三角形全等的判定练习题

合集下载

三角形全等的判定(全部)

三角形全等的判定(全部)

454cm3cmD C B A(2)(1)D CB AF ED C BA F E DC BA F EDC B A ED C B A三角形全等的判定(边角边)班级___________姓名______________一. 做一做:如图,已知两条线段和一个角,以这两条线段 为边,以这个角为这两边的夹角,画一个三角形。

(图1)把你画的三角形与其他同学画的三角形进行比较,所有 的三角形全等吗?换两条线段和一个角试试,是否有同样 的结论 二.结论:三.典型例题:例1.如图,在△ABC 中,AB=AC,AD 平分∠BAC , 求证:△AB D ≌△ACD想一想:你还能得到那些结论?练习:根据下列条件,判断下面的三角形是否全等,并说 明理由。

(1)AC=DF ,∠C=∠F,BC=EF;(2)BC=BD,∠ABC=∠ABD.如图1,以长的线段为已知角的邻边,短的线段 为已知角的对边,画一个三角形。

把你画的三角形 与其他同学画的三角形进行比较,所有的三角形全等 吗?此时符合条件的三角形的形状能有多少种呢?例2.如图A 、D 、F 、B 在同一条直线上,AD=BF ,AE=BC 且A E ∥BC 。

求证:(1)△AEF ≌△BCD (2)E F ∥CD四.巩固练习:1.如图,A B ∥DE,DF=BC,若 △AB C ≌△DEF ,还需要补充的条件是( )A.AC=EFB.AB=DEC.∠B=∠ED.不用补充 2.在△ABC 中,D 是BC 边的中点,A D ⊥BC ,那么下列说 法错误的是( )A.△AB D ≌△ACDB.∠B=∠CC.AD 是△ABC 的高D.△ABC 是等边三角形 3.已知,如图,AB=AE,AC=AD, ∠EAD=∠BAC 求证:ED=BCD CB AE DC B AD CB AE D CB A ED CBAF E D C B A F EDCBA五.课后练习:1.如图,如果AB=AC,AD=AE ,那么不增加任何条件 ________(填 “可以”或“不可以”)判断△AB E ≌△ACD 。

三角形全等的判定(AAS-ASA)训练题

三角形全等的判定(AAS-ASA)训练题

三角形全等的判定(AAS-ASA)训练题◆随堂检测1.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?2.已知如图,AB=AC,AD=AE,∠BAC=∠DAE,试说明BD=CE。

3.如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC。

试说明AD=CB。

4.如图,已知AC、BD相交于点0,∠A=∠B,∠1=∠2,AD=BC.试说明△AOD≌△BOC.◆典例分析例:如图:已知AE 交BC 于点D ,∠1= AB=AD. 求证:DC=BE 。

证明:∵∠ADB=∠1+∠C , ∠ADB=∠3+∠E , 又∵∠1=∠3, ∴∠C=∠E 。

在△ABE 和△ADC 中, ∵∠E =∠C , ∠2 =∠1, AB =AD ,∴ △ABE ≌△ADC (AAS )。

∴DC=BE 。

解析:要证DC=BE,先观察DC 与BE 分别在可能全等的两个三角形中.根据所给条件选择方法◆课下作业●拓展提高5.玻璃三角板摔成三块如图,现在到玻璃店在配一块同样大小的三角板,最省事的方法( ) A 、带①去 B 、带②去 C 、带③去 D 、带①②③去6. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .ABCDEF7.如图,已知AC 、BD 交于E ,∠A=∠B ,∠1=∠2.求证:AE=BE .8.如图,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm,求△ABC 的周长。

9.如图,在△ABC 中,∠B=∠C ,说明AB=AC10.已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

⑴求证:∠ABE=∠C ;⑵若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。

(2)周长相等的两个等边三角形全等。

(3)有三个角对应相等的两个三角形全等。

(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。

直角三角形全等的判定练习题

直角三角形全等的判定练习题

直角三角形全等判定练习班级________ 学号 ______ 姓名 ___________ 评价___________ 课题 直角三角形全等的判定(一) 日期一、选择题1.△ABC 中,∠C=90°,AD 为角平分线,BC=32,BD ∶DC=9∶ 7, 则点D 到AB 的距离为( )A.18cmB.16cmC.14cmD.12cm2.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点. ( )(A )高 (B )角平分线 (C )中线 (D )边的垂直平分线 3.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个 ( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ; (4)AD ⊥BC . (A )1个 (B )2个 (C )3个 (D )4个 二、填空题4.如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 或 .第4题 第5题 第6题5.如图,有一个直角△ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,当AP= 时,才能使ΔABC ≌ΔPQA.6.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于 D,DE ⊥AB 于E ,且AB =6 cm ,则△DEB 的周长为___________cm.三、解答题7.如图,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=ACP Q C A B x D C BA DB CA E F DBC A E F8.已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?9.已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,∠A=30°.求证:BD=14AB10.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E .(1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C .(2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由.A BC D E F 1 2 B A C D。

初中数学 三角形全等的判定专题训练题

初中数学 三角形全等的判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD⊥BC,垂足为D,BD=CD。

求证:△ABD≌△ACD。

2、如图(2):AC∥EF,AC=EF,AE=BD。

求证:△ABC≌△EDF。

3、如图(3):DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。

求证:(1)∠B=∠C,(2)BD=CE(5)在一次数学课上,李老师在黑板上画出图6,并写下了四个等式①AB = DC ②BE =CE③∠B =∠C④∠BAE =∠CDE..要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形;请你试着完成李老师提出的要,并说明理由。

(写出一种即可)已知:求证:△AED是等腰三角形5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。

求证:AC⊥CE。

6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。

求证:(1)AF=EG,(2)BF∥DG。

7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。

求证:(1)MN平分∠AMB,(2)∠A=∠CBM。

8、如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。

求证:△ABE≌△DCF。

9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

(6)复习“全等三角形”的知识时李老师布置了一道作业题“如图①已知:在△ABC 中,AB=AC,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP;则BQ=CP..”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP”仍然成立..请你就图②给出证明。

《全等三角形的判定》练习(含答案)

《全等三角形的判定》练习(含答案)

全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。

三角形全等的判定(含例题)

三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B。

125° C.127° D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是()A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF。

请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形()A。

3 B。

4 C.5 D。

62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件()D CBA A 。

∠1=∠2B 。

∠B=∠C C 。

∠D=∠ED 。

∠BAE=∠CAD 3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B 。

AD ∥BC C 。

∠A=∠C D 。

∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等的判定练习题
1. 如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是 ( )



C
B
A a 75°
b c b
a c
b a 75°
75°40°
65°45°
(A)只有乙 (B)只有丙
(C)甲和乙 (D)乙和丙
2、如图,AC ∥EF ,AC=EF ,AE=BD . 求证:△ABC ≌△EDF .
F
E D
A
B
C
3、如图,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DCF 的度数。

4、如图,在Rt △ACB 中,∠C =90°,BE 是角平分线,ED ⊥AB 于D , 且BD =AD ,试确定∠A 的度数。

A B C D
E
F
A
B
C
D
E
5、如图,已知AB=AC,AD=AE,∠1=∠2,BE与CD相等吗?为什么?
6、如图,CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上.
求证:(1)AF=EG;(2)BF∥DG.
G A E
B D
F
C
7、如图,AE、BC交于点D,F点在AD上,BE∥CF,BE=CF.
求证:AD是△ABC的中线.
A
B C
D
E
F
8、如图,△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=1
2
AB,延长AC到E,使CE=AC.求
证:△ABC≌△AED.
A B
D
C E
9、如图,AD∥BC,AD=BC,AE=CF.求证:(1)DE=DF;(2)AB∥CD.
A
B C
D
E
F
10、如图:CD⊥AB于D,BE⊥AC于E,OD=OE.求证:AB=AC.
O
A
B C
D E
11、如图,△ABC≌△EDC.求证:BE=AD.
A
B
C
D E
12、如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN
⊥MN于N.
(1)求证:MN=AM+BN.
N
M
A B
C
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.
C
N
A B
M 1.如图,在中,于点,,如果,那么。

2.如图,,你能说明?
3.如图,已知,且,请你判断是的中线还是角平分线,并说明理由。

4.已知,如图,为内一点,,垂足分别为,且,猜想与有什么关系?试说明理由。

相关文档
最新文档