(北京市)2014年高考真题数学(理)试题(WORD高清精校版)
2014年北京市高考数学试卷及解析(理科)

2014年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,共40分、在每小题列出的四个选项中,选出符合题目要求的一项)1、(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A、{0}B、{0,1}C、{0,2}D、{0,1,2}2、(5分)下列函数中,在区间(0,+∞)上为增函数的是()A、y=B、y=(x﹣1)2C、y=2﹣xD、y=log0.5(x+1)3、(5分)曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=﹣2x上C、在直线y=x﹣1上D、在直线y=x+1上4、(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A、7B、42C、210D、8405、(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件6、(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A、2B、﹣2C、D、﹣7、(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A、S1=S2=S3B、S2=S1且S2≠S3C、S3=S1且S3≠S2D、S3=S2且S3≠S18、(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”、若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”、如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A、2人B、3人C、4人D、5人二、填空题(共6小题,每小题5分,共30分)9、(5分)复数()2=、10、(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=、11、(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C 的方程为;渐近线方程为、12、(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大、13、(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种、14、(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f (x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为、三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15、(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=、(1)求sin∠BAD;(2)求BD,AC的长、16、(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论)、17、(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H、(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长、18、(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值、19、(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论、20、(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k(P)和a1+a2+…+a k两个数中最大的数,﹣1(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论)、参考答案与试题解析一、选择题(共8小题,每小题5分,共40分、在每小题列出的四个选项中,选出符合题目要求的一项)1、(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A、{0}B、{0,1}C、{0,2}D、{0,1,2}分析:解出集合A,再由交的定义求出两集合的交集、解答:解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C、点评:本题考查交的运算,理解好交的定义是解答的关键、2、(5分)下列函数中,在区间(0,+∞)上为增函数的是()A、y=B、y=(x﹣1)2C、y=2﹣xD、y=log0.5(x+1)分析:根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论、解答:解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A、点评:本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题、3、(5分)曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=﹣2x上C、在直线y=x﹣1上D、在直线y=x+1上分析:曲线(θ为参数)表示圆,对称中心为圆心,可得结论、解答:解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,故选:B、点评:本题考查圆的参数方程,考查圆的对称性,属于基础题、4、(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A、7B、42C、210D、840分析:算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值、解答:解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210、故选:C、点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键、5、(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论、解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{a n}不是递增数列,充分性不成立、若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}为递增数列”的既不充分也不必要条件,故选:D、点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键、6、(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A、2B、﹣2C、D、﹣分析:对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案、解答:解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣)、由z=y﹣x得y=x+z、由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小、此时,解得:k=﹣、故选:D、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题、7、(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A、S1=S2=S3B、S2=S1且S2≠S3C、S3=S1且S3≠S2D、S3=S2且S3≠S1分析:分别求出三棱锥在各个面上的投影坐标即可得到结论、解答:解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=、在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D、点评:本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键、8、(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”、若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”、如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A、2人B、3人C、4人D、5人分析:分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数、解答:解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个、故选:B、点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力、二、填空题(共6小题,每小题5分,共30分)9、(5分)复数()2=﹣1、分析:由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案、解答:解:()2=、故答案为:﹣1、点评:本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题、10、(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=、分析:设=(x,y)、由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可、解答:解:设=(x,y)、∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5、解得、故答案为:、点评:本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题、11、(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C 的方程为;渐近线方程为y=±2x、分析:利用双曲线渐近线之间的关系,利用待定系数法即可得到结论、解答:解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x、点评:本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础、12、(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大、分析:可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论、解答:解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8、点评:本题考查等差数列的性质和单调性,属中档题、13、(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种、分析:分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案、解答:解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种、故答案为:36、点评:本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C、14、(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f (x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π、分析:由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求、解答:解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为、又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π、故答案为:π、点评:本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题、三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15、(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=、(1)求sin∠BAD;(2)求BD,AC的长、分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论、解答:解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=、(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7、点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大、16、(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论)、分析:(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可、(3)求出平均数和EX,比较即可、解答:解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=点评:本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题、17、(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H、(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长、分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长、解答:(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF 的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2、点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题、18、(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值、分析:(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f (0)=0、(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值、解答:解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0、(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x(0,x0)x0(x0,)g′(x)+﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1点评:本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题、19、(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论、分析:(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切、解答:解:(1)由x2+2y2=4,得椭圆C的标准方程为、∴a2=4,b2=2,从而c2=a2﹣b2=2、因此a=2,c=、故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切、证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0、∵OA⊥OB,∴,即tx0+2y0=0,解得、当x0=t时,,代入椭圆C的方程,得、故直线AB的方程为x=,圆心O到直线AB的距离d=、此时直线AB与圆x2+y2=2相切、当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0、圆心O到直线AB的距离d=、又,t=、故=、此时直线AB与圆x2+y2=2相切、点评:本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题、20、(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k(P)和a1+a2+…+a k两个数中最大的数,﹣1(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论)、分析:(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k ≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论、解答:解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}、当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52点评:本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键。
2014年北京高考数学理科试题及答案

场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
x2 y2 2 的位置关系,并证明你的结论.
(20)(本小题 13 分)对于数对序列 P(a1, b1) , (a2 , b2 ) ,…, (a , b ) , nn
记T1(P) a1 b T (P) b max{T (P), a a
a } (2
,
其中 max{Tk1 1(Pk ), a1 ak2
akk }1表示T1k 1(P2 ) 和 a1 ka2
绝密★启封并使用完毕前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(Ⅱ)当 x
0 时,“sinx x
a ”等价于“sin x
ax
0 ”“ sin x x
2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A .1y x =+[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C . 5.D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6.D若0k ≥,z y x =-没有最小值,不合题意. 若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7.D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(2012D ,,,(3102D ,,.D 1O D 3D 2DCB A zyx +y -2=0-2kkx -y +2=022O y x故232S S == 综上,选项D 正确. 8.B用ABC 分别表示优秀、及格和不及格。
2014年北京高考数学理科试题及答案

2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
(1) 已知集合 A {x | x2 2x 0}, B {0, 1, 2},若 A B
(A) {0}
(B) {0, 1}
(C) {0, 2}
(D) {0, 1, 2}
(2) 下列函数中,在区间 (0, }上为增函数的是
(A) y x 1
(B) y=(x 1)2
(C) y 2 x
(D) y log (x 1) 0.5
P
F
G
E
H
D A
B
C
M
(18)(本小题 13 分)已知函数 f (x) x cos x (Ⅰ)求证: f (x) 0 ;(Ⅱ)若 a sin x
2014年高考理科数学北京卷(含详细答案)

.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质
2014年北京高考数学理科(含答案)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2xC y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.C 1.D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a r 、b r 满足1a =r ,()2,1b =r ,且()0a b R λλ+=∈r r,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小学科网(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.对于数对序列1122(,),(,),,(,)n n P a b a b a b L,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤L ,其中112max{(),}k k T P a a a -+++L 表示1()k T P -和12k a a a +++L 两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC∠=,所以sin ADC ∠=。
2014年北京高考数学理

2014年普通高等学校招生全国统一考试(北京卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.积分10x e dx ⎰的值为( )A. eB. e-1C. 1D. e 2 2. 设i 为虚数单位,则()61i +展开式中的第三项为( ) A 30 i B 15i - C 30D 15-3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( )A. -24B. 21C. 24D. 48 4.如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( ).①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④ 5.下列命题中假.命题是( )A .离心率为2的双曲线的两渐近线互相垂直B .过点(1,1)且与直线x -2y+3=0垂直的直线方程是2x + y -3=0C .抛物线y 2 = 2x 的焦点到准线的距离为1D .223x +225y =1的两条准线之间的距离为4256.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.函数2()log 21f x x x =+-的零点所在的区间为( )A.1(0,)2B.11(,)42C. 1(,1)2D. (1,2)8.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( )A. 0.2B. 0.4C. 0.5D. 0.69.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(6πx +6π) B.f (x )=5sin(6πx -6π)C.f (x )=5sin(3πx +6π) D.f (x )=5sin(3πx -6π)10.已知点(),P x y 的坐标满足条件4,,1.x y y x x +≤⎧⎪≥⎨⎪≥⎩则22x y +的最大值为( ).B. 8C. 16D. 1011.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使 6PM PN -=, 则称该直线为 “和谐直线”,给出下列直线 ①y=x+1; ② y=2 ; ③ 43y x =; ④ y=2x+1。
2014年北京市高考数学试卷及解析(理科)

2014年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,共40分、在每小题列出的四个选项中,选出符合题目要求的一项)1、(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A、{0}B、{0,1}C、{0,2}D、{0,1,2}2、(5分)下列函数中,在区间(0,+∞)上为增函数的是()A、y=B、y=(x﹣1)2C、y=2﹣xD、y=log0.5(x+1)3、(5分)曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=﹣2x上C、在直线y=x﹣1上D、在直线y=x+1上4、(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A、7B、42C、210D、8405、(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件6、(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A、2B、﹣2C、D、﹣7、(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A、S1=S2=S3B、S2=S1且S2≠S3C、S3=S1且S3≠S2D、S3=S2且S3≠S18、(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”、若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”、如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A、2人B、3人C、4人D、5人二、填空题(共6小题,每小题5分,共30分)9、(5分)复数()2=、10、(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=、11、(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C 的方程为;渐近线方程为、12、(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大、13、(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种、14、(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f (x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为、三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15、(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=、(1)求sin∠BAD;(2)求BD,AC的长、16、(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论)、17、(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H、(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长、18、(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值、19、(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论、20、(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k(P)和a1+a2+…+a k两个数中最大的数,﹣1(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论)、参考答案与试题解析一、选择题(共8小题,每小题5分,共40分、在每小题列出的四个选项中,选出符合题目要求的一项)1、(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A、{0}B、{0,1}C、{0,2}D、{0,1,2}分析:解出集合A,再由交的定义求出两集合的交集、解答:解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C、点评:本题考查交的运算,理解好交的定义是解答的关键、2、(5分)下列函数中,在区间(0,+∞)上为增函数的是()A、y=B、y=(x﹣1)2C、y=2﹣xD、y=log0.5(x+1)分析:根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论、解答:解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A、点评:本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题、3、(5分)曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=﹣2x上C、在直线y=x﹣1上D、在直线y=x+1上分析:曲线(θ为参数)表示圆,对称中心为圆心,可得结论、解答:解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,故选:B、点评:本题考查圆的参数方程,考查圆的对称性,属于基础题、4、(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A、7B、42C、210D、840分析:算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值、解答:解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210、故选:C、点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键、5、(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论、解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{a n}不是递增数列,充分性不成立、若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}为递增数列”的既不充分也不必要条件,故选:D、点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键、6、(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A、2B、﹣2C、D、﹣分析:对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案、解答:解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣)、由z=y﹣x得y=x+z、由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小、此时,解得:k=﹣、故选:D、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题、7、(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A、S1=S2=S3B、S2=S1且S2≠S3C、S3=S1且S3≠S2D、S3=S2且S3≠S1分析:分别求出三棱锥在各个面上的投影坐标即可得到结论、解答:解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=、在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D、点评:本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键、8、(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”、若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”、如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A、2人B、3人C、4人D、5人分析:分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数、解答:解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个、故选:B、点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力、二、填空题(共6小题,每小题5分,共30分)9、(5分)复数()2=﹣1、分析:由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案、解答:解:()2=、故答案为:﹣1、点评:本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题、10、(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=、分析:设=(x,y)、由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可、解答:解:设=(x,y)、∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5、解得、故答案为:、点评:本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题、11、(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C 的方程为;渐近线方程为y=±2x、分析:利用双曲线渐近线之间的关系,利用待定系数法即可得到结论、解答:解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x、点评:本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础、12、(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大、分析:可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论、解答:解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8、点评:本题考查等差数列的性质和单调性,属中档题、13、(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种、分析:分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案、解答:解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种、故答案为:36、点评:本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C、14、(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f (x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π、分析:由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求、解答:解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为、又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π、故答案为:π、点评:本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题、三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15、(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=、(1)求sin∠BAD;(2)求BD,AC的长、分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论、解答:解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=、(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7、点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大、16、(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论)、分析:(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可、(3)求出平均数和EX,比较即可、解答:解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=点评:本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题、17、(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H、(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长、分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长、解答:(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF 的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2、点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题、18、(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值、分析:(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f (0)=0、(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值、解答:解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0、(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x(0,x0)x0(x0,)g′(x)+﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1点评:本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题、19、(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论、分析:(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切、解答:解:(1)由x2+2y2=4,得椭圆C的标准方程为、∴a2=4,b2=2,从而c2=a2﹣b2=2、因此a=2,c=、故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切、证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0、∵OA⊥OB,∴,即tx0+2y0=0,解得、当x0=t时,,代入椭圆C的方程,得、故直线AB的方程为x=,圆心O到直线AB的距离d=、此时直线AB与圆x2+y2=2相切、当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0、圆心O到直线AB的距离d=、又,t=、故=、此时直线AB与圆x2+y2=2相切、点评:本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题、20、(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k(P)和a1+a2+…+a k两个数中最大的数,﹣1(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论)、分析:(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k ≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论、解答:解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}、当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52点评:本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(理)(北京卷) 第 1 页(共 11 页)2014年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{20}A x x x =-=,{0,1,2}B =,则AB =(A ){0} (B ){0,1} (C ){0,2}(D ){0,1,2}(2)下列函数中,在区间(0,)+∞上为增函数的是(A)y (B )2(1)y x =- (C )2x y -=(D )0.5log (1)y x =+(3)曲线1cos ,2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心(A )在直线2y x =上 (B )在直线2y x =-上 (C )在直线1y x =-上 (D )在直线1y x =+上(4)当7,3m n ==时,执行如图所示的程序框图,输出的S 值为 (A )7 (B )42 (C )210 (D )840(5)设{}n a 是公比为q 的等比数列.则“1q >”是“{}n a数学(理)(北京卷) 第 2 页(共 11 页)为递增数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(6)若,x y 满足20,20,0,x y k x y y +-⎧⎪-+⎨⎪⎩≥≥≥ 且z y x =-的最小值为4-,则k 的值为(A )2 (B )2-(C )12(D )12-(7)在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C,(1,1,D .若1S ,2S ,3S 分别是三棱锥D ABC –在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则 (A )123S S S == (B )21S S =且23S S ≠ (C )31S S =且32S S ≠(D )32S S =且31S S ≠(8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 (A )2人 (B )3人 (C )4人(D )5人数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
( 9 )复数21i ()1i+=- . (10)已知向量,a b 满足||1=a ,(2,1)=b ,且λ+=0a b (λ∈R ),则||λ= . (11)设双曲线C 经过点(2,2),且与2214y x -=具有相同渐近线,则C 的方程为 ;渐近线方程为 .(12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.(13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.(14)设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间ππ[,]62上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 .数学(理)(北京卷) 第 4 页(共 11 页)三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (Ⅰ)求sin BAD ∠; (Ⅱ)求,BD AC 的长.(16)(本小题13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x 为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数.比较EX 与x 的大小.(只需写出结论)(17)(本小题14分)如图,正方形AMDE 的边长为2,,B C 分别为,AM MD 的中点.在五棱锥P ABCDE –中,F 为棱PE 的中点,平面ABF 与棱,PD PC 分别交于点,GH .(Ⅰ)求证://AB FG ;(Ⅱ)若PA ⊥底面ABCDE ,且P A A E =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.PF G E AC DB HB CA数学(理)(北京卷) 第 5 页(共 11 页)(18)(本小题13分)已知函数()cos sin f x x x x =-,π[0,]2x ∈.(Ⅰ)求证:()0f x ≤; (Ⅱ)若sin x a b x <<对π(0,)2x ∈恒成立,求a 的最大值与b 的最小值.(19)(本小题14分)已知椭圆22:24C x y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)设O 为原点.若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB与圆222x y +=的位置关系,并证明你的结论.(20)(本小题13分)对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}k k k k T P b T P a a a -=++++ (2)k n ≤≤,其中112{(),ma }x k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数.(Ⅰ)对于数对序列:(2,5),(4,1)P ,求1()T P , 2()T P 的值;(Ⅱ)记m 为,,,a b c d 四个数中最小的数,对于由两个数对(,),(,)a b c d 组成的数对序列:(,),(,)P a b c d 和:(,),(,)P c d a b ',试分别对m a =和m d =两种情况比较2()T P 和2()T P '的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论)(考生务必将答案答在答题卡上,在试卷上作答无效)数学(理)(北京卷) 第 6 页(共 11 页)2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D(6)D(7)D(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10(11)221312x y -= 2y x =± (12)8 (13)36(14)π三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=. (Ⅱ)在ABD △中,由正弦定理得8sin 3sin AB BAD BD ADB⋅∠===∠. 在ABC △中,由余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=. 所以7AC =.(16)(共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(Ⅱ)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C AB AB=,,A B独立.根据投篮统计数据,3()5P A=,2()5P B=.()()()P C P AB P AB=+33225555=⨯+⨯1325=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13 25.(Ⅲ)EX x=.数学(理)(北京卷)第7 页(共11 页)数学(理)(北京卷) 第 8 页(共 11 页)(17)(共14分)解:(Ⅰ)在正方形AMDE 中,因为B 是AM 的中点,所以//AB DE .又因为AB ⊄平面PDE , 所以//AB 平面PDE .因为AB ⊂平面ABF ,且平面ABF 平面PDE FG =, 所以//AB FG .(Ⅱ)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC −−→=.设平面ABF 的法向量为(,,)n x y z =,则0,0,AB AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y z =⎧⎨+=⎩ 令1z =,则1y =-.所以(0,1,1)=-n . 设直线BC 与平面ABF 所成角为α,则 sin |cos ,|||||BCBC BC α−−→−−→−−→⋅=〈〉=n n n 12=. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(,,)u v w .因为点H 在棱PC 上,所以可设PH PC λ−−→−−→= (01λ<<), 即(,,2)(2,1,2)u v w λ-=-.所以2u λ=,v λ=,22w λ=-.因为n 是平面ABF 的法向量,所以0AH −−→⋅=n ,即(0,1,1)(2,,22)0λλλ-⋅-=.解得23λ=,所以点H 的坐标为422(,,)333.所以2PH =.数学(理)(北京卷) 第 9 页(共 11 页)(18)(共13分)解:(Ⅰ)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π(0,)2上()sin 0f x x x '=-<,所以()f x 在区间π[0,]2上单调递减.从而()(0)0f x f =≤.(Ⅱ)当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“s i n xb x<”等价于“sin 0x bx -<”.令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π(0,)2x ∈恒成立.当1c ≥时,因为对任意π(0,)2x ∈,()cos 0g x x c '=-<,所以()g x 在区间π[0,]2上单调递减.从而()(0)0g x g <=对任意π(0,)2x ∈恒成立.当01c <<时,存在唯一的0π(0,)2x ∈使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π(0,)2上的情况如下:因为(g x 00.进一步,“()0g x >对任意π(0,)2x ∈恒成立”当且仅当ππ()1022g c =-≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π(0,)2x ∈恒成立;当且仅当1c ≥时,()0g x <对任意π(0,)2x ∈恒成立.所以,若sin x a b x <<对任意π(0,)2x ∈恒成立,则a 的最大值为2π,b 的最小值为1.数学(理)(北京卷) 第 10 页(共 11 页)(19)(共14分)解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=. 所以24a =,22b =,从而2222c a b =-=. 因此2a =,c 故椭圆C的离心率c e a ==.(Ⅱ)直线AB 与圆222x y +=相切.证明如下:设点,A B 的坐标分别为00(,),(,2)x y t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB −−→−−→⋅=,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =-,代入椭圆C的方程,得t =故直线AB的方程为x =O 到直线AB的距离d 此时直线AB 与圆222x y +=相切. 当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--, 即0000(2)()20y x x t y x ty ---+-=. 圆心O 到直线AB 的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.数学(理)(北京卷) 第 11 页(共 11 页) (20)(共13分)解:(Ⅰ)1()257T P =+=,21()1max{(),24}1max{7,6}8T P T P =++=+=. (Ⅱ)2()max{,}T P a b d a c d =++++,2()max{,}T P c d b c a b '=++++.当m a =时,2()max{,}T P c d b c a b c d b '=++++=++. 因为a b d c b d ++++≤,且a c d c b d ++++≤,所以22()()T P T P '≤. 当m d =时,2()max{,}T P c d b c a b c a b '=++++=++. 因为a b d c a b ++++≤,且a c d c a b ++++≤,所以22()()T P T P '≤. 所以无论m a =还是m d =,22()()T P T P '≤都成立. (Ⅲ)数对序列:(4,6),(11,11),(16,11),(11,8),(5,2)P 的5()T P 值最小,12345()10,()26,()42,()50,()52T P T P T P T P T P =====.。