专题16 函数几何问题(精练)-初中中考数学高频考点突破全攻略(原卷+解析版)

合集下载

中考数学压轴题重难点突破十 几何图形综合题 类型五利用三角函数解决与√2 ,√3,二分之一有关的问题

中考数学压轴题重难点突破十 几何图形综合题 类型五利用三角函数解决与√2 ,√3,二分之一有关的问题

(3)Ⅰ)如图②,由(2)知△ADG∽△ACE, ∴DCGE=AADC= 22,∴DG= 22CE, ∵四边形 ABCD 是正方形, ∴AD=BC=8 2,AC= AB2+BC2=16, ∵AG= 22AD,∴AG= 22AD=8,
∵四边形 AFEG 是正方形, ∴∠AGE=90°,GE=AG=8, ∵C,G,E 三点共线, ∴CG= AC2-AG2= 162-82=8 3, ∴CE=CG-EG=8 3-8,
(1)解:如图①中,设 AC=CD=x. 在 Rt△ACB 中,AB=10,AC=x,BC=CD+BD=x+2, ∵AB2=AC2+BC2,∴102=x2+(x+2)2, 解得 x=6 或-8(舍弃), ∵12AC·BC=12AB·CE,
∴CE=61×08=254.
(2)证明:如图②中,作 DH⊥CF 于点 H. ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∵∠ACE+∠BCE=90°, ∴∠CAE=∠DCH,∴△ACE≌△CDH,∴AE=CH, 在 Rt△DHF 中,∵∠DHF=90°,∠F=30°, ∴HF=DF·cos 30°= 23DF, ∴CF=CH+FH=AE+ 23DF.
(3)AB=8 2,AG= 22AD,将正方形 AFEG 绕 A 逆时针方向旋转α(0°<α <360°),当 C,G,E 三点共线时,请直接写出 DG 的长度.
解:(1)∵四边形 ABCD 是正方形,四边形 AFEG 是正方形, ∴∠AGE=∠D=90°,∠DAC=45°, ∴AAEG= 2,EG∥CD,
若题中已知一条边,常以这条边为直角边或斜边构造等腰直角三角形, 就会出现 2倍数量关系.
方法二:构造含 30°角的直角三角形( 3,12倍数量关系)

2021年上海市16区中考数学一模考点分类汇编专题15 几何综合(解答题25题压轴题)(逐题详解版)

2021年上海市16区中考数学一模考点分类汇编专题15 几何综合(解答题25题压轴题)(逐题详解版)

2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G . (1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值;(3)当AG AE =时,求CD 的长.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求∠MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF .(1)如图1,当∠B=90°时,求ABE S 与ECF S 的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值;(3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且BQ =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.9.(2021·上海崇明区·九年级一模)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD 的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数;()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DF AB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切;(3)当FGD AFE ∠=∠时,求线段BE 的长.13. (2021虹口一模)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠.(1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.14.(2021宝山一模) 如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.15. (2021松江一模)如图,已知在等腰ABC 中,AB AC ==,tan 2ABC ∠=,BF AC ⊥,垂足为F ,点D 是边AB 上一点(不与A ,B 重合)(1)求边BC 的长;(2)如图2,延长DF 交BC 的延长线于点G ,如果CG 4=,求线段AD 的长;(3)过点D 作DE BC ⊥,垂足为E ,DE 交BF 于点Q ,连接DF ,如果DQF △和ABC 相似,求线段BD 的长.16.(2021嘉定一模)在矩形ABCD 中,6AB =,8AD =,点E 在CD 边上,1tan 2DAE ∠=.点F 是线段AE 上一点,联结BF ,CF .(1)如图11,如果3tan 4CBF ∠=,求线段AF 的长; (2)如图12,如果12CF BC =, ①求证:∠CFE =∠DAE ;②求线段EF 的长.2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G .(1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值; (3)当AG AE =时,求CD 的长.【答案】(1)494;(2)119169;(3. 【分析】(1)利用勾股定理求出AB 的长,设CD=x ,则AD=12-x ,利用勾股定理得出13²=x²+(12-x)²+(5+x)²+x²,求出x 的值,再利用正方形的面积公式求解即可;(2)先证∠BAC=∠EBF ,设边长为x ,利用三角函数求出x 的值,再求∠ABE 的正弦值即可;(3)设边长为x ,利用∠BCG∠∠EDG ,得出5DE DG x BC GC ==,然后联立512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,根据AG=AE ,求解即可.【详解】解:(1)Rt∠ABC 中,∠ACB=90°,AC=12,BC=5,13= ,设CD=x ,则AD=12-x ,在∠ADE 中,AE²=DE²+AD²=x²+(12-x)²,在∠BFE 中,BE²=BF²+EF²=(5+x)²+x²,在∠ABE 中,AE∠BE ,∠AB²=AE²+BE²,即13²=x²+(12-x)²+(5+x)²+x²,解得x=72,∠正方形CDEF 的面积=CD²=72×72=494; (2)如图:延长ED 交AB 于H ,∠∠BEH∠∠ABG ,且∠ABG=∠EBH ,∠∠BEH=∠BAG , ∠DE∠EF ,∠∠BEH=∠EBF ,∠∠BAC=∠EBF ,设边长为x , 则tan∠EBF=5x x +,tan∠BAC=512,令5x x +=512,则x=257, ∠25125971284HDAH ADBCAB AC-====,∠59767138484AH =⋅=, ∠BH=13-AH=32584,HD=5929558484⋅=, ∠HE=HD+x=59584, 过H 作HM ,与BE 相交于M ,5sin sin 13B M AG HE ∠=∠=,595sin 84s 951419165in 81332HM HE HEM ABE BH BH ⨯⋅∠∠====;(3)∠DE//BC,∠∠BCG∠∠EDG ,设边长为x ,∠5DE DG xBC GC ==, ∠DG+GC=x ,∠DG=25x x +,GC=55x x +,则512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,令AG=AE , 则或(舍去).【点睛】本题考查了勾股定理、相似三角形的性质与判定及利用三角函数求解,解题的关键是熟练掌握相关性质,正确构造辅助线,表示相关线段的长度.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD 中,点M 是边AB 上的一个点(与点A 、B 不重合),联结CM ,作∠CMF =90°,且MF 分别交边AD 于点E 、交边CD 的延长线于点F .点G 为线段MF 的中点,联结DG .(1)如图1,如果AD =AM =4,当点E 与点G 重合时,求∠MFC 的面积;(2)如图2,如果AM =2,BM =4.当点G 在矩形ABCD 内部时,设AD =x ,DG 2=y ,求y 关于x 的函数解析式,并写出定义域;(3)如果AM =6,CD =8,∠F =∠EDG ,求线段AD 的长.(直接写出计算结果)【答案】(1)20;(2)()4244644x x y x =-+<;(3)AD =或【分析】(1)运用ASA 证明∠AME DFE ≅∆求出FD 的长再运用三角形面积公式即可得到答案;(2)证明FHM MHC △∽△,根据相似三角形的性质列出比例式,代入相关数值即可求出函数关系式;(3)分点G 在矩形内部和外部两种情况求解即可. 【详解】解(1)过M 作MH∠DC ,垂足为H ,如图1易得四边形ADHM 是正方形,∠AE ED =又∠FED=∠MEA∠∠()AME DFE ASA ≅∆ ∠.4AM FD DH ===∠MH FC ⊥∠∠FHM=∠CHM=90°,∠HCM+∠HMC=90° ∠90FMC ∠=︒,∠∠FMH+∠HMC=90°∠∠FMH=∠HCM∠∠FMH∠∠MCH ∠12MH HC FH MH ==∠2CH =,CF 10=∠1202MFC S CF MH =⋅=△ (2)过M 作MH∠DC ,过G 点作GP∠DC ,垂足分别为H ,P ,如图2,∠FG GM =,//GP MH ∠111222GP MH AD x ===,12FP PH FH == ∠MH∠DC ,∠∠MHF=∠MHC=90°,∠HMC+∠ HCM=90° ∠∠FMC=90°,∠∠FMH+∠HMC=90° ∠∠FMH=∠HCM ,∠FHM MHC △∽△∠FH MH MH HC =,即4FH x x =,∠24x FH =∠28x PH =,228x DP =-,12GP x =∠222DG DP GP =+∠424644x x y =-+由00FH DP >⎧⎨>⎩ 可得4x <<∠定义域为4x <<(3)点G 在矩形内部时,延长DG 交AB 于J ,连接AG ,AF ,如图∠EDG EFD MCB ∠=∠=∠∠AD BC =∠ADJ BCM ≌△△, 2AJ BM == ∠1GJ GMDG GF==,∠AG DG =∠∠12=∠∠∠1390+∠=︒∠∠3490+∠=︒ ∠∠90AGE =︒∠AG 垂直平分FM ∠6AF AM ==∠4DF MJ ==∠AD ===点G 在矩形外部时,延长DG 交BA 延长线于L ,连接DM ,如图∠EDG EFD MCB ∠=∠=∠,AD BC =∠ADL BCM ≌△△, ∠2AL BM ==∠∠L CMD =∠,∠FMC 为直角,∠90DGE ∠=︒,DG 垂直平分FM ∠8DM DF ==,6AM =,∠AD =AD =或【点睛】收费题主要考查了三角形全等的判定与性质、垂直平分线的判定与性质,相似三角形的判定与性质,熟练掌握相关定理和性质是解答此题的关键.3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长; (3)过点M 作射线CD 的垂线,垂足为点F ,设BDx BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.【答案】(1)见解析;(2)DE=6-;(3)).【分析】(1)先证∠B=∠DCE ,再由∠DEC=∠CEB ,得出∠DEC∠∠CEB ,进而得出结论;(2)由∠DEC∠∠CEB 得BC=BE ,再由∠DEC∠∠DCA ,得AD=AC ,最后利用勾股定理求解即可;(3)连接EF ,先证∠BDC∠∠EDF ,得出FD DE CD BD =,进而得出FDMF=y ,然后结合已知条件得出结果. 【详解】解:(1)∠∠ACB=90°,∠∠B=45°,∠∠DCE=45°,∠∠B=∠DCE ,∠∠DEC=∠CEB ,∠∠DEC∠∠CEB ,∠EC DE BE CE=,故CE²=BE·DE ; (2)由题意得∠DCE 是等腰三角形,DC=CE ,由∠DEC∠∠CEB 得BC=BE , 同理可得∠DEC∠∠DCA ,AD=AC ,∠BC=AC ,∠BE=AD=BC=AC ,∠AC=3,∠在Rt∠ABC中,AB²=BC²+AC²=9+9=18,,∠AD=2BD,∠BD=AB-AD=AB-3,-6,-3,∠DE=AB-BD--3)=6-.(3)连接EF,由三角形相似可得∠FED=∠DBC,∠EF∠BC,∠∠EFD=∠BCD,∠∠EDF=∠BDC,∠∠BDC∠∠EDF,∠FD DECD BD=,∠tan∠FMD=y,∠FDMF=y,在Rt∠MFC中,∠MCF=45°,∠MF=CF,∠FD FDCF MF==y,∠BDxBC=,BE=BC,∠BD BDxBE BC==,∠,FD BDy xCF BE==,∠DE=1xBDx-,CD=1yFDx-,∠FD DECD BD=,11y xy x=--,则y(1-y)=x(1-y),y-xy=x-xy,..【点睛】本题考查了相似三角形的性质与判定及勾股定理的应用,解题的关键是灵活运用相似三角形的性质与判定.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF . (1)如图1,当∠B=90°时,求ABE S与ECFS的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值; (3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.【答案】(1)94;(2)15;(3)17. 【分析】(1)先证明:,BEA CFE ∽可得:BE ABCF CE=,结合:3,EC CF =可得:3,AB BE =再设,,CF a BE b == 可得3,AB BC b a ==+而3AB b =,建立方程:33,b a b +=可得:3,2b a = 再利用相似三角形的性质可得答案.(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,先证明:,ABE GCE ≌可得:,,AB CG AE GE == 证明:AF FG =, 设,CF a = 再设DH x =, 利用22222,AF AH FH DF DH -==-求解x ,可得cos ,D 从而可得答案;(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG = 证明:6EH EC ==, 设,DF x = ,HG GC y == 证明:,AFE B D ECH H ∠=∠=∠=∠=∠可得:cos ,6EF ycoc AFE H AF ∠==∠=再证明:,FEH AFD ∽利用相似三角形的性质列方程组,解方程组可得答案.【详解】解:(1)四边形ABCD 是菱形,90B ∠=︒, ∴ 四边形ABCD 是正方形,90B C ∴∠=∠=︒,90BAE BEA ∴∠+∠=︒, ,EF AE ⊥ 90BEA CEF ∴∠+∠=︒, ,BAE CEF ∴∠=∠ ,BEA CFE ∴∽ BE AB CF CE ∴=,,BE CFAB CE∴= 3,EC CF =3,AB BE ∴= 设,,CF a BE b == 3,CE a ∴= 3,AB BC b a ∴==+ 而33,AB BE b ==33,b a b ∴+= 3,2b a ∴= 9,2AB a ∴= 22992.34ABE CEFaSAB SCE a ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭(2)延长,AE DC 相交于G ,过F 作FH AD ⊥于,H 连接AF ,菱形ABCD ,//,AB CD ∴ ,BAE G ∴∠=∠ E 为BC 的中点,,BE CE ∴=,AEB CEG ∠=∠ ()ABE GCE AAS ∴≌,,,AB CG AE GE ∴==,AE EF ⊥ ,AF FG ∴=设,CF a = 则3,CE BE a == 6AB BC DC CG AD a =====,75,FG AF a DF a ∴===, 设,DH x = 22222,AF AH FH DF DH ∴-==-()()()2222765,a a x a x ∴--=- ,x a ∴= ,DH a ∴= 1cos ,55DH a DDF a ∴=== 由菱形ABCD 可得:,B D ∠=∠ 1cos .5B ∴=(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG =,,EC EH H ECH ∴=∠=∠ 23,CF CE CF ==, 6CE EH ∴==,设,DF x = ,HG GC y == 则2,DC AD x ==+ ,6HG y coc H EH ∴∠== 菱形ABCD , ,//,B D AB CD ∴∠=∠ ,B ECH ∴∠=∠ ,AFE B ∠=∠,AFE B D ECH H ∴∠=∠=∠=∠=∠ cos ,6EF y coc AFE H AF ∴∠==∠= ,AFH AFE EFH D DAF ∠=∠+∠=∠+∠ ,EFH DAF ∴∠=∠,FEH AFD ∴∽ ,EH HF EF DF AD AF ∴== 622,26y y x x +∴==+ 361012xy xy y =⎧∴⎨=+⎩,解得:15,2.4x y =⎧⎨=⎩经检验:152.4x y =⎧⎨=⎩是原方程组的解,217,CD x ∴=+= 即菱形ABCD 的边长为:17. 【点睛】本题考查的是三角形全等的判定与性质,线段垂直平分线的性质,勾股定理的应用,菱形,正方形的性质,相似三角形的判定与性质,解直角三角形,解分式方程组,掌握以上知识是解题的关键. 5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ==142ADB S DB AC ∴=⋅=12ADB S AB DH =⋅DH ∴=AH == 1tan 3DH DAB AH ∴∠==; (2)过E 作EH∠CB 于H∠EDB ADC ∠=∠,90C EHD ∠=∠=︒∠ACD EHD .∠AC EH CD DH = 即44EH x x EH=--.∠()444x EH x -=+ .∠EH∠CB ,90ACB ∠=︒,4AC BC ==∠)44x EB x -==+ ,AB =∠)44x AE x -=+∠EF AD ⊥,90C ∠=︒∠AFG ADC ∠=∠ .∠EDB ADC ∠=∠ ∠AFG EDB ∠=∠.∠45FAE B ∠=∠=︒∠AFE BDE .∠AF AE DB BE =即)4444x y x x --=-+()2402y x x =-+<≤; (3)在Rt∠MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt∠ADM 中,AM=AB 一MB=)(4).22x x -=+所以tan∠DAB=44DM x AM x -=⋅+ 按照点F 的位置,分两种情况讨论∠CDF 与∠AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan∠FDC=tan∠DAB,得44y x x x-=⋅+结合y=4-2x ,整理,得x2+8x+16=0. 解得-4 或--4 (舍去),如果∠CFD=∠DAB ,由tan∠CFD=tan∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y x x x -=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB, 44x x y x-=+与y=2x -4整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8- 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且2BQ BP =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.【答案】(1)见解析;(2或6;(3)33BP << 【分析】(1)证明∠BPQ∠∠BAC 即可;(2)由∠PQD<90︒,只需要讨论两类情况,当90DPQ ∠=︒时,利用tan3AC B BC ===,求出∠B=30,30DPC ∠=︒,计算tan 30CD CP ︒===,根据BP=BC -CP 求值;当90PDQ ∠=︒时,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,证明∠EQD∠∠CDP ,得到QE ED CD CP=,设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,求出1344t QE F t t C +===,1CD =,CP t =,14DE CE CD =-=-,代入比例式求出t 的值; (3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,由'30DD C B ∠=∠=︒求出'CD =,'DP D P =,列得()'2CP D P CP DP m m +=+=+=计算求值即可;②另外一个极限情况时,如图4,当PQ 经过点D 时,求出PC=tan 602CD =︒,即可得到3BP =【详解】解:(1)在ABC 中,90C ∠=︒,2AC =,BC =∠4AB ==,∠BC AB ==,∠BQ BP =,∠BQ BP =∠BQ BC BP AB =,∠QBP CBA ∠=∠, BPQBAC ∴,∠90BQP BCA ∠=∠=︒,PQ AB ∴⊥;(2)90PQD ∠<︒,所以只需要讨论两类情况,当90DPQ ∠=︒时,如图1,在Rt∠ABC中,tan 3AC B BC ===,∠∠B=30, ∠9060QPB B ∠=︒-∠=︒,30DPC ∴∠=︒, ∠2AC =,点D 为边AC 的中点,∠CD=1,∠tan 30CD CP ︒===,BP BC CP ∴=-= 当90PDQ ∠=︒时,如图2,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,∠∠EQD+∠EDQ=∠EDQ+∠CDP=90︒,EQD CDP ∴,QE ED CD CP∴=, 设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,∠∠B=30,∠BQP=90︒, ∠PQ=12t ,∠60QPB ∠=︒,∠cos 6014PF PQ t =⋅︒=,sin 60QF PQ =⋅︒=,∠1344t QE F t t C +===,1CD =,CP t =,14DE CE CD t =-=-,134t -∴=t ∴=或t =(舍去), 综上,BP或6;(3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,'DD PQ ⊥,'30DD C B ∴∠=∠=︒,'CD ∴=30CDP ∠=︒,又'DP D P =,()'2CP D P CP DP m m ∴+=+=+=3m ∴=; ②另外一个极限情况时,如图4,当PQ 经过点D 时,∠60P ∠=︒,90DCP ∠=︒,CD=1, ∠PC=tan 603CD =︒,∠3BP =BP <<. .【点睛】此题考查相似三角形的判定及性质,锐角三角函数,直角三角形30度角所对的直角边等于斜边的性质,矩形的判定及性质,熟记各定理是解题的关键.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.【答案】(1)45;(2)45°;(3)不会发生变化,35. 【分析】(1)连接AC,利用垂直平分线性质,构造Rt △ABC ,由正弦三角函数即可求得;(2)证明 △BCG ≌△DCN ,得到角相等,再由角相等,得△GMC ≌△NMC ,由DN DC =解答即可; (3)由D 、C 、N 、P 四点共圆,得到∠CPD=∠CND=∠MNC ,再得△CPQ ∽△CNM ,由此解答即可.【详解】解:(1)连接AC ∵4AB AD ==,3CB CD ==∴AC 垂直平分BD∴∠ACB=∠ACD=12∠BCD=∠MCN 在Rt △ABC 中,AB=4,AC=3∴5== ∴sin MCN ∠=sin ∠ACB=45AB AC = (2)延长AB 至G 点,使BG=DN ,连接CG ,∵CB=CD ∠CBG=∠CBN=90°∴△BCG ≌△DCN ∴∠G=∠CND ,CN=CG ,∠BCG=∠DCN∴∠MCN=12∠BCD ∴∠MCB+∠NCD=12∠BCD ∴∠GCM=∠GCB+∠GCM=12∠BCD=∠MCN ∵CM=CM , ∠G=∠CND,∴△GMC ≌△NMC ∴∠G=∠MNC=∠DNC当DN=NC时∠DNC=∠DCN=45°∴∠DNC=∠CNM=45°(3)连接NP, ∵∠ADC=∠ADO+∠CDO=90°∠ADO+∠CDO=90°∴∠ADO=∠COD=12∠BCD=∠MCN∴∠NDP=∠NCP∴D、C、N、P四点共圆,∴∠NPC+∠NDC=180°∵∠NDC=90°∴∠NPC=90°∴∠CPD=∠CND=∠MNC∴△CPQ∽△CNM∴PQ CP MN CN=在Rt△CPN中,CPCN=cos∠MCN=cos∠ACB=35∴不会发生变化35PQMN=【点睛】本题考查了线段垂直平分线的性质,三角形全等性质与判断,三角形相似等知识点,解题的关键是掌握性质与判定.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<+. 【分析】(1)根据CE∠BD ,得出∠CEB=∠DBE ,∠DBA=∠BCE 结合题干证明出∠ABD∠∠ECB ,进而得到AD EBAB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .根据条件先证明出∠CEB∠∠CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD . (3)过点B 作BH∠AN ,垂足为H .BH=4,AH=3,DH=4x -根据∠ECB∠∠ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解.【详解】解:(1)∠CE∠BD ,∠∠CEB=∠DBE ,∠DBA=∠BCE .∠∠A=∠DBE ,∠∠A=∠BEC .∠∠ABD∠∠ECB ,∠AD EB AB EC =.∠AD DF AB BC=,∠EB DFEC BC =,∠DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .∠CE∠BD,∠∠CEB=∠EBD=∠A,又∠∠BCE=∠ECA,∠∠CEB∠∠CAE,∠CE CACB CE=,∠2CE=CB CA⋅.∠AB=5,AC=9,∠BC=4,∠24936CE==⨯,∠CE=6.∠BD ABCE AC=,∠561093AB CEBD==AC⋅⨯=.在Rt∠ABH中,3sin535BH AB A=⋅=⨯=,∠AH=224AB BH-=.==.AD=4±(3)过点B作BH∠AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∠∠ECB∠∠ABD,∠22EBCADBS BCS BD△△=.∠1322ABDS AD BH x=⋅△=,∠21638252yx xx=-+,∠224825xyx x=-+.定义域为44x<.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.9.(2021·上海崇明区·九年级一模)如图,Rt ABC中,90ACB∠=︒,6AC=,8BC=,点D为斜边AB 的中点,ED AB⊥,交边BC于点E,点P为射线AC上的动点,点Q为边BC上的动点,且运动过程中始终保持PD QD⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△.(2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED EDB AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDFBDQ △△,再分3种情况讨论,分别求出AP 的长.【详解】解:(1)PD QD ⊥,ED AB ⊥∠A DEQ ∠=∠,ADP EDQ ∠=∠,∠ADP EDQ △△.(2)ADP EDQ △△,∠EQ EDAP AD= 又点D 为斜边AB 的中点,∠AD BD = , EQ ED EDAP AD BD==又ED AB ⊥在Rt BDE 中tan =ED ED EQB BD AD AP==,又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10D 为AB 中点, ∠BD =5, DE =154,由勾股定理得:BE =254AP x =,可得34EQ x =,BQ BE EQ =-, 253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED EDFPD B DP AD BD∠====,∠FPD B ∠=∠,又∠PDF BDQ ∠=∠, ∠PDFBDQ △△,∠PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=,542253544x =-,解得256x .若BD BQ =, 253544x -=,解得53x =. ③若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E在边AB 上(点E与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值; (2)求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接BG ,当BGE △与DEH △相似时,求x 的值.【答案】(1)证明见解析;12;(2)222(02)21x y x x +=<<+;(3)45x =或45x =【分析】(1)根据垂直关系得到ADE CDF ∠=∠,根据AA 即可证明ADE CDF ∽△△,得到12DE AD DF CD ==,再根据正切的定义即可求解tan EFD ∠; (2)先证明FCH FBE △∽△,得到FC CH FB BE =,代入得到22212x yx x-=+-,故可求解; (3)根据题意分BEG DHE △∽△和EGB HDE △∽△,分别列出比例式求出x 的值即可求解. 【详解】解:(1)∠90ADE CDE ︒∠+∠=,90CDF CDE ︒∠+∠=∠ADE CDF ∠=∠在Rt EAD 和Rt FCD 中90ADE CDFEAD FCD ∠=∠⎧⎨∠=∠=︒⎩90EAD FCD ︒∠=∠=∠FAD FCD △∽△∠2AB DC ==,1AD =,∠12DE AD DF CD == ∠1tan 2DE EFD DF ∠== (2)由(1)可知ADE CDF ∽△△∠12EA DE AD FC DF CD ===∠22FC EA x ==∠AB //CD∠FCH FBE △∽△,∠FC CH FB BE =∠22212x y x x -=+-∠222(02)21x y x x +=<<+, (3)∠AE x =,DH y =,过点E 作EM∠CD 于M 点,∠四边形AEMD 为矩形∠MH=DH -DM=DH -AE=y -x ,∠2BE x =-,DE =EH =∠AB //CD∠AEG CHG △∽△∠EG AE HG CH =∠EG AE EH AE CH =+∠AEEG EH AE CH=⋅+∠BEG DHE ∠=∠, 若BEG DHE △∽△, ∠BE EG DH HE =∠BE AEDH AE CH =+即22x x y x y -=+- 化简得2240x y +-=∠22221x y x +=+∠222212240x x x +⨯-++=化简得22508x x +=-解得x =45x =若EGB HDE △∽△∠BE EG EH HD = ∠2AE BE HD HE AE CH⋅=⋅+即2(2)1()2x x y y x x y ⎡⎤-=⋅+-⎣⎦+- ∠22221x y x +=+代入化简得22637200x x ++=∠=372-4×26×20=-711<0,∠方程无解综上,45x =和x =BGE △与DEH △相似.【点睛】本题考查了矩形的性质、函数关系式、正切的定义、相似三角形的判定和性质等知识点,解题的关键是灵活运用所学知识解决问题,用分类讨论的思想思考问题,属于中考压轴题.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数; ()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.【答案】(1)72;(2)18°;(3)53【分析】(1)方法一:作OG BC ⊥,利用垂径定理和余弦即可求得;方法二:连接AC ,根据直径所对的圆周角等于90°可得∠ACB=90°,利用余弦解直角三角形即可;(2)先根据已知条件确定两个相似三角形的对应角,得出P PED PAO OEB ∠=∠=∠=∠,设ABC α∠=,利用等腰三角形等边对等角和弧与圆心角的关系,圆周角定理分别表示∠AOP 和∠OEB ,利用三角形外角的性质即可求得α即ABC ∠;(3)分当90EOB ∠=和当90OEB ∠=时两种情况讨论,画出对应图形,利用相似三角形和解直角三角形的知识求解即可.【详解】解析:方法一: 作OG BC ⊥,∠BC=2BG,7cos 4BG BO CBO =⋅∠=,722BC BG ∴==;方法二: 连接AC ,∠AB 为直径,90ACB ∴∠=7cos 2BC AB CBO ∴=⋅∠=; (2)∠AO=OP ,∠∠PAO=∠P ,∠P P ∠=∠,EDP ∆与AOP ∆相似,,DPEOPA ∴∆∆P PED PAO OEB ∴∠=∠=∠=∠,C 是AP 中点,CO ∴平分AOP ∠, CO BO =,设,ABC α∠=2,4AOC AOP αα∴∠=∠=,18049022PAO OEB αα-∴∠==-=∠,AOP OEB ABC ∴∠=∠+∠, 即4902a a a =-+,18a ABC ∴=∠=;()3 I .当90EOB ∠=时,作DH AB ⊥∠DH//OP ,∠∠ADH∠∠APO ,∠23AH DH AD AD AO OP AP AD DP ====+, 23AH AO ∴=,∠AB=4,∠OA=OB=2,428,,333AH HO BH ∴===, 2,AO OP ==43AH DH ∴==,∠DH//OP ,∠∠BOE∠∠BHD , 28433EO OB EODH HB ∴===,1EO ∴=, AHD AOED HOEDS S S ∆∴=+四边形梯形21414251232333⎛⎫⎛⎫=⨯+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; II .当90OEB ∠=时连接,AC由()1得//AC DP ,∠∠ACD∠∠PED ,∠ACB∠∠OEB ,2AD DP =,∠2CD AC ADDE PE DP===,2AC EP ∴=,又,AO BO =∠=2CB AC ABBE OE BO==,2,AC EO ∴=2,30AC OP ABC ∴==∠=,60,EOB CAO ∴∠=∠=∠AO=OP ,∠∠PAO=∠APO ,∠PAO+∠APO=∠EOB=60°,∠30CAD AP O O PA ∠=∠==∠,ABC OEB ACD AOED S S S S ∆∆∆∴=--四边形111222AC BC OE BE CD AC =⋅-⋅-⋅4,AB =2,AC BC BE ∴===1OE =,CD =111212222AOED S ∴=⨯⨯⨯=四边形综上所述,四边形AOED 的面积为53 【点睛】本题考查圆周角定理、垂径定理、相似三角形的性质和判定,解直角三角形,等腰三角形的性质等.(1)中能借助定理构造直角三角形是解题关键;(2)能借助相似三角形以及圆周角定理表示相关角是解题关键;(3)中注意分类讨论和正确构造图形.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DFAB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切; (3)当FGD AFE ∠=∠时,求线段BE 的长.。

相似三角形几何模型微专题(精选精练)(学生版)-初中数学

相似三角形几何模型微专题(精选精练)(学生版)-初中数学

相似三角形几何模型微专题(精选精练)【题型目录】【题型1】“A字”模型; 2【题型2】“反A字”模型; 2【题型3】“8字”模型; 3【题型4】“反8字”模型; 4【题型5】“双A字”模型; 5【题型6】“双8字”模型; 6【题型7】“A字模型”与“8字模型”综合; 6【题型8】“共边等角”模型; 7【题型9】“共顶点等角”模”; 8【题型10】“母子”模型 8【题型11】与“射影”模型; 10【题型12】“一线三直角”模型; 11【题型13】“一线三等角”模型; 13【题型14】“对角互补”模型; 15【题型15】“十字架”模型; 16【题型16】“三角形内接特殊四边形”模型; 16【题型17】“双垂直等角”模型 18【题型18】“旋转相似”模型 18【题型19】“旋转手拉手”模型 19【题型20】“平行线+角平分线=等腰三角形模型”. 20【题型1】“A字”模型;1.(2024·贵州贵阳·二模)如图,在中,,分别为边,上的点,连接,将沿折叠,使点与点重合,若,,则的长为()A.4B.6C.8D.102.(24-25九年级上·江苏南通·开学考试)如图,在中,,将沿直线翻折后,顶点恰好落在边上的点处,已知,,,则四边形的面积是.3.(23-24九年级下·全国·期中)如图,在中,D在上,.(1)求证:;(2)若,求的值.【题型2】“反A字”模型;4.(2025九年级下·全国·专题练习)如图,中,,点D在边上,且交于点E.(1)求证:;(2)若,E是中点,求的长.5.(19-20九年级上·全国·课后作业)如图,,分别是与边上的高.求证:.6.(23-24九年级下·贵州黔东南·阶段练习)如图,中,,以为直径的分别交,于点D,E,连接,则的长为( )A.1B.C.2D.【题型3】“8字”模型;7.(23-24九年级上·北京·阶段练习)如图,在菱形中,点E在上,,,则为()A. B. C. D.8.(23-24九年级下·山东枣庄·开学考试)如图,在中,点是线段上一点,,过点作交的延长线于点,若的面积等于,则的面积等于()A.8B.16C.24D.329.(24-25九年级上·上海·阶段练习)如图,点是平行四边形边延长线上一点,交于点,如果,那么.【题型4】“反8字”模型;10.(24-25九年级上·上海奉贤·阶段练习)如图,已知在四边形中,与相交于点O ,.(1)求证:;(2)若,求的值.11.(24-25九年级上·广西桂林·期中)如图,,相交于点,.(1)求证:;(2)已知,,的面积为6,求的面积.12.(23-24九年级上·安徽·单元测试)已知:如图,在⊙O 中,弦、相交于点P ,,,,则.【题型5】“双A字”模型;13.(24-25九年级上·全国·期末)如图,是的中线,为上任意一点,连接并延长交于,连接并延长交于,连接.求证:.14.(2024九年级上·全国·专题练习)如图1,已知,是上一点,交于点,交于点,连接,与交于.求证:.15.(24-25九年级上·上海·阶段练习)如图,和相交于点,点在上,,.(1)求的长;(2)已知,求的面积.16.(2024·辽宁·模拟预测)据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体在幕布上形成倒立的实像(点A、B的对应点分别是C、D).若物体的高为,实像的高度为,则小孔O的高度为.【题型6】“双8字”模型;17.(2024·吉林长春·模拟预测)如图,在中,点、分别在边、上,线段、相交于点,且,.若的面积为2,则的面积为()A.4B.5C.6D.718.(2024·陕西渭南·二模)如图,平行四边形中,,,连交于,则.19.(23-24九年级上·上海松江·阶段练习)如图,平行四边形中,,,是对角线上的两点,且点,是线段的三等分点,交于点,交于点,则.【题型7】“A字模型”与“8字模型”综合;20.(24-25九年级上·河南南阳·阶段练习)如图,,与相交于点E,若,,,则值是()A. B. C. D.21.(23-24九年级下·浙江金华·开学考试)如图,在平行四边形中,是边延长线上的一点,连结交边于点,交对角线于点G,若,则.【题型8】“共边等角”模型;22.(23-24九年级上·辽宁鞍山·期中)如图,平分,D为中点,,求证:.23.(24-25九年级上·辽宁沈阳·阶段练习)如图,在中,,,,于B,点D为射线上一点,连接,若与相似.(1)求的长;(2)请直接写出与的面积比.24.(2024·江苏扬州·三模)如图,在中,,,为直线左侧一点.若,则的最大值为.【题型9】“共顶点等角”模”;25.在和中,,,求证:.26.(23-24九年级上·广东深圳·期中)在锐角三角形中,点、分别在边、上,于点,于点,.(1)求证:;(2)若,,,求的长.【题型10】“母子”模型27.(24-25九年级上·山东菏泽·期中)如图,的顶点A,B在上,边与相交于点D,,连接交于点E,.(1)求证:是的切线;(2)若,,求的长.28.(22-23九年级上·浙江杭州·期末)如图,在正五边形中,连结交于点F(1)求的度数.(2)已知,求的长.29.(24-25九年级上·浙江·期中)如图,在中,D是上一点,已知.(1)求证:;(2)已知,,求的度数.30.(24-25九年级上·浙江·期末)如图,在中,D为边的中点,点E在边上,连结,并延长至点F,连结,使,且.(1)求证:.(2)若,,求的长.31.(24-25九年级上·湖南岳阳·期中)探究:(1)如图一,若,求证:;(2)如图二,若,,求的长;(3)如图三,在等腰直角中,,P是平面内任意一点,且,求的最小值.【题型11】与“射影”模型;32.(20-21九年级·江苏南京·自主招生)点G为的中点,,,△沿翻折使点落在上,四边形为矩形,求.33.(24-25九年级上·湖南长沙·阶段练习)如图,点是正方形边上一点,过作的垂线,交于点,交的延长线于点.(1)求证:;(2)若正方形的边长为.点是的中点,求的长.34.(24-25九年级上·吉林长春·期中)如图,在平面直角坐标系中,点,点,分别在轴,轴的正半轴上,线段、的长度都是方程的解,且若点从点出发,以每秒个单位的速度沿射线运动,连结.(1)如图,判断三角形的形状,并说明理由.(2)在点运动过程中,利用图及备用图探究,当周长最短时,求点运动的时间.(3)在点的运动过程中,利用备用图探究,是否存在点,使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.【题型12】“一线三直角”模型;35.(2024·辽宁·模拟预测)如图,在平面直角坐标系中,正方形的边、分别在轴和轴上,,点是边上靠近点的三等分点,将沿直线折叠后得到,若反比例函数()的图象经过点,则的值为( )A.27B.48C.54D.10836.(22-23九年级上·内蒙古鄂尔多斯·阶段练习)(1)如图,点为正方形对角线上一动点,过点作交于点,试判断线段、的数量关系,并说明理由;(2)如图,点为矩形对角线上一动点,过点作交于点,若,,试判断的值是否为定值?若是定值,请求出的值;若不是定值,请说明理由.37.(24-25九年级上·全国·期末)如图,点是矩形中边上一点,沿折叠为,点落在上.(1)求证:;(2)若,,求的值;38.(24-25九年级上·四川成都·期中)【定义】平行四边形一组邻边的中点与不在这组邻边上的顶点顺次连接而成的三角形如果是直角三角形,则称这个三角形为平行四边形的“中直三角形”.【初步感知】如图,为矩形,为其“中直三角形”,其中,求的值;【深入探究】如图,为的“中直三角形”,其中,,求的值;【拓展延伸】在中,,,以为中直三角形的平行四边形的一组邻边的长记为,其中,请直接写出的值.39.(24-25九年级上·陕西榆林·期中)(1)如图,在矩形中,为边上一点,连接,过点作交于点.【探究证明】求证:;【特例分析】若,,为的中点,求的长.【衍生拓展】(2)如图,在中,,,,是的中点,射线,分别交,于点,,且,求的值.【题型13】“一线三等角”模型;40.(24-25九年级上·江西抚州·期中)如图,在等边三角形中,点是边上一动点(点不与端点重合),作,交边于点,交边于点.(1)求证:;(2)若,,,求的长.41.(2024·河北秦皇岛·模拟预测)如图,和是两个全等的等腰直角三角形,,的顶点与的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,线段与射线相交于点.(1)如图①,当点在线段上,且时,求证:;(2)如图②,当点在线段的延长线上时,求证:.【分析】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定、三角形的外角性质.(1)由是等腰直角三角形,易得,,又由,是的中点,利用,可证得:;(2)由和是两个全等的等腰直角三角形,易得,然后利用三角形的外角的性质,即可得,则可证得:.(1)证明:是等腰直角三角形,,,,,是的中点,,在和中,,;(2)证明:和是两个全等的等腰直角三角形,,,即,,,.42.(24-25九年级上·辽宁沈阳·期中)[问题提出]点E是菱形边上一点,是等腰三角形,,,(),交边于点G,H,连接.探究与的数量关系.[问题探究](1)如图1,当时,求的度数;(2)如图2,当时,的度数;当时,求与之间的数量关系.[问题拓展]当时,若,,则.【题型14】“对角互补”模型;43.(24-25九年级上·全国·课后作业)如图,在中,,,D是边上一点,且,E是边上的动点,过点D作的垂线交线段于点F,试探究线段,,之间的数量关系.44.(24-25九年级上·河北石家庄·阶段练习)如图,在中,,,直角的顶点O在上,、分别交、于点P、Q,绕点O任意旋转,当时,的值为;当时,的值为.(用含m,n的式子表示)【题型15】“十字架”模型;45.(24-25九年级上·山东菏泽·期中)如图,在矩形中,是对角线,于点,交于点,,,求的长.46.(23-24九年级上·重庆沙坪坝·阶段练习)如图所示,将矩形分别沿,,翻折,翻折后点A,点D,点C都落在点H上,若,则.47.(2024九年级上·全国·专题练习)(1)如图①,四边形为正方形,,那么与相等吗?为什么?(2)如图②,在中,为边的中点,于点,交于点,求的值;(3)如图③,中,为边的中点,于点,交于点,若,求的长.【题型16】“三角形内接特殊四边形”模型;48.(24-25九年级上·浙江·期末)有一块三角形余料,它的边,高线要把它加工成矩形零件,使矩形的一边在上,其余两个顶点分别在,上.设,.(1)求y关于x的函数表达式及自变量x的取值范围.(2)当时,求加工成的矩形零件的周长.49.(24-25九年级上·山东聊城·阶段练习)如图,有一块形状为直角三角形的余料.已知,,,要把它加工成个平行四边形工件,使在边上,D,E两点分别在边,上,且,则平行四边形的面积为.50.(2023九年级上·全国·专题练习)如图,在中,,高,正方形一边在上,点分别在上,交于点,求的长.51.(2024九年级上·全国·专题练习)如图,在中,于点D,正方形的四个顶点都在的边上.求证:【题型17】“双垂直等角”模型52.(24-25九年级上·四川达州·期末)如图,在正方形中,点E是对角线上一点,连接,过点E作的垂线交边于点F,连接并延长,交边于点G.(1)求证:;(2)若,,求线段的长.53.(2024·黑龙江大庆·模拟预测)如图,在中,,,,E为线段上一动点,且,当点E从点B运动到点A时,点F的运动路径长为54.(23-24九年级上·四川内江·阶段练习)如图,和都是等腰直角三角形,,顶点在边上,与相交于点F,若,,则的面积为.【题型18】“旋转相似”模型55.(24-25九年级上·全国·课后作业)如图,和均为等腰直角三角形,,在内,.若,,则.56.(2024·安徽合肥·模拟预测)如图,在中,,相交于点O,将绕点C旋转至的位置,点B的对应点恰好落在点O处,B,O,D,E四点共线,请完成下列问题:(1)已知,则(用含的代数式表示);(2)若,则的长为.【题型19】“旋转手拉手”模型57.(24-25九年级上·河南信阳·阶段练习)四边形和四边形有公共顶点A,连接和.(1)如图1,若四边形和四边形都是正方形,当正方形绕点A旋转角时,和的数量关系是,位置关系是;(2)如图2,若四边形和四边形都是矩形,且,判断和的数量关系和位置关系,并说明理由;(3)在(2)的条件下,若,,矩形绕点A逆时针旋转角,当时,直接写出线段的长.58.(24-25九年级上·山东日照·阶段练习)【问题呈现】和都是直角三角形,,,,连接,,探究,的位置关系.(1)如图1,当时,直接写出与的位置关系:;与的数量关系为;(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,写出正确的结论并说明理由.(与的数量关系可用含式子表示)【拓展应用】(3)当,,时,将绕点旋转,使,,三点恰好在同一直线上,求的长.59.(23-24九年级上·云南玉溪·期末)如图1,正方形和正方形(其中),连接,交于点,请直接写出线段与的数量关系,位置关系;如图,矩形和矩形,,,,将矩形绕点逆时针旋转,连接,交于点,中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段,的数量关系和位置关系,并说明理由;矩形和矩形,,,将矩形绕点逆时针旋转,直线,交于点,当点与点重合时,请直接写出线段的长.【题型20】“平行线+角平分线=等腰三角形模型”.60.(24-25九年级上·江苏无锡·阶段练习)如图,在中,,E、F分别是,的中点,动点P在射线上,交于点D ,的平分线交于Q,当时,()A.8B. C.4 D.1021。

2025年九年级中考数学三轮重难题型专项突破课件:重难题型三 几何最值问题

2025年九年级中考数学三轮重难题型专项突破课件:重难题型三 几何最值问题
于点E,D是线段BE上的一个动点,则CD+
A.3 5
B.6 5
5
BD的最小值是(
5
C.5 3
B )
D.10
【解析】过点D作DH⊥AB于点H,过点C作CM⊥AB

于点M.∵BE⊥AC,∴∠AEB=90°,∵tan A= =2,

设AE=a,BE=2a,则AB= 5a,sin∠ABE=
∴HD=
5

5
当D′E⊥AB时,PD+PE的值最小.
类型二:根据两点之间线段最短求最值
(安徽2023T10)
2.(2023·安徽第10题4分)如图,E是线段AB上一点,△ADE和△BCE是位于
直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,
则下列结论错误的是( A )
A.PA+PB的最小值为3 3
的长为FG+GH+HE的最小值.在Rt△AMN中,AM=8,AN=6,∴MN
=10.在Rt△AEF中,AE=2,AF=4,∴EF=2 5.∴四边形EFGH周长的最
小值为10+2 5.
9.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边
的垂直平分线,P是直线m上的一动点,则△APC周长的最小值为( A )
1
∴∠BAD=30°,BD= BC=1,
2
连接CF,由△ABC,△BEF都是等边三角形,
易证得△BAE≌△BCF(SAS),∴∠BCF=∠BAD=30°,
∴点F与点C的连线与CB始终成30°,
°,DE为∠ADC的平分线,F为DE上一动点,G为CF的中点,连接AG,
则AG的最小值是( B )
A.2
ቤተ መጻሕፍቲ ባይዱ

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

2025年四川省中考数学 培育新素养 专题考法精研-专题7 二次函数与几何综合问题

2025年四川省中考数学 培育新素养 专题考法精研-专题7 二次函数与几何综合问题

联立൞
= −








新中考高分突破
+ ,
+ ,
返回目录
10

= ,


解得൞
或ቊ


= ,
∴M
= ,
综上,点 M 的坐标为











.


,−


.
归纳总结:本题考查二次函数的综合应用,主要考查利用待定系数
12
(1)求该抛物线的解析式.
解:(1)∵抛物线 y = x2+ bx + c 与 x 轴交于点 A (-1,0),与 y 轴交
= − ,
− + = ,
于点 C (0,-4),∴ቊ
解得ቊ
∴该抛物线的解
= − .
= − ,
析式为 y = x2-3 x -4.
新中考高分突破
返回目录
∴∠ CTB =90°=∠ CQT =∠ QGB ,
∴∠ QCT +∠ CTQ =90°=∠ CTQ +∠ BTG ,
∴∠ QCT =∠ BTG .
∵ CT = BT ,
新中考高分突破
返回目录
7
∴△ CQT ≌△ TGB (AAS),
∴ QT = GB , CQ = TG .
设 TQ = GB = m ,则 CQ = TG =3- m ,
Hale Waihona Puke 解即可.分析: (3)以 CB 为对角线作正方形 CTBK ,可得∠ BCK =
∠ BCT =45°, CK , CT 与抛物线的另一个交点即为 M ,过点 T 作 x 轴

专题26 动态几何之面动形成的函数关系问题(压轴题)-决胜2021中考数学压轴题全揭秘精品(解析版)

专题26 动态几何之面动形成的函数关系问题(压轴题)-决胜2021中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2016贵州省黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.考点:动点问题的函数图象;动点型;分类讨论.2.(2016甘肃省天水市)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】分为0<x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解析】如图1所示:当0<x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,∴△DBC′为等边三角形,∴DE=32BC′=32x,∴y=12BC′•DE=23x.当x=1时,y=3,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×32=34,∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=12B′C•DE=23(2)x ,函数图象为抛物线的一部分,且抛物线开口向上.故选B.考点:动点问题的函数图象;分类讨论;分段函数.3.(2015年辽宁铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB 向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是()A. B. C. D.【答案】D.【考点】面动问题的函数图象,相似三角形的判定和性质,数形结合思想和分类思想的应用.【分析】设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,当E点在点A左侧时,S=0.4.(2015年山东省潍坊市)如图,在矩形ABCD中,AB=4cm,AD=23cm,E为CD边上的中点,点P从点A 沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A. B. C. D.【答案】B.考点:1.动点问题的函数图象;2.动点型;3.分段函数;4.分类讨论.5.(2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B. C. D.【答案】B.【考点】1.面动平移问题的函数图象问题;2.由实际问题列函数关系式;3.二次函数的性质和图象;4.分类思想和排它法的应用.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式应用排它法判断函数的图象的形状: ①当t ≤1时,两个三角形重叠面积为小三角形的面积, ∴133y 1224=⋅⋅=.故可排除选项D . ②当1<x ≤2时,重叠三角形的边长为2﹣x ,高为()322x -,∴()()()232x 13y 2x x 2224-=⋅-⋅=-,它的图象是开口向上,顶点为()2,0 的抛物线在1<x ≤2的部分. 故可排除选项A ,C . 故选B .6.(2014年辽宁抚顺3分)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB =2,AN =x ,BM =y ,则能反映y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A .【考点】1.动点问题的函数图象;2. 等腰直角三角形的判定和性质;3.相似三角形的判定和性质;4. 反比例函数图象..【分析】如答图,作PH ⊥AB 于H ,∵△PAB 为等腰直角三角形,∴∠A =∠B =45°,AH =BH =AB =1, ∴△PAH 和△PBH 都是等腰直角三角形. ∴PA =PB =2AH =2,∠HPB =45°.∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,而∠CPD =45°,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM.而∠A=∠B,∴△ANP∽△BPM,∴AP ANBM BP=,即2xy2=,∴2yx=.∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选A.二、填空题三、解答题7.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A 出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)4;(2)163;(3)2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得==,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当163<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.【解析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=42,所以x=422=4.故答案为:4.(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,∵AP=2x,∴EF=PE=x,∴y=S△PEF=12•PE•EF=212x.②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=822x,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ﹣S△MEG=22 11(822)(163) 22x x---=2732642x x-+-.③当163<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ=212PQ=21(822)2x-=21664x x-+.综上所述2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.考点:三角形综合题;分类讨论;分段函数;动点型;压轴题.8.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF3;(2)t=83;(3)22823 (0)353824332 3 (4)23t tSt t⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)t=4;t=3.【分析】(1)由题意知:A E =2t ,由锐角三角函数即可得出EF =3t ;(2)当H 与D 重合时,FH =GH =8﹣t ,由菱形的性质和EG ∥AD 可知,AE =EG ,解得t =83; (3)矩形EFHG 与菱形ABCD 重叠部分图形需要分以下两种情况讨论:①当H 在线段AD 上,此时重合的部分为矩形EFHG ;②当H 在线段AD 的延长线上时,重合的部分为五边形;(4)当OO ′∥AD 时,此时点E 与B 重合;当OO ′⊥AD 时,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,然后分别求出O ′M 、O ′F 、FM ,利用勾股定理列出方程即可求得t 的值.【解析】(1)由题意知:A E =2t ,0≤t ≤4,∵∠BAD =60°,∠AFE =90°,∴sin ∠BAD =EFAB,∴EF 3; (2)∵AE =2t ,∠AEF =30°,∴AF =t ,当H 与D 重合时,此时FH =8﹣t ,∴GE =8﹣t ,∵EG ∥AD ,∴∠EGA =30°,∵四边形ABCD 是菱形,∴∠BAC =30°,∴∠BAC =∠EGA =30°,∴AE =EG ,∴2t =8﹣t ,∴t =83; (3)当0≤t ≤83时,此时矩形EFHG 与菱形ABCD 重叠部分图形为矩形EFHG ,∴由(2)可知:A E =EG =2t ,∴S =EF •EG 3•2t =223t ; 当83<t ≤4时,如图1,设CD 与HG 交于点I ,此时矩形EFHG 与菱形ABCD 重叠部分图形为五边形FEGID ,∵AE =2t ,∴AF =t ,EF 3,∴DF =8﹣t ,∵AE =EG =FH =2t ,∴DH =2t ﹣(8﹣t )=3t ﹣8,∵∠HDI =∠BAD =60°,∴tan ∠HDI =HI DH ,∴HI 3,∴S =EF •EG ﹣12DH •HI =223238)t t -=253243323t +- 综上所述:22823 (0)353824332 3 (4)23t t S t t ⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)当OO ′∥AD 时,如图2,此时点E 与B 重合,∴t =4;当OO ′⊥AD 时,如图3,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,由(2)可知:A F =t ,AE =EG =2t ,∴FN =33t ,FM =t ,∵O ′O ⊥AD ,O ′是FG 的中点,∴O ′O 是△FNG 的中位线,∴O ′O =12FN =36t ,∵AB =8,∴由勾股定理可求得:OA =43OM =23O ′M =323,∵FE 3,EG =2t ,∴由勾股定理可求得:227FG t =,∴由矩形的性质可知:221'4O F FG =,∵由勾股定理可知:222''O F O M FM =+,∴22273(23)46t t t =-+,∴t =3或t =﹣6(舍去). 故答案为:t =4;t =3.考点:四边形综合题;动点型;分类讨论;分段函数;压轴题.9.(2016四川省乐山市)在直角坐标系xOy 中,A (0,2)、B (﹣1,0),将△ABO 经过旋转、平移变化后得到如图1所示的△BCD .(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将△ABC 的面积分成1:3两部分,求此时点P 的坐标;(3)现将△ABO 、△BCD 分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO 与△BCD 重叠部分面积的最大值.【答案】(1)231222y x x =-++;(2)P (25-,3925)或P (67-,2349);(3)2552. 【分析】(1)由旋转,平移得到C (1,1),用待定系数法求出抛物线解析式; (2)先判断出△BEF ∽△BAO ,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0).C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +),再分两种情况进行计算即可.(2)如图1所示,设直线PC 与AB 交于点E .∵直线PC 将△ABC 的面积分成1:3两部分,∴13AE BE =或3AEBE=,过E 作EF ⊥OB 于点F ,则EF ∥OA ,∴△BEF ∽△BAO ,∴EF BE BF AO BA BO ==,∴当13AE BE =时,3241EF BF==,∴EF =32,BF =34,∴E (14-,32),∴直线PC 解析式为2755y x =-+,∴2312722255x x x -++=-+,∴125x =-,21x =(舍去),∴P (25-,3925);当3AE BE =时,同理可得,P (67-,2349).(3)设△ABO 平移的距离为t ,△A 1B 1O 1与△B 2C 1D 1重叠部分的面积为S .由平移得,A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0). C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +).①如图2所示,当305t <<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为四边形.设A 1B 1与x 轴交于点M ,C 1B 2与y 轴交于点N ,A 1B 1与C 1B 2交于点Q ,连结OQ .由由221122y x t y x t =+-⎧⎪⎨=++⎪⎩,得43353t x t y -⎧=⎪⎪⎨⎪=⎪⎩,∴Q (433t -,53t ),∴1251134()223223QMO QNO t t t S S S t ∆∆--=+=⨯⨯+⨯+⨯=2131124t t -++,∴S 的最大值为2552.②如图3所示,当3455t ≤<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为直角三角形. 设A 1B 1与x 轴交于点H ,A 1B 1与C 1D 1交于点G ,∴G (1﹣2t ,4﹣5t ),∴D 1H =2451222t tt --+-=,D 1G =4﹣5t ,∴S =12D 1H ×D 1G =21451(45)(54)224t t t --=-,∴当3455t ≤<时,S 的最大值为14.综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552. 考点:二次函数综合题;几何变换综合题;动点型;最值问题;二次函数的最值;分类讨论;压轴题. 10.(2016浙江省衢州市)如图1,在直角坐标系xoy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴、y 轴的垂线,垂足为A 、C ,点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 或轴对称的△BC ′D . (1)当∠CBD =15°时,求点C ′的坐标.(2)当图1中的直线l 经过点A ,且33k =-时(如图2),求点D 由C 到O 的运动过程中,线段BC ′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C ′时(如图3),以DE 为对称轴,作于△DOE 或轴对称的△DO ′E ,连结O ′C ,O ′O ,问是否存在点D ,使得△DO ′E 与△CO ′O 相似?若存在,求出k 、b 的值;若不存在,请说明理由.【答案】(1)C ′(23-,1);(2)233π-;(3)存在,k =34-,b =1. 【分析】(1)利用翻折变换的性质得出∠CBD =∠C ′BD =15°,C ′B =CB =2,进而得出CH 的长,进而得出答案;(2)首先求出直线AF 的解析式,进而得出当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,求出即可;(3)根据题意得出△DO ′E 与△COO ′相似,则△COO ′必是Rt △,进而得出Rt △BAE ≌Rt △BC ′E (HL ),再利用勾股定理求出EO 的长进而得出答案.【解析】(1)∵△CBD ≌△C ′BD ,∴∠CBD =∠C ′BD =15°,C ′B =CB =2,∴∠CBC ′=30°,如图1,作C ′H ⊥BC 于H ,则C ′H =1,HB 3CH =23,∴点C ′的坐标为:(23,1);(2)如图2,∵A (2,0),3k =,∴代入直线AF 的解析式为:3y x b =+,∴b 23AF 的解析式为:32333y x =-+,∴∠OAF =30°,∠BAF =60°,∵在点D 由C 到O 的运动过程中,BC ′扫过的图形是扇形,∴当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,当C ′在直线32333y x =-+上时,BC ′=BC =AB ,∴△ABC ′是等边三角形,这时∠ABC ′=60°,∴重叠部分的面积是:22602323604π⨯-⨯=233π-;考点:相似形综合题;动点型;存在型;压轴题.(1)求二次函数2y x bx c =-++的表达式; (2)连接 B C ,当t =56时,求△BCP 的面积; (3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O →A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 D Q 、 PQ ,将△DPQ 沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB 重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.【答案】(1)2543y x x =-++;(2)4;(3)22241215 (0)2551714414436155 ()2755511172t t t S t t t ⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.【分析】(1)直接将A 、B 两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP 的面积,必须求对应的底和高,即PC 和BD ;先求OD ,再求BD ,PC 是利用点P 和点C 的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE 完全在△OAB 中时,即当15017t ≤≤时,如图2所示,重合部分的面积为S 就是△DPE 的面积;②△DPE 有一部分在△OAB 中时,当155172t ≤≤时,如图4所示,△PDN 就是重合部分的面积S .【解析】(1)把A (3,0),B (0,4)代入2y x bx c =-++中得:4930c b c =⎧⎨-++=⎩,解得:534b c ⎧=⎪⎨⎪=⎩,∴解析式为:2543y x x =-++; (2)如图1,当56t =时,AP =2t ,∵PC ∥x 轴,∴OB AB OD AP =,∴452OD t =,∴OD =85t =8556⨯=43,当y =43时,43=2543x x -++,23580x x --=,解得:11x =-,283x =,∴C (﹣1,43),由BD PD OB OA =,得44343PD -=,则PD =2,∴S △BCP =12×PC ×BD =18323⨯⨯=4;(3)分两种情况讨论:①如图3,当点E 在AB 上时,由(2)得OD =QM =ME =85t ,∴EQ =165t ,由折叠得:EQ ⊥PD ,则EQ ∥y 轴,∴EQ AQ OB OA =,∴163543tt-=,∴t =1517,同理得:PD =635t -,∴当15017t ≤≤时,S=S△PDQ=12×PD×MQ=168(3)255t t-⋅,22412255S t t=-+;②当155172t≤≤时,如图4,P′D′=635t-,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,165t),∵AB的解析式为:443y x=-+,D′E的解析式为:8855y x t=+,则交点N(15611t-,82411t+),∴S=S△P′D′N=12×P′D′×FN=168248(3)()25115tt t+-⋅-,∴2144144362755511S t t=-+.综上所述:22241215(0)2551714414436155()2755511172t t tSt t t⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.考点:二次函数综合题;动点型;分段函数;分类讨论;压轴题.12.(2016辽宁省大连市)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x 的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同).(1)填空:B C的长是;(2)求S关于x的函数关系式,并写出x的取值范围.【答案】(1)3;(2)222544(01) 39336133 (1)136613(3) (3)56x x xS x xx x⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S四边形ECAG即可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC﹣S△BDF ﹣S四边形ECAG即可解决.③如图3中,根据S=12CD•CM,求出CM即可解决问题.②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵222AN CN AC=+,∴2222(3)x x=+-,∴x=136,∴当1316x<≤时,S=S△ABC﹣S△BDF=26313x-;③如图3中,当1336x<≤时,∵DM∥AN,∴CD CMCN CA=,∴313236x CM-=-,∴CM=12(3)5x-,∴S=12CD•CM=26(3)5x-.综上所述:222544 (01)39336133 (1)136613(3) (3)56x x x S x x x x ⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.考点:四边形综合题;分段函数;分类讨论;动点型;压轴题. 13.(2016辽宁省抚顺市)如图,抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),作CD ∥x 轴交抛物线于点D ,作DE ⊥x 轴,垂足为E ,动点M 从点E 出发在线段EA 上以每秒2个单位长度的速度向点A 运动,同时动点N 从点A 出发在线段AC 上以每秒1个单位长度的速度向点C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t 秒. (1)求抛物线的解析式;(2)设△DMN 的面积为S ,求S 与t 的函数关系式; (3)①当MN ∥DE 时,直接写出t 的值;②在点M 和点N 运动过程中,是否存在某一时刻,使MN ⊥AD ?若存在,直接写出此时t 的值;若不存在,请说明理由.【答案】(1)222493y x x =-++;(2)S =20.8 5.212t t -+(0<t ≤3);(3)①t =3013;②t =9047. 【分析】(1)根据抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),可以求得b 、c 的值,从而可以求得抛物线的解析式;(2)要求△DMN 的面积,根据题目中的信息可以得到梯形AEDC 的面积、△ANM 的面积、△MDE 的面积、△CND 的面积,从而可以解答本题;(3)①根据MN ∥DE ,可以得到△AMN 和△AOC 相似,从而可以求得t 的值;②根据题目中的条件可以求得点N 、点M 、点A 、点D 的坐标,由AD ⊥MN 可以求得相应的t 的值.【解析】(1)∵抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),∴22(3)(3)094b c c ⎧-⨯-+⨯-+=⎪⎨⎪=⎩,解得:234b c ⎧=⎪⎨⎪=⎩,即抛物线的解析式为:222493y x x =-++; =12(3+6)×4-12×(6-2t )×0.8t -12×2t ×4-12×3×(4-0.8t ) =20.8 5.212t t -+,即S 与t 的函数关系式是S =20.8 5.212t t -+(0<t ≤3); (3)①当MN ∥DE 时,t 的值是3013,理由:如右图2所示 ∵MN ∥DE ,AE =6,AC =5,AO =3,∴AM =6﹣2t ,AN =t ,△AMN ∽△AOC ,∴AM AN AO AC =,即6235t t-=,解得,t =3013; ②存在某一时刻,使MN ⊥AD ,此时t 的值是9047,理由:如右图3所示,设过点A (﹣3,0),C (0,4)的直线的解析式为y=kx+b,则:304k bb-+=⎧⎨=⎩,得:434kb⎧=⎪⎨⎪=⎩,即直线AC的解析式为443y x=+,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入443y x=+,得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t ﹣3,0.8t),AD⊥MN,∴400.8013(3)(0.63)(32)tt t--⋅=------,解得:t=9047.考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.14.(2016辽宁省沈阳市)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线23320y x x m=-+与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【答案】(1)①10,0,8,10;②F (4,8);③233520y x x =-+;(2)不变.S 1S 2=189. 【分析】(1)①根据四边形OCKB 是矩形以及对称轴公式即可解决问题. ②在RT △BKF 中利用勾股定理即可解决问题.③设OA =AF =x ,在RT △ACF 中,AC =8﹣x ,AF =x ,CF =4,利用勾股定理即可解决问题. (2)不变.S 1S 2=189.由△GHN ∽△MHG ,得GH HN MH GH=,得到2GH =HN •HM ,求出2GH ,根据S 1S 2=12•OG •HN •12•OG •HM 即可解决问题. 【解析】(1)如图1中,①∵抛物线23320y x x m =-+的对称轴x =2ba-=10,∴点B 坐标(10,0),∵四边形OBKC 是矩形,∴CK =OB =10,KB =OC =8,故答案分别为10,0,8,10.②在RT △FBK 中,∵∠FKB =90°,BF =OB =10,BK =OC =8,∴FK 22BF BK -,∴CF =CK ﹣FK =4,∴点F 坐标(4,8).③设OA =AF =x ,在RT △ACF 中,∵222AC CF AF +=,∴222(8)4x x -+=,∴x =5,∴点A 坐标(0,5),代入抛物线23320y x x m =-+得m =5,∴抛物线为233520y x x =-+. (2)不变.S 1S 2=189.理由:如图2中,在RT △EDG 中,∵GE =EO =17,ED =8,∴DG 22GE DE -22178-,∴CG =CD ﹣DG =2,∴OG 22OC CG +2282+217,∵CP ⊥OM ,MH ⊥OG ,∴∠NPN =∠NHG =90°,∵∠HNG +∠HGN =90°,∠PNM +∠PMN =90°,∠HNG =∠PNM ,∴∠HGN =∠NMP ,∵∠NMP =∠HMG ,∠GHN =∠GHM ,∴△GHN ∽△MHG ,∴GH HN MH GH=,∴2GH =HN •HM ,∵GH =OH 17,∴HN •HM =17,∵S 1S 2=12•OG •HN •12•OG •HM =21(217)172⨯⨯=289.考点:二次函数综合题;翻折变换(折叠问题);相似三角形的判定与性质;定值问题;动点型;压轴题.15.(2015重庆市)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C 重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣12t,∴DN=DH﹣NH=3﹣(2﹣12t)=12t+1.在Rt△DMN中,DM2=DN2+MN2=(12t+1)2+ t 2=54t2+t+1.(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即54t2+t+1=(14t2﹣2t+8)+(t2﹣4t+13),解得:t=207.(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(14t2﹣2t+8)+(54t2+t+1),解得:t1=﹣17,t2=﹣317.∴t=﹣17(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即14t2﹣2t+8=(t2﹣4t+13)+(54t2+t+1),此方程无解.综上所述,当t=207或﹣17B′DM是直角三角形;(3)22214 t0t43 124t t t2833S3510t2t2t8331510t t4223⎧⎛⎫≤≤⎪⎪⎝⎭⎪⎪⎛⎫-+-≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-+-≤⎪⎪⎝⎭⎪⎛⎫⎪-+≤⎪⎪⎝⎭⎩<<<.【考点】相似三角形的判定和性质,勾股定理和逆定理,正方形的性质,直角梯形的性质,平移的性质.③如图⑤,当G在CD上时,B′C:C H=B′G:D H,即B′C:4=2:3,解得:B′C=83,∴EC=4﹣t=B′C﹣2=23.∴t=103.∵B′N=12B′C=12(6﹣t)=3﹣12t,∴GN=GB′﹣B′N=12t﹣1.16.(2015江苏苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s 的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求出y =3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.【考点】正方形的性质,一元二次方程的应用,等腰直角三角形的性质,矩形的性质,解直角三角形,锐角三角函数定义,特殊角的三角函数值.∠∠可解出x的值.【分析】(1)根据题意表示出AG、GD的长度,再由tan CGD=tan PAG(2)利用(1)得出的y与x的关系式表示出S1、S2,然后作差即可.(3)延长PD交AC于点Q,然后判断△DGP是等腰直角三角形,从而结合x的范围得出x的值,在Rt△DGP 中,解直角三角形可得出PD的长度.17.(2015攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.【答案】(1)D(﹣4,3),P(﹣12,8);(2)424 (06)318 (614)t tSt t-+≤≤⎧=⎨-<≤⎩;(3)6.(2)当点P在边AB上时,BP=6﹣t,由三角形的面积公式得出S=12BP•AD;②当点P在边BC上时,BP=t﹣6,同理得出S=12BP•AB;即可得出结果;(3)设点D(45t-,35t);分两种情况:①当点P在边AB上时,P(485t--,85t),由PE CDOE CB=和PE CBOE CD=时;分别求出t的值;②当点P在边BC上时,P(1145t-+,365t+);由PE CDOE CB=和PE CBOE CD=时,分别求出t的值即可.试题解析:(1)延长CD交x轴于M,延长BA交x轴于N,如图1所示:则CM⊥x轴,BN⊥x轴,AD∥x轴,BN∥DM,∵四边形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴BD=2268+=10,当t=5时,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴23AB AD BDBN NO BO===,即6823BN NO==,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);②当点P在边BC上时,P(1145t-+,365t+),若PE CDOE CB=时,366518145tt+=-,解得:t=6;若PE CBOE CD=时,368516145tt+=-,解得:19013t=(不合题意,舍去);综上所述:当t=6时,△PEO与△BCD相似.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2015桂林)如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动. (1)直接写出抛物线的解析式:;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.【答案】(1)21382y x x =-++;(2)2152S t t =-+,当t =5时,S 最大=252;(3)存在,P (343,2009-)或P (8,0)或P (43,1009).(3)由(2)知:当t =5时,S 最大=252,进而可知:当t =5时,OC =5,OD =3,进而可得CD =34,从而确定C ,D 的坐标,即可求出直线CD 的解析式,然后过E 点作EF ∥CD ,交抛物线与点P ,然后求出直线EF 的解析式,与抛物线联立方程组解得即可得到其中的一个点P 的坐标,然后利用面积法求出点E 到CD 的距离,过点D 作DN ⊥CD ,垂足为N ,且使DN 等于点E 到CD 的距离,然后求出N 的坐标,再过点N 作NH ∥CD ,与抛物线交与点P ,然后求出直线NH 的解析式,与抛物线联立方程组求解即可得到其中的另两个点P 的坐标.(3)由(2)知:当t =5时,S 最大=252,∴当t =5时,OC =5,OD =3,∴C (0,5),D (3,0),由勾股定理得:C D =34,设直线CD 的解析式为:y kx b =+,将C (0,5),D (3,0),代入上式得:k =53-,b =5,∴直线CD 的解析式为:553y x =-+,过E 点作EF ∥CD ,交抛物线与点P ,如图1,过点E作EG⊥CD,垂足为G,∵当t=5时,S△ECD=12CD•EG=252,∴EG=253434,过点D作DN⊥CD,垂足为N,且使DN=253434,过点N作NM⊥x轴,垂足为M,如图2,综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(343,2009)或P(8,0)或P(43,1009).考点:1.二次函数综合题;2.二次函数的最值;3.动点型;4.存在型;5.最值问题;6.分类讨论;7.压轴题.19.(2014年甘肃天水12分)如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE =90°,CD =4,DE =43,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数. (2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.(3)在Rt △CDE 的运动过程中,设AC =h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.【答案】解:(1)如图2,∵在平面直角坐标系中,点A (0,﹣6),点B (6,0),∴OA =OB ,∴∠OAB =45°. ∵∠CDE =90°,CD =4,DE =43,∴DEtan OCE 3CD∠==.∴∠OCE =60°. ∴∠CMA =∠OCE ﹣∠OAB =60°﹣45°=15°.∴∠BME =∠CMA =15°. (2)如图3,∵∠CDE =90°,CD =4,DE =43,∴CD 3tan DEC DE ∠==.∴∠DEC =30°. ∵DE ∥x 轴,∴∠OBC =∠DEC =30°. ∵OB =6,∴BC =43.(3)①当h ≤2时,如答图1,作MN ⊥y 轴交y 轴于点N ,作MF ⊥DE 交DE 于点F , ∵CD =4,DE =43,AC =h ,AN =NM , ∴CN =4﹣FM ,AN =MN =4+h ﹣FM , ∵△CMN ∽△CED ,∴CN MNCD DE =,即4FM 443-=. 解得31FM 4h +=-. ∴S =S △EDC ﹣S △EFM =()2113131443434h4h h 4h 822⎛⎫++⋅⋅-⋅--⋅-=-++ ⎪ ⎪⎝⎭, 此时,S 最大=153-.②当2<h 623≤-时,如答图2,由(2)可知,在Rt △CDE 的运动过程中,当CE 经过点B 时,BC =43,此时OC =23,h 623=-,S =S △ABC ﹣S △ACM =211313366h h h 18h 2224⎛⎫++⋅⋅-⋅⋅+=- ⎪ ⎪⎝⎭, 此时,S 最大不超过153-. ③当623<h 6-≤时,如答图3,S =S △OCF =()()()2113OC OF 6h 36h 6h 222⋅⋅=⋅-⋅-=-,此时,S 最大不超过63.∵153********>0--=-, ∴面积S 的最大值为153-. 综上所述,S 与h 之间的函数关系式为()()()()22231h 4h 8h 2433S 18h 2<h 623436h 623<h 62⎧+-++≤⎪⎪⎪+⎪=-≤-⎨⎪⎪--≤⎪⎪⎩,面积S 的最大值为153-.【考点】1.面动平移问题;2.点的坐标;3. 锐角三角函数定义;4.特殊角的三角函数值;5.相似三角形的判定和性质;6.由实际问题列函数关系式;7.二次函数的性质;8.分类思想、数形结合思想和转换思想的应用.【分析】(1)如图2,由对顶角的定义知,∠BME =∠CMA ,所以欲求∠BME 的度数,需求∠CMA 的度数.根据三角形外角定理进行解答即可.(2)如图3,通过解直角△BOC 来求BC 的长度.(3)需要分类讨论:①h ≤2时,②当2<h 623≤-时,③当623<h 6-≤时.20.(2014年辽宁营口14分)已知:抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0),B (3,0),C (0,﹣3). (1)求抛物线的表达式及顶点D 的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC 与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.【答案】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3),∴9a3b c0a b c0c3++=⎧⎪++=⎨⎪=-⎩,解得a1b4c3=-⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为y=﹣x2+4x﹣3.∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点D的坐标为(2,1).(2)存在.设直线BC的解析式为:y=kx+m,则3k m0m3+=⎧⎨=-⎩,解得k1m3=⎧⎨=-⎩.设P(x,﹣x2+4x﹣3),则F(x,x﹣3),∴PF=(﹣x2+4x﹣3)﹣(x﹣3)=﹣x2+3x=239x24⎛⎫--+⎪⎝⎭.∴当x=32时,PF有最大值为94.∴存在一点P,使线段PE的长最大,最大值为94.(3)∵A(1,0)、B(3,0)、D(2,1)、C(0,﹣3),∴可求得直线AD的解析式为:y=x﹣1;直线BC的解析式为:y=x﹣3.∴AD ∥BC ,且与x 轴正半轴夹角均为45°. ∵AF ∥y 轴,∴F (1,﹣2),∴AF =2.①当0≤t ≤2时,如答图1所示.此时四边形AFF ′A ′为平行四边形. 设A ′F ′与x 轴交于点K ,则AK =2AA ′=2t .∴S =S ▱AFF ′A ′=AF •AK =2×2t =2t . ②当2<t ≤22时,如答图2所示.设O ′C ′与AD 交于点P ,A ′F ′与BD 交于点Q , 则四边形PC ′F ′A ′为平行四边形,△A ′DQ 为等腰直角三角形. ∴S =S ▱PC ′F ′A ′﹣S △A ′DQ =()221121t 2t 2t 122⋅--=-++.③当22<t ≤32时,如答图3所示.设O ′C ′与BD 交于点Q ,则△BC ′Q 为等腰直角三角形. ∵BC =32,CC ′=t ,∴BC ′=32﹣t .∴S =S △BC ′Q =()221132t t 32t 922-=-+. 综上所述,S 与t 的函数关系式为:()()()222t 0t 21S t 2t 12<t 2221t 32t 922<t 322⎧≤≤⎪⎪⎪=-++≤⎨⎪⎪-+≤⎪⎩ .【考点】1.二次函数综合题;2.单动点和面动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二函数的性质;6.由实际问题列函数关系式;7.分类思想和转换思想的应用. 【分析】(1)应用待定系数法即可求得抛物线的解析式,然后化为顶点式即可求得顶点的坐标. (2)先求得直线BC 的解析式,设P (x ,﹣x 2+4x ﹣3),则F (x ,x ﹣3),根据PF 等于P 点的纵坐标﹣F 点的纵坐标即可求得PF 关于x 的函数关系式,从而求得P 的坐标和PF 的最大值. (3)在运动过程中,分三种情形,需要分类讨论,避免漏解.21.(2014年四川资阳12分)如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x =1.。

专题1.3函数六大考点与真题训练(原卷版)

专题1.3函数六大考点与真题训练(原卷版)

2023年中考数学考前30天迅速提分复习方案(上海地区专用)专题1.3函数六大考点与真题训练考点一:平面直角坐标系一、单选题1.(2023·上海浦东新·统考一模)已知二次函数2y ax bx c =++的图像如图所示,那么点(,)P a b 在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2022·上海青浦·统考二模)如图,在平面直角坐标系中,已知(2,1)A ,(02)B ,,以A 为顶点,BA 为一边作45°角,角的另一边交y 轴于C (C 在B 上方),则C 坐标为( )A.(06),B.(0,7)C.22(0,3D.13(0,)2二、填空题3.(2022·上海·校考模拟预测)在平面直角坐标系中,将点(-b ,-a )称为点(a ,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.4.(2022·上海·校联考模拟预测)如图,点P是y轴正半轴上一点,以P为圆心的圆与x轴、y轴分别交于点A、B、C、D,已知点A的坐标为()-,点C的坐标为()3,00,1-,则点D的坐标为_____________.5.(2023·上海青浦·校考一模)已知点P位于第一象限内,25OP=,且OP与x轴正半轴夹角的正切值为2,则点P的坐标是______.6.(2022·上海·上外附中校考模拟预测)一只不透明袋子中装有四只大小、质地都相同的小球,球面上分别标有数字:1-、1、2-、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A3个小球中任意摸出一个小球,记下数字作为点A的纵坐标,则点A落在第四象限的概率为______ .7.(2022·上海徐汇·位育中学校考模拟预测)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.8.(2022·上海·校联考模拟预测)如图,在直角坐标系中,B(0,3)、C(4,0)、D (0,2),AB与CD交于点P,若∠APC=45°,则A点坐标为______ .9.(2022·上海徐汇·统考二模)如图,四个白色全等直角三角形与四个黑色全等三角形按如所示方式摆放成“风车”型,且黑色三角形的顶点E、F、G、H分别在白色直角三角形的斜边上,已知∠ABO=90°,OB=3,AB=4,若点A、E、D在同一直线上,则OE的长为______.xOy中,()A,()1,0B,0,2点C为图示中正方形网格交点之一(点O除外),如果以A、B、C为顶点的三角形与V相似,那么点C的坐标是______.OAB三、解答题11.(2022·上海·统考模拟预测)已知点M (4-2m ,m -5)在第二、四象限的角平分线上,求点M 的点坐标.12.(2022·上海奉贤·统考二模)如图,在平面直角坐标系xOy 中,OAB V 的边OA 在x 轴正半轴上,90OAB Ð=°,4AO AB ==,C 为斜边OB 的中点,反比例函数k y x=在第一象限内的图像经过点C ,交边AB 于点D .(1)这个反比例函数的解析式;(2)连结CD OD 、,求BCD OADS S △△的值.考点二:函数基础知识一、单选题1.(2022·上海杨浦·校考一模)函数y =中自变量x 的取值范围是( )A.x ≥-3B.x ≥-3且1x ¹C.1x ¹D.3x ¹-且1x ¹二、填空题2.(2023·上海奉贤·统考一模)已知2()1f x x =-,那么(1)f -的值是____________.3.(2023·上海黄浦·统考一模)在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x 厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y 平方厘米,那么y 关于x 的函数解析式是______.(不必写定义域)4.(2022·上海普陀·统考二模)如图,小明和小亮进行赛跑,小亮的起跑点在小明前方10米,1l 、2l ,分别表示小亮、小明在赛跑中的路程与时间的关系.可知起跑后6秒时,小明领先小亮___________米.5.(2022·上海崇明·统考二模)函数y=中自变量x的取值范围是________.6.(2022·上海普陀·统考二模)已知f(x)=x3 -1, 那么f(2)=__________ 7.(2022·上海·统考模拟预测)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=﹣x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有__(填上所有正确答案的序号).;①y=2x; ②y=﹣x+1; ③y=x2; ④y=﹣1x8.(2022·上海长宁·统考二模)函数y=的定义域是________.9.(2022·上海松江·统考二模)函数y=中,自变量x的取值范围是________.三、解答题10.(2023·上海长宁·统考一模)已知:在ABC V 中,10AB AC ==,16BC =,点P 、D 分别在射线CB 、射线AC 上,且满足APD ABC Ð=Ð.(1)当点P 在线段BC 上时,如图1.①如果 4.8CD =,求BP 的长:②设B 、P 两点的距离为x ,AP y =,求y 关于x 的函数关系式,并写出定义城.(2)当1BP =时,求CPD △的面积.(直接写出结论,不必给出求解过程)11.(2022·上海杨浦·统考二模)通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分)变化的函数图像如图所示,当010x£<和1020££时,图像是双曲线的一部分,x£<时,图像是线段;当2040x根据函数图像回答下列问题:(1)点A的注意力指标数是________.(2)当010£<时,求注意力指标数y随时间x(分)的函数解析式;x(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意标数都不低于36?请说明理由.12.(2022·上海虹口·统考二模)浦江边某条健身步道的甲、乙两处相距3000米,小杰和小丽分别从甲、乙两处同时出发,匀速相向而行.小杰的运动速度较快,当到达乙处后,随即停止运动,而小丽则继续向甲处运动,到达后也停止运动.在以上过程中,小杰和小丽之间的距离y(米)与运动时间x(分)之间的函数关系,如图中折线--所示.AB BC CD(1)小杰和小丽从出发到相遇需要_______分钟;(2)当024x££时,求y关于x的函数解析式(不需写出定义域);(3)当小杰到达乙处时,求小丽距离甲处还有多少米.13.(2022·上海普陀·统考二模)某山山脚到山顶有一条登山路, 登山爱好者小李沿此路上山走到山顶,休息了一会儿后再原路返回.在下山途中,小李收到消息,需及时回到山脚,于是加速下山,小李下山过程中收到消息前所行的路程与收到消息后所行的路程之比为2:3,其间小李离开山脚的路程y(米)与离开山脚的时间x (分) (x>0) 之间的函数关系如图9中折线OABCD所示.根据图像提供的信息,回答下列问题(1)这条登山路的全长为__米;小李在山顶休息了__分钟;(2)如果小李在下山途中没有收到消息,下山的速度一直保持不变,求小李实际提前了多少时间回到山脚.考点三:一次函数一、单选题1.(2023·上海奉贤·统考一模)下列函数中,函数值y 随自变量x 的值增大而减小的是( )A.2xy =B.2x y =-C.2y x =D.2y x=-二、填空题2.(2022·上海松江·校考三模)已知一次函数()30,y kx k y =+¹的值随x 值的增大而增大,那么该函数的图象经过第___________象限.3.(2022·上海普陀·统考二模)将直线21y x =-+沿着y 轴向下平移4个单位,所得直线的表达式是___________.4.(2022·上海松江·统考二模)定义:在平面直角坐标系xOy 中,O 为坐标原点,对于任意两点()11,P x y 、()22,Q x y 称1212x x y y -+-的值为P 、Q 两点的“直角距离”.直线5y x =-+与坐标轴交于A 、B 两点,Q 为线段AB 上与点A 、B 不重合的一点,那么O 、Q 两点的“直角距离”是___________.5.(2022·上海松江·统考二模)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现,该纪念册每周的销量y (本)与每本的售价x (元)之间满足一次函数关系:()2802040y x x =-+<<.已知某一周该纪念册的售价为每本30元,那么这一周的盈利是___________元.6.(2022·上海崇明·统考二模)当01k <<时,一次函数()1y k x k =-+的图像不经过第_____象限.7.(2022·上海杨浦·校考一模)已知一次函数()01,2-,则关=+>的图象过点()y kx b k于x的不等式20++£的解集是______.kx b三、解答题8.(2023·上海杨浦·统考一模)在平面直角坐标系xOy中,点(),、()A m1,在抛3B n物线2=+上.y ax bx(1)如果m n=,那么抛物线的对称轴为直线___________;(2)如果点A、B在直线1=-上,求抛物线的表达式和顶点坐标.y x9.(2022·上海崇明·统考二模)已知在平面直角坐标系xOy中,正比例函数与反比例函数的图象交于点()P,直线AB垂直于x轴,垂足为点C(点C在原点的右侧),并分1,2别与正比例函数和反比例函数的图象相交于点A、B,且5+=.AC BC(1)求正比例函数和反比例函数的解析式:(2)求AOBV的面积.10.(2022·上海·上海市进才中学校考一模)某市为鼓励市民节约用气,对居民管道天然气实行两档阶梯式收费.年用天然气量 310立方米及以下为第一档;年用天然气量超出 310 立方米为第二档.某户应交天然气费y(元) 与年用天然气量 x(立方米)的关系如图所示,观察图像并回答下列问题:(1)年用天然气量不超过 310 立方米时,求 y 关于 x 的函数解析式(不写定义域);(2)小明家 2021 年一年天然气费为 1227 元,求小明家 2021 年年天然气使用量.考点四:二次函数一、单选题1.(2023·上海杨浦·统考一模)下列函数中,二次函数是( )A.1y x =+B.()1y x x =+C.()221y x x =+-D.21y x =2.(2023·上海虹口·统考一模)已知二次函数2y ax bx c =++的图像如图所示,那么下列四个结论中,错误的是( )A.a<0B.0b <C.0c >D.0abc <3.(2023·上海徐汇·统考一模)将抛物线212y x =-经过下列平移能得到抛物线()21132y x =-+-的是( )A.向右1个单位,向下3个单位B.向左1个单位,向下3个单位C.向右1个单位,向上3个单位D.向左1个单位,向上3个单位二、填空题4.(2023·上海徐汇·统考一模)已知点()3,A m -、()2,B n -在抛物线224y x x =--+上,则m _____________n (填“>”、“=”或“<”).5.(2023·上海杨浦·统考一模)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是()236042y x x x =-+££,那么水珠达到的最大高度为___________米.6.(2023·上海杨浦·统考一模)将抛物线223y x x =-+向下平移m 个单位后,它的顶点恰好落在x 轴上,那么m =___________.7.(2023·上海长宁·统考一模)已知抛物线()21y m x =+在y 轴左侧的部分是上升的,那么m 的取值范围是______.8.(2023·上海松江·统考一模)如果一条抛物线经过点()2,0A -和()4,0B ,那么该抛物线的对称轴是直线________.9.(2023·上海虹口·统考一模)抛物线243y x x =-+与y 轴的交点坐标是___________.三、解答题10.(2023·上海虹口·统考一模)如图,在平面直角坐标系xOy 中,已知抛物线()2240y x kx k k =-+-<的顶点为P ,抛物线与y 轴交于点A .(1)如果点A 的坐标为()0,4,点()3,B m -在抛物线上,连接AB .①求顶点P 和点B 的坐标;②过抛物线上点D 作DM x ^轴,垂足为M ,DM 交线段AB 于点E ,如果DE EM =,求点D 的坐标;(2)连接OP,如果OP与x轴负半轴的夹角等于APOÐ与POAÐ的和,求k的值.11.(2023·上海松江·统考一模)已知二次函数2=--.241y x x(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy中(如图),画出这个二次函数的图像;(3)请描.12.(2023·上海长宁·统考一模)已知抛物线()20=++>与x轴交于点()0y ax bx c aA1,和()=.B,,与y轴交于点C,O为坐标原点,且OB OC40(1)求抛物线的解析式;(2)如图1,点P 是线段BC 上的一个动点(不与点B 、C 重合),过点P 作x 轴的垂线交抛物线于点Q ,连接OQ .当四边形OCPQ 恰好是平行四边形时,求点Q 的坐标;(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ Ð=Ð,在直线QE 上是否存在点F ,使得BEF △与ADC △相似?若存在,求点F 的坐标:若不存在,请说明理由.13.(2023·上海崇明·统考一模)如图,在直角坐标平面xOy中,对称轴为直线3x=2的抛物线22y ax bx=++经过点()1,M m,与y轴交于点B.4,0A、点()(1)求抛物线的解析式,并写出此抛物线顶点D的坐标;(2)联结,,AB AM BM,求S V;ABM(3)过M作x轴的垂线与AB交于点,P Q是直线MP上一点,当BMQV相似时,求V与AMP点Q的坐标.14.(2023·上海徐汇·统考一模)已知在平面直角坐标系xOy中,抛物线23=++y ax bx经过点()B与y轴相交于点C.4,0A-、()1,0(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的一个动点,过点P作直线PD x^轴,垂足为点D,直线PD与直线BC相交于点E.①当CP CE=时,求点P的坐标;②联结AC,过点P作直线AC的平行线,交x轴于点F,当BPF CBAÐ=Ð时,求点P的坐标.15.(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy 中,抛物线234y x bx c =-++与x 轴交于点()40A -,和点B ,与y 轴交于点()03C ,,抛物线的对称轴与x 轴交于点D.(1)求抛物线的表达式;(2)点P 是直线AC 上方抛物线上一点,过点P 作PG x ^轴,垂足为点G ,PG 与直线AC 交于点H .如果PH AH =,求点P 的坐标;(3)在第(2)小题的条件下,连接AP ,试问点B 关于直线CD 对称的点E 是否恰好落在直线AP 上?请说明理由.16.(2023·上海奉贤·统考一模)如图,在平面直角坐标系xOy中,抛物线x=,顶点为A,与x轴分别交于点B和点C(点B在点C的23=++的对称轴为直线2y ax bx左边),与y轴交于点D,其中点C的坐标为(30),.(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E,联结DE.①如果DE AC∥,求四边形ACDE的面积;②如果点E在直线DC上,点Q在平移后抛物线的对称轴上,当DQE CDQÐ=Ð时,求点Q 的坐标.考点五:反比例函数一、单选题1.(2022·上海长宁·统考二模)关于反比例函数y =4x,下列说法中错误的是( )A.y 的值随x 的值增大而减小B.它的图象在第一、三象限C.它的图象是双曲线D.若点(a ,b b ,a )也在它的图象上2.(2022·上海黄浦·统考二模)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.23y x =B.1y x =-+C.2y x =-D.21y x =+3.(2022·上海徐汇·位育中学校考模拟预测)已知A (1,y 1),B (2,y 2)两点在双曲线y 32m x+=上,且y 1>y 2,则m 的取值范围是( )A.m <0B.m >0C.m 32->D.m 32-<4.(2022·上海金山·校考一模)已知正比例函数2y x =与反比例函数2y x=,它们的图象的共同特征是( )A.这两个函数的图象都在第一象限与第三象限;B.当自变量x 的值逐渐增大时,y 的值则随着逐渐增大;C.当自变量x 的值逐渐增大时,y 的值则随着逐渐减小;D.点(1,2)与点(1-,2-)皆为这两个函数图象的公共点.二、填空题5.(2022·上海金山·统考二模)反比例函数k y x=(k 是实数,0k ¹)的图象在每个象限内y 随着x 的增大而增大,那么这个反比例函数的图象的两个分支分别在第______象限.6.(2022·上海宝山·统考二模)如果反比例函数(k y k x=是常数,0)k ¹的图象经过点(-1,3),那么当0x >时,y 的值随x 的值增大而______.(填“增大”或“减小”)()0,8A 和点()4,8B ,点B 在函数()0k y x x=>的图像上,点C 是AB 的延长线上一点,过点C 的直线交x 轴正半轴于点E 、交双曲线于点D .如果CD =DE ,那么线段CE 长度的取值范围是______.8.(2022·上海黄浦·格致中学校考二模)如图,点A 是双曲线1(0)y x x=<上一动点,连接OA ,作OB OA ^,且使3OB OA =,当点A 在双曲线1y x=上运动时,点B 在双曲线k y x=上移动,则k 的值为___________.9.(2022·上海·上外附中校考模拟预测)如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过点1A 作x 轴的垂线交双曲线于点1B ,过点1B 作y 轴的垂线交直线于点2A ,过点2A 作x 轴的垂线交双曲线于点2B ,过点2B 作y 轴的垂线交直线于点3A ,…依次进行下去,记点n A 的横坐标为n a ,若12a =,则2021a =______.三、解答题10.(2022·上海嘉定·统考二模)某校科技小组进行野外考察,途中遇到一片烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.(1)求出P与S之间的函数表达式;(2)如果要求压强不超过3000Pa,木板的面积至少要多大?11.(2023·上海宝山·校考一模)已知:如图,反比例函数的图象经过点A 、P,点(4 6, 3A,点P的横坐标是2.抛物线2(0)y ax bx c a=++¹经过坐标原点,且与x轴交于点B,顶点为P.求:(1)反比例函数的解析式;(2)抛物线的表达式及B点坐标.12.(2022·上海·上外附中校考模拟预测)已知一次函数y kx b=+的图象与反比例函数m y x =的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S D =.(1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP D 是等腰三角形,求点P 的坐标.13.(2022·上海普陀·统考二模)如图,在平面直角坐标系xOy 中,反比例函数(0)k y k x=¹的图像与正比例函数y = 2x 的图像的交点A 在第一象限,点A 的纵坐标比横坐标大1(1)求点A 的坐标和反比例函数的解析式(2)点P 在射线OA 上,过点P 作x 轴的垂线交双曲线于点B .如果点B 的纵坐标为1,求△PAB 的面积14.(2023·上海闵行·统考一模)已知在平面直角坐标系xOy 中,抛物线223y x x =-++与y 轴交于点A ,其顶点坐标为B .(1)求直线AB 的表达式;(2)将抛物线223y x x =-++沿x 轴正方向平移(0)m m >个单位后得到的新抛物线的顶点C 恰好落在反比例函数16y x=的图像上,求ACB Ð的余切值.15.(2022·上海·二模)如图,在Rt ABCÐ=°,3AC=,点D是BACV中,90AB=,4射线BC上的一个动点,过点B作BE DA^,垂足为点E,延长BE交射线CA于点F,设=.BD x=,AF y(1)如图1,当点C是线段BD的中点时,求tan ADBÐ的值;(2)如图2,当点D在BC的延长线上,求y关于x的函数解析式及其定义域;(3)当3△的面积.=时,求ABDAE EF【真题训练】一、单选题1.(2021·上海·统考中考真题)将抛物线2(0)=++¹向下平移两个单位,以y ax bx c a下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.(2022·上海·统考中考真题)已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)3.(2020·上海·统考中考真题)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A.y=2x B.y=﹣2xC.y=8xD.y=﹣8x二、填空题4.(2021·上海·统考中考真题)已知6()f xx=,那么f=__________.5.(2020·上海·统考中考真题)如果函数y=k x(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而_____.(填“增大”或“减小”)6.(2021·上海·统考中考真题)已知函数y kx=经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.7.(2022·上海·统考中考真题)已知f(x)=3x,则f(1)=_____.8.(2020·上海·统考中考真题)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是____.9.(2020·上海·统考中考真题)已知f(x)=21x-,那么f(3)的值是____.10.(2021·上海·统考中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚__________ _元.11.(2020·上海·统考中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.12.(2022·上海·统考中考真题)已知直线y=k x+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.三、解答题13.(2022·上海·统考中考真题)一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.x+5与x轴、y 14.(2020·上海·统考中考真题)在平面直角坐标系xOy中,直线y=﹣12轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.15.(2021·上海·统考中考真题)已知抛物线2(0)P Q.=+¹过点(3,0),(1,4)y ax c a(1)求抛物线的解析式;(2)点A在直线PQ上且在第一象限内,过A作AB x^轴于B,以AB为斜边在其左侧作等腰直角ABC.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(10×3=30分)1. 二次函数y=﹣x 2+2x+3与x 轴交于A 、B 两点,它的顶点为C ,则△ABC 的面积为( ) A .2B .4C .8D .162. 如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB=xm ,长方形的面积为ym 2,要使长方形的面积最大,其边长x 应为( )A .425m B .6m C .15m D .25m 3. (2018·重庆市B 卷)(4.00分)如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y=(k ≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE=3DE ,则k 的值为( )A .B .3C .D .54. 如图17-3,在平面直角坐标系中,抛物线y =12x 2经过平移得到抛物线y =12x 2-2x ,其对称轴与两段抛物线弧所围成的阴影部分的面积为(B) A .2 B .4 C .8D .165.(2018•莱芜•3分)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=的图象上,则k=()A.3 B.4 C.6 D.126. (2018·辽宁省沈阳市)(3.00分)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB的值为()时,矩形土地ABCD的面积最大.A.150 m B.160m C.155m D.145 m7.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A .32-B .32-C .﹣2D .21-8. (2018·山东潍坊·3分)如图,菱形ABCD 的边长是4厘米,∠B=60°,动点P 以1厘米秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t 秒,记△BPQ 的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .9. (2018•安徽•4分) 如图,直线都与直线l 垂直,垂足分别为M ,N ,MN=1,正方形ABCD 的边长为,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于之间分的长度和为y ,则y 关于x 的函数图象大致为( )A. B. C. D.10. [2016·衢州]如图46-2,已知直线y =-34x +3分别交x 轴,y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上一个动点,其横坐标是a ,过点P 且平行y 轴的直线交直线y =-34x +3于点Q ,则PQ =BQ 时,a 的值是( ).A .-1,4,4+25 5.B .-1,4, 4-2 5.C.-1,4. D. 4+25或4-2 5.二、填空题(6×4=24分).11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△= .AOB12.(2018•大庆)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.13.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x 轴交双曲线于点E,连接BE,则△BCE的面积为.14.(2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.15.(2018·山东潍坊·3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y 轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.16.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有.(只需填写序号)三、解答题(共46分).17. (2018·重庆市B卷)(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y 轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.18.(2018·湖北省武汉·10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x 轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n 的数量关系.19.(2018·山东潍坊·12分)如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.20.(2018•莱芜•12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与∠CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.一、选择题(10×3=30分)1. 二次函数y=﹣x 2+2x+3与x 轴交于A 、B 两点,它的顶点为C ,则△ABC 的面积为( ) A .2B .4C .8D .16【分析】此题容易,只要把坐标写出来,根据面积公式就可解决了.【解答】解:二次函数y=﹣x 2+2x+3=﹣(x ﹣3)(x+1)与x 轴交于A 、B 两点,则可设A (﹣1,0)、B (3,0) 根据顶点坐标公式x=﹣a b 2=1,则y=4⇒()84]13[21=⨯--⨯=s . 故选:C .2. 如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB=xm ,长方形的面积为ym 2,要使长方形的面积最大,其边长x 应为( )A .425m B .6m C .15m D .25m 【分析】本题考查二次函数最小(大)值的求法.思路是:长方形的面积=大三角形的面积﹣两个小三角形的面积.3. (2018·重庆市B卷)(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A 在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B.3 C. D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5设OB=a则点D 坐标为(1,a+3),点C 坐标为(5,a ) ∵点D.C 在双曲线上 ∴1×(a+3)=5a ∴a=∴点C 坐标为(5,) ∴k=故选:C .4. 如图17-3,在平面直角坐标系中,抛物线y =12x 2经过平移得到抛物线y =12x 2-2x ,其对称轴与两段抛物线弧所围成的阴影部分的面积为(B) A .2 B .4 C .8D .165.(2018•莱芜•3分)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=的图象上,则k=()A.3 B.4 C.6 D.12【分析】如图,作AH⊥y轴于H.构造全等三角形即可解决问题;【解答】解:如图,作AH⊥y轴于H.∵CA=CB,∠AHC=∠BOC,∠ACH=∠CBO,∴△ACH≌△CBO,∴AH=OC,CH=OB,∵C(0,3),BC=5,∴OC=3,OB==4,∴CH=OB=4,AH=OC=3,∴OH=1,∴A(﹣3,﹣1),∵点A在y=上,∴k=3,故选:A.【点评】本题考查反比例函数的应用、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6. (2018·辽宁省沈阳市)(3.00分)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB的值为()时,矩形土地ABCD的面积最大.A.150 m B.160m C.155m D.145 m【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.7. 如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2(a <0)的图象上,则a 的值为( )A .32-B .32-C .﹣2D .21-【分析】连接OB ,过B 作BD ⊥x 轴于D ,若OC 与x 轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC 中,已知了边长,易求得对角线OB 的长,进而可在Rt △OBD 中求得BD 、OD 的值,也就得到了B 点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a 的值.代入抛物线的解析式中,得: (26)2a=﹣22, 解得a=﹣32; 故选:B .8.(2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.9.(2018•安徽•4分)如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【详解】由正方形的性质,已知正方形ABCD 的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A 符合,故选A.10. [2016·衢州]如图46-2,已知直线y =-34x +3分别交x 轴,y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上一个动点,其横坐标是a ,过点P 且平行y 轴的直线交直线y =-34x +3于点Q ,则PQ =BQ 时,a 的值是( ).A.-1,4,4+25 5. B.-1,4, 4-2 5.C.-1,4. D. 4+25或4-2 5.二、填空题(6×4=24分).11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△= .AOB【解答】解:根据题意得:S△AOB==2,故答案为:212.(2018•大庆)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×,∵m>0,解得OD=,由直线与圆的位置关系可知<6,解得m<.故答案为:m<.13.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为.【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;故答案为:7.14.(2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.把D、E的坐标代入y=得:k=ab=(3+a)b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.15.(2018·山东潍坊·3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y 轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).16.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有.(只需填写序号)③当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:,在对称轴的右边y随x的增大而减小.因为当m<0时, =﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;④当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.根据上面的分析,①②④都是正确的,③是错误的.故答案为:①②④.三、解答题(共46分).17. (2018·重庆市B卷)(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.【解答】解:(1)把x=2代入y=x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴,解得,∴直线l2的解析式为y=﹣x+4;(2)∵y=﹣x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=×8×4=16.【点评】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.18.(2018·湖北省武汉·10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x 轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n 的数量关系.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,19.(2018·山东潍坊·12分)如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.【解答】解:(1)由已知,c=,将B(1,0)代入,得:a﹣+=0,解得a=﹣,抛物线解析式为y1=,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=﹣.如图1:当TC=AC时,t2﹣=解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形.(3)如图2:②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣或y=﹣20.(2018•莱芜•12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.【解答】解:(1)由题意,得,解得,抛物线的函数表达式为y=﹣x2+x+3;(2)设直线BC的解析是为y=kx+b,,解得∴y=﹣x+3,设D(a,﹣a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE=∠CFO,∴tan∠DCE==2,∴BG=10,∵△GBH∽BCO,∴==,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b,∴,解得∴直线CG的解析式为y=x+3,∴,解得x=,或x=0(舍).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,由;利用了待定系数法求函数解析式,解方程组的横坐标.。

相关文档
最新文档