说明这个动点的轨迹是以这个线段为弦的圆上的一段弧,通过这个关系可以构造辅助圆,然后利用圆的性质来求解问题.本题给定的是正三角形,当然不同的三角形中所呈现的关系可能会存在差别,但是本质没有变化.例如,在例题2中通过计算所得到的角度为90ʎ的特殊角,这个辅助圆的圆心就在直角三角形的斜边上.例4中这个角度为120ʎ,圆心在三角形的外部,通过辅助圆来充分利用圆的相关性质,能够更好地对问题进行求解,实现问题的解决.本文中对辅助圆在初中数学平面几何中的应用进行了总结,并通过相关例题对其用法进行了说明.在初中数学平面几何问题中巧用辅助圆能够优化试题解法,实现快速求解.因此,教师在解题教学的过程中需要对学生进行有效地引导,让学生掌握辅助圆的应用,从而提升解题能力;提升数学素养.Z08。
2023年中考数学专项复习课件:辅助圆在解题中的应用

模型分析
(2)当∠C=90°时,点C在⊙O上运动(如图②,不与点A,B重合).其中 AB为⊙O的直径;(3)当∠C>90°时,点C在如图③所示的 上运动( 不与点A,B重合).其中 ∠AOB+∠ACBA=B 180°
1 2
模型应用
12. 如图,在矩形 ABCD中,AB=4,BC=6,E是矩形内部的一个动点 ,且AE⊥BE,则线段CE的最小值为2__1_0__2___.
r-d
0
d-r
连接OD并延长交
连接OD交⊙O于
此时点E的位置
点E与点D重合
⊙O于点E
点E
模型应用 1. 如图,在平面直角坐标系中,⊙M的半径为2,圆心M的坐标为(3,4) ,P是⊙M上的任意一点,PA⊥PB,且PA,PB分别与x轴交于点A,B. 若点A,B关于原点O对称,则AB的最小值为_6_______.
对的劣弧BD上运动,连接OA,OP,则AP≤OA+OP,
∴当O,A,P三点共线时,AP取得最大值,最大值即为OA+OP的值.
过点O作OQ⊥AB于点Q,
∵∠DPB=120°,∴∠BAD=60°,
∵AD=BD=6,∴∠OAQ=30°,AQ= 1 AB=3,
2
∴OA=2 3 ,∴OA+OP=4 3,
∴AP的最大值为4 3 .
15 4
过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为______.
第8题图
第9题图
10. 如图,在四边形ABCD中,BD=4,∠BAD=∠BCD=90°,则四边
形ABCD面积的最大值为___8_____.
11. 如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,
CE
第1题图
中考数学备考课件:辅助圆问题 (共19张PPT)

BM C
∴△ABM≌△BCN(SAS)
∴ BAM CBN
∵ ABP CBN 90o ∴ ABP BAM 90o ∴ APB 90o ∴点 P 在以 AB 为直径的圆上
运动,设圆心为 O,连接 OC 交⊙O 于 P,此时 PC 最小 ∵ AB 4 ∴ OP OB 2
A
D
O
N
P B MC
解:∵ AB AC AD 2
E
∴点 B,C,D 在以点 A 为圆心, 半径为 2 的圆上延长 BA 交 D ⊙A 于 E,连接 DE
∵AB∥CD ∴ EBD BDC
A
B
C
∵ DE DE , BC BC ∴ EAD 2EBD ,
BAC 2BDC
∴ EAD BAC
E
A
B
∴ ED BC 1
小值为 BC sin B 3 3
∴DE 长的最小值为
3 2
PC
3 2
3
3
9 2
.
类型二 定点 定长模型 方法与技巧 常见图形中共顶点的多条线段相等,可考虑利用到 定点的距离等于定长推导共圆,再利用圆有关性质 解决问题.
3.如图,在四边形 ABCD 中, AB AC AD 2 , BC 1,AB∥CD.求 BD 的长.
由勾股定理,得 OC OB2 BC2 2 5
∴ PC OC OP 2 5 2
∴PC 长的最小值为 2 5 2 .
2.如图,在 Rt△ ABC 中, ACB 90o , AB 5,
cos
B
4 5
,⊙A
与边
BC
交于点
C,过
A
作
DE∥BC,
交⊙A 于点 D,E,点 F 在 DC 上,连接 EF,过 A 作
中考数学几何最值模型 专题03 辅助圆模型(学生版+解析版)

辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
二、定弦定角2、线段AB固定,Q为动点,且∠AQB为定值,那么Q、A、B三点可以确定一个圆,动点Q在圆弧AB上运动,如图所示,R为圆外一定点,当Q运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,RQ最小。
方法点拨一、题型特征:①动点的运动轨迹为圆②圆外一点到圆上一点的距离最短:即圆外一点与圆心连线与圆的交点③常见确定圆的模型:定点定长、定弦定角。
二、模型本质:两点之间,线段最短。
例题演练1.如图,已知AB=AC=BD=6,AB⊥BD,E为BC的中点,则DE的最小值为()A.3﹣3B.3C.3﹣3D.2【解答】解:取AB的中点O,连接AE,OE,OD.∵AB=AC,BE=EC,∴AE⊥BC,∴∠AEB=90°,∵OA=OB,∴OE=AB=3,∵AB⊥BD,∴∠OBD=90°,∵OB=3,BD=6,∴OD===3,∵DE≥OD﹣OE,∴DE≥3﹣3,∴DE的最小值为3﹣3,故选:C.强化训练1.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC =∠PCD,则线段PD的最小值为()A.5B.1C.2D.3 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE ⊥BE,则线段CE的最小值为.3.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB =∠ACP,则线段PB长度的最小值为.4.如图,在矩形ABCD中,AB=4,BC=6,E是平面内的一个动点,且满足∠AEB=90°,连接CE,则线段CE长的最大值为.5.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究一:如图2,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(2)探究二:如图3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.(3)探究三,在正方形ABCD中,点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=4,试求出线段CP的最小值.1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
中考总复习专题六辅助圆

例题解析
300 1.如图,已知:AB=AC=AD,∠BAC=60o,则∠BDC=_______.
思路点拨:
A
600
本题用一般的方法较难解决, 注意到已知条件AB=AC=AD ,可以点A为圆心,AB长为半 D 径作圆,则点C、D都在此圆 上,从而运用圆周角定理求解 .
练习
B
Q
20 ②当 CQ 12时,圆O与直线AB 3 有两个交点,当点 P运动到这两个交
M(P)
20 3
12
O
点时,CP Q为直角三角形 .
C
5
A
20 ③当0 CQ 时,圆O与直线AB 3 相离,点P在圆O外,CPQ小于90, CPQ不可能为直角三角形 .
20 综上所述,当 CQ 12时, CPQ 可能为直角三角形 . 3
可以点E为圆心,AO长为直径 作圆,如果圆E与直线x=b有交
O
C x=b
x
点,则存在四边形DEFB为矩
形.反之,则不存在.
例题解析
(3)设直线x=b与x轴交于点C,问四边形DEFB能不能是矩形? 若能,求出t的值;若不能,说明理由.
解:能。以点E为圆心,AO长为直
y
径作圆,则半径为EO=4.
F B (b,t) D
(2)S=2b
O
C x=b
x
例题解析
(3)设直线x=b与x轴交于点C,问四边形DEFB能不能是矩形? 若能,求出t的值;若不能,说明理由. 思路点拨:
y
因为四边形DEFB是平行四边 形,所以四边形DEFB要成为
F B (b,t) D
(0,8) A
2023年中考数学二轮专题培优复习:辅助圆问题(定角定高)

2023年中考数学二轮专题培优复习:辅助圆问题定角定高1.如图,在△ABC中,∠BAC=60°,AD⊥BC于点D,且AD=4,则△ABC面积的最小值为.2.如图,在△ABC中,∠BAC=90°,BC边上的高AD=6,则△ABC周长的最小值为.3.如图,正方形ABCD的边长为6,点E,F分别是CD,BC边上的点,且∠EAF=45°,则△AEF面积的最小值为.4.如图,已知△ABC中,∠BAC=60°,AD平分∠BAC,交BC于D,且AD=4,则△ABC 面积的最小值为.5.如图,在△ABC中,AB=AC,∠BAC=α,点D为BC上一点,连接AD,将AD绕点A 逆时针旋转β得到线段AE,且α+β=180°,连接BE,DE,CE.(1)如图①,设BE与AC交于点F,当α=90°时.①求证:BD2+DC2=DE2;②若BE平分∠ABC,此时BD=,求AF的长;(2)如图②,当α=120°时,若BC=4,BD<DC,延长AE交BC于点M,求△ADM 面积的最小值.6.【问题提出】(1)如图①,已知点A是直线l外一点,点B,C均在直线l上,AD⊥l于点D且AD=4,∠BAC=45°.求BC的最小值;【问题探究】(2)如图②,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=2,点E,F 分别为AB,AD上的点,且CE⊥CF,求四边形AECF面积的最大值;【问题解决】(3)如图③,某园林对一块矩形花圃ABCD进行区域划分,点K为BC的中点,点M,N分别为AB,DC上的点,且∠MKN=120°,MK,KN将花圃分为三个区域.已知AB =7m,BC=12m,现计划在△BMK和△CNK中种植甲花,在其余区域种植乙花,试求种植乙花面积的最大值.7.问题提出:(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=4,∠BAC =60°,求△ABC面积的最小值;问题解决:(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.8.问题提出:(1)如图①,△AOB与△OCD均为等边三角形,点C在OA上,点D在OB上,固定△AOB不动,让△OCD绕点O逆时针旋转,当OC∥AB时,则旋转角α=.问题探究:(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l垂足为D且AD =6,∠BAC=60°.求△ABC面积的最小值.问题解决:(3)如图③,是某市“城市花卉公园”的设计示意图,已知四边形ABCD为矩形,AD边上的点E为公园入口,AE=4千米,AB边上的点F为休息区,BF=8千米,AF=4千米.公园设计师拟在园内修建三条小路将这个园区分为四个区域,用来种植不同的花卉.其中GC为消防通道,FG和FH为两条观光小路(小路宽度不计,G在CE边上,H在BC边上),根据实际需要∠GFH=75°,∠CED=45°,点B为园区内的花卉超市,游客可乘车由入口E经观光路线EG→GF→FH→HB到花卉超市B购买不同品种花卉.为了快捷、环保和节约成本,要使观光路线EG+GF+FH+HB的值最小,请问设计师的想法能否实现?如能,请求出EG+GF+FH+HB的最小值;若不能,请说明理由.9.[问题提出](1)如图1,在△ABC中,∠C=90°,AD平分∠CAB,AC=6,AD=7,则点D到直线AB的距离是.(2)如图2,已知点A是直线外一点,点B、C均在直线上,AD⊥l且AD=2,∠BAC =45°,求△ABC面积的最小值;(3)如图3,某农场主想在空地上规划出一块形如四边形ABCD的田地,AB=BC,AD =CD,∠BAD=120°,他计划在面积为16平方米的四边形AEOF内种植蔬菜,其余区域种植玉米.根据设计要求:点O、点E、点F分别在对角线BD、边AB和边AD上,且OE=OF,∠EOF=60°,为了节约种植成本,要求四边形田地的面积尽可能的小,则四边形ABCD的面积是否存在最小值,若存在,请说明理由.10.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,点D是BC的中点,连接AD,过点C作CE⊥BC,交AD的延长线于点E,若△ABC的面积为4,则△DCE的面积为.问题探究(2)如图②,在Rt△ABC中,∠BAC=90°,点A到BC的距离为6,求△ABC面积的最小值;问题解决(3)如图③,有一块矩形空地ABCD,AB=120m,BC=70m,现要对这块空地进行改造,根据设计要求,在AB的中点M处修建一个观景台,AD、BC边上分别修建亭子E、F,且∠EMF=120°,并在△MAE和△MBF区域种植景观树,在矩形其它区域均种植花卉,已知种植这种景观树每平方米需200元,种植这种花卉每平方米需100元,试求按设计要求,完成景观树和花卉的种植至少需费用多少元?(结果保留根号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考第二轮复习(27) ——辅助圆问题 姓名__________
前言:关于动点对定线段所张的角为定值问题,从表面上看似与圆无关,但如果我们能深入挖掘题目中的隐含条件,善于联想所学定理,巧妙地构造题意特征的辅助圆,再利用圆的有关性质来解决问题,往往能起到化隐为显,化难为易的解题效果,今天我们来学习一下辅助圆的问题。
基本模型
(1)到顶点距离相等的各点共圆
(2)同斜边的直角三角形的顶点共圆
(3)对角互补的四边形的顶点共圆 (4)同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)
例题:如图,已知抛物线c x a y +-=2)2(与x 轴从左到右依次交于A ,B 两点,与y 轴交于点C ,其中点
B 的坐标为(3,0),点
C 的坐标为(0,−3),连接AC ,BC .
(1)求该抛物线的解析式;
(2)若点P 是该抛物线的对称轴上的一个动点,连接PA ,PB ,PC ,
在P 点的运动过程中,APB ∠能否与ACB ∠相等?若能,请求出P 点
的坐标;若不能,请说明理由.
分析:在第二问中,由于第二问中的问题是线段AB 所张的角
相等的问题,所以可以构造一个以AB 为弦,ACB ∠为圆周角
的一个圆,即构造过A 、B 、C 三点的圆来解决问题。
解:过A 、B 、C 三点作圆M ,与对称轴的下方交于点P ,
可得ACB APB ∠=∠由AM=CM ,可求出点M 的坐标,
又因为MP=AM ,可求出点1P 的坐标,再由对称性可知在x 轴的
上方还有另一个点2P 。
答案:1P (2,52--), 2P (2,52+)
练习1:如图,ABC ∆中,AC AB =,以AC 为边在ABC ∆外作等边三角形ACD ,连接BD ,
求证:BDC BAC ∠=∠2
练习2:如图,在正方形ABCD 中,点E 为CB 延长线上一点,连结AE ,作AE 的垂线与DC 的延长线交于点F ,连结AC ,作AC 的垂线于EF 交于点G ,求证:CH EH HG AH ⋅=⋅
练习3:如图,点A 与点B 的坐标分别是(1,0)和(5,0),点P 是y 轴上的一个动点,且︒=∠30APB ,求满足条件的点P 的坐标。
练习4:已知抛物线342
---=x x y 与x 轴交于A 、B 两点,Q 为直线4--=x y 上的一点,点P 为对称轴上的一点,使得∠APB =2∠AQB ,且这个样的Q 点有且只有一个?请你求出点P 的坐标。
练习5:如图,在平面直角坐标系中,抛物线的顶点C 的坐标为(2,4),且经过点D (322+,2-)
(1)求抛物线的解析式;
(2)在y 轴上是否存在点P ,使得︒=∠60CPD ,若存在,请求出点P 的坐标,若不存在,请说明理由。
练习6:如图,抛物线343832+--
=x x y 与x 轴交于A 、B 两点(点A 在 B 的左侧),与y 轴交于点C (1)求点A 、B 的坐标; (2)设点D 为已知抛物线的对称轴上的任意一点,当ACD ∆的面积等于ACB ∆的面积时,求点D 的坐标;
(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.
练习7:已知平面直角坐标系中两定点A (1-,0),B (4,0),抛物线22-+=bx ax y 过点A ,B ,顶点
为C ,点P (m ,n )为抛物线上一点,其中0<n
(1)求抛物线的解析式和顶点C 的坐标;
(2)当APB ∠为钝角时,求m 的取值范围。