专题07 三角形及四边形的计算与证明(解析版)

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

高考数学专题07 三角形中的组合图形问题(第一篇)(解析版)

高考数学专题07 三角形中的组合图形问题(第一篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第一篇三角函数与解三角形专题07 三角形中的组合图形问题【典例1】【2020届安徽省池州市高三上学期期末考试】如图所示,在ABC V 中,,A ∠,B ∠C ∠的对边分别为a ,b ,c ,已知2sin cos sin 0,b A B a B +=1a =,2c =.(1)求b 和sin C ;(2)如图,设D 为AC 边上一点,BD CD =ABD △的面积. 【思路引导】(1)通过正弦定理边化角,整理化简得到cos B 的值,再利用余弦定理,求出b ,根据正弦定理,求出sin C ;(2)根据正弦定理得到sin 1CBD ∠=,即2CBD π∠=,根据勾股定理得到2BD =,根据三角形面积公式,求出ABD △的面积.解:(1)因为2sin cos sin 0b A B a B +=, 所以在ABC V 中,由正弦定理sin sin sin a b cA B C==, 得2sin sin cos sin sin 0B A B A B +=,因为sin sin 0A B ≠,所以2cos 10B +=, 所以1cos 2B =-,又0B π<<,所以23B π=, 由余弦定理得,2222cos b a c ac B =+-1142122⎛⎫=+-⨯⨯⨯- ⎪⎝⎭7=,所以b =ABC V 中,由正弦定理sin sin c bC B=, 所以sin sin c B C b=22sin π=7=; (2)在ABD △中,由正弦定理得,sin sin BD CCD CBD=∠,因为BD CD =sin sin C CBD =∠,因为sin 7C =,所以sin 1CBD ∠=,而()0,CBD π∠∈ 所以2CBD π∠=,由BD CD =,BD=CD =,所以222)1)+=,所以12t =,所以BD =, 因为ABD ABC DBC ∠=∠-∠232ππ=-6π=, 所以1sin 2ABD S AB BD ABD =⨯⨯∠V 11222=⨯=. 【典例2】【山东省日照市2019-2020学年高三下学期1月校际联考】 在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【思路引导】选择①:利用三角形面积公式和余弦定理可以求接求出AC 的长;选择②:在ABC ∆,ACD ∆中,分别运用正弦定理,可以求接求出AC 的长; 解:选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC =2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC ==选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC πθ=⎛⎫- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin θ=,所以2sin AC θ==【典例3】【河北省唐山市2019届高三上学期期末考试】如图,在梯形ABCD 中,90A D ∠=∠=o ,M 为AD 上一点,22AM MD ==,60BMC =o ∠.(1)若60AMB ∠=o ,求BC ;(2)设DCM θ∠=,若4MB MC =,求tan θ. 【思路引导】(1)先由题中条件求出MC MB ,,再由余弦定理即可求解;(2)先由DCM θ∠=,表示出ABM ∠,进而可用θ表示出MC ,MB ,再由4MB MC =,即可求解. 解:(1)由60BMC ∠=o ,60AMB ∠=o ,得60CMD ∠=o . 在Rt ABM V 中,24MB AM ==; 在Rt CDM V 中,22MC MD ==.在MBC V 中,由余弦定理得,2222cos 12BC BM MC BM MC BMC =+-⋅⋅∠=,BC =(2)因为DCM θ∠=,所以60ABM θ∠=-o ,060θ<<o o . 在Rt MCD V 中,1sin MC θ=; 在Rt MAB V 中,()2sin 60MB θ=-o ,由4MB MC =得,()260sin sin oθθ-=,θsin θsin θ-=,即2sin θθ=,整理可得tan θ=【典例4】【广东省2019届高三上学期期末联考】如图,在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos a c B B =+.(1)求ACB ∠的大小;(2)若∠=∠ACB ABC ,点A 、D 在BC 的异侧,2DB =,1DC =,求平面四边形ABDC 面积的最大值.【思路引导】(1)由正弦定理将()sin cos a c B B =+化为()sin sin sin cos A C B B =+,再由两角和的正弦公式化简,即可求出结果;(2)先由余弦定理求出BC 的长,将平面四边形ABDC 的面积转化为两三角形ABC ∆与BCD ∆面积之和,即可求解.解:(1)因为()sin cos a c B B =+,且sin sin a c A C=, 所以()sin sin sin cos A C B B =+在ABC ∆中,()sin sin A B C =+所以()()sin sin sin cos B C C B B +=+所以sin cos cos sin sin sin sin cos B C B C C B C B +=+ 所以sin cos sin sin B C C B =因为在ABC ∆中,sin 0B ≠ 所以cos sin C C =因为C 是ABC ∆的内角所以4C π=.(2)在BCD ∆中,2222cos BC BD CD BD CD D =+-⋅⋅54cos D =- 因为ABC ∆是等腰直角三角形, 所以22115cos 244ABC S AB BC D ∆===- 1sin sin 2BCD S BD CD D D ∆=⋅⋅= 所以平面四边形ABDC 的面积S =ABC S ∆+BCD S ∆5cos sin 4D D =-+ 544D π⎛⎫=- ⎪⎝⎭ 因为0D π<<,所以3444D πππ-<-<所以当34D π=时,sin 14D π⎛⎫-= ⎪⎝⎭,此时平面四边形ABDC 的面积有最大值54+ 【典例5】【2020届重庆市高三11月调研测试卷】如图,半圆O 的直径2AB =,点C ,P 均在半圆周上运动,点P 位于C ,B 两点之间,且6CAP π∠=.(1)当12PAB π∠=时,求APC △的面积.(2)求四边形ABPC 的面积的最大值. 【思路引导】(1)根据已知条件求出,AC AP ,再利用面积公式即可;(2)将四边形拆成三个三角形,将面积转化为三角函数求再求最值.解:(1)由题知4CAB π∠=,cos AC AB CAB ∴=∠=cos2cos 2cos cos 2sin sin 123434342AP AB πππππππ⎛⎫==-=+=⎪⎝⎭,1sin 26APC S AC AP π∴=⋅⋅=V ; (2)由题知6CAP π∠=,根据同弧所对的圆心角是圆周角的二倍,可得3COP π∠=,设半径1r =,AOC θ∠=,则23POB πθ∠=-, 212sin sin sin 233ABPC AOC POB POC S S S S r ππθθ⎡⎤⎛⎫=++=+-+ ⎪⎢⎥⎝⎭⎣⎦V V V ,11sin sin 22224264πθθθθ⎛⎛⎫=+++=++≤ ⎪ ⎝⎭⎝⎭当3AOC πθ∠==时等号成立.【典例6】【2019届河北省衡水中学高三上学期三调考】如图所示,正三角形ABC 的边长为2,,,D E F 分别在三边,AB BC 和CA 上,D 为AB 的中点,()90,090EDF BDE θθ∠=︒∠=︒<<︒.(Ⅰ)当tan 2DEF ∠=θ的大小; (Ⅱ)求DEF ∆的面积S 的最小值及使得S 取最小值时θ的值.【思路引导】第一问,在EDF ∆中,tan DF DEF DE ∠==DBE ∆中,利用正弦定理,用θ表示DE ,在ADF ∆中,利用正弦定理,用θ表示DF ,代入到①式中,再利用两角和的正弦公式展开,解出tan θ,利用特殊角的三角函数值求角θ;第二问,将第一问得到的DF 和DE 代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S 的最小值.解:在BDE V 中,由正弦定理得000sin 60sin(120)2sin(60)BD DE θθ==-+,在ADF V 中,由正弦定理得0sin 60sin(30)AD DF θ==+tan DEF ∠=,得00sin(60)sin(30)θθ+=+tan θ=,所以60θ=︒. (2)1·2S DE DF ==0038sin(60)sin(30)θθ=++==.当45θ=︒时,S 62-=.【典例7】【陕西省2019届高三第二次教学质量检测数学】某市规划一个平面示意图为如下图五边形ABCDE 的一条自行车赛道,ED ,DC ,CB ,BA ,AE 为赛道(不考虑宽度),BE为赛道内的一条服务通道,23BCD CDE BAEπ∠=∠=∠=,DE=4km,BC CD==.(1)求服务通道BE的长度;(2)当4AEBπ∠=时,赛道BA的长度?【思路引导】(1)连接BD,在BCD∆中,由余弦定理可得3BD=,由等腰三角形的性质结合23BCD CDEπ∠=∠=可得2BDEπ∠=,再由勾股定理可得结果;(2)在BAE∆中,23BAEπ∠=,5BE=,4AEBπ∠=,直接利用正弦定理定理可得结果.解:(1)连接BD,在BCD∆中,由余弦定理得:2222BD BC CD BC=+-cos9CD BCD⋅∠=,3BD∴=.BC CD=Q,6CBD CDBπ∴∠=∠=,又23CDEπ∠=,2BDEπ∴∠=,在Rt BDE∆中,5BE==.(2)在BAE∆中,23BAEπ∠=,5BE=.4AEBπ∠=由正弦定理得2sin sin34BE ABππ=,=得3BA=,当4AEBπ∠=时,赛道BA的长度为3.1.【2020年陕西省高三教学质量检测卷(一)】如图,在ABC ∆中,sin BAD ∠=,1cos 7ADC ∠=,7AD =,8AC =,D 在BC 边上,连接AD .(1)求角B 的大小; (2)求ACD ∆的面积.【思路引导】(1)由ABD ADC BAD ∠=∠-∠及两角差的正弦公式,结合正余弦值求得ABD ∠的正弦值,即可得角B 的大小;(2)先在ACD ∆中,由余弦定理求出CD 的长度,再利用三角形的面积公式即可求解. 解:(1)在ABC ∆中,1cos 7ADC ∠=, 所以0,2ADC π⎛⎫∠∈ ⎪⎝⎭,所以0,2BAD π⎛⎫∠∈ ⎪⎝⎭∵sin 14BAD ∠=,1cos 7ADC ∠=,∴13cos 14BAD ∠==,sin 7ADC ∠==∴sin sin()ABD ADC BAD ∠=∠-∠ sin cos cos sin ADC BAD ADC BAD =∠⨯∠-∠⨯∠1317147142=⨯-⨯=. 因为0,2ADC π⎛⎫∠∈ ⎪⎝⎭,所以0,2B π⎛⎫∈ ⎪⎝⎭,∴3B π=.(2)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⨯⨯∠,∴216449277CD CD =+-⨯⨯⨯,解得5CD =,∴1sin 2ACD S AD CD ADC ∆=⨯⨯⨯∠1752=⨯⨯⨯=2.【天一大联考皖豫联盟2019-2020学年高中毕业班第二次考试】 如图所示,在平面四边形ABCD 中,4tan 3BCD ∠=-.(1)若ACB ACD ∠=∠,22AB BC ==,求AC 的长; (2)若45CBD ︒∠=,2BC =,求BCD V 的面积. 【思路引导】(1)由tan BCD ∠,可求出cos BCD ∠,结合ACB ACD ∠=∠,可求得cos ACB ∠,在ABC V 中,由余弦定理可求出AC 的长;(2)先求得sin cos BCD BCD ∠∠,,则()sin sin 45CDB BCD ︒∠=∠+,然后利用正弦定理sin sin BC CDCDB CBD=∠∠,可求出CD ,进而可求出BCD V 的面积.解:(1)4tan 3BCD ∠=-,则BCD ∠是钝角,cos 0BCD ∠<,可求得3cos 5BCD ∠=-. 因为ACB ACD ∠=∠,所以23cos 2cos 15BCD ACB ∠=-=∠-.因为cos 0ACB ∠>,所以cos ACB ∠=.在ABC V 中,由余弦定理得2222cos AB BC AC BC AC ACB =+-⋅⋅∠,即2305AC AC --=.解得AC =AC =(舍去).所以AC =(2)由(1)可知,4sin 5BCD ∠==. 在BCD V 中,因为45CBD ∠=︒,所以()()sin sin 18045sin 45cos )CDB BCD BCD BCD BCD ∠=︒-∠-︒=∠+︒=∠+∠=由正弦定理得sin sin BC CDCDB CBD =∠∠,所以sin 10sin BC CBDCD CDB⋅∠==∠. 故BCD V 的面积14210825S =⨯⨯⨯=.3.【2020届江西省南昌市第十中学高三上学期期末】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且满足3sin 2sin 3sin 3sin a A a C b B c C -=-.(1)求cos B 的值.(2)如图,点D 在线段AC 上,且2AD DC =,若2AC =,求DBC △面积的最大值. 【思路引导】(1)利用正弦定理角化边,再利用余弦定理即可求解. (2)由(1)以及余弦定理、基本不等式可得22224233a c ac ac ac =+-≥-,由1S S 3BDC ABC ∆∆=即可求解.解:(1)3sin 2sin 3sin 3sin a A a C b B c C ∴-=-, 由正弦定理,可得2223233a ac b c -=-,则2221cos 23a cb B ac +-== (2)由(1)知1cos 3B =, 可得:22224233a c ac ac ac =+-≥-4,3ac = 3ac ∴≤,(当且仅当a c =时取等号), 由2AD DC =,可得:1S S 3BDC ABC ∆∆=1111sin 33232ac B =⨯⨯≤⨯=,DBC ∴△的面积最大值为3. 4.【福建省德化一中、永安一中、漳平一中2020届高三上学期三校联考】如图,在四边形ABCD 中,AD BD ⊥,AC 平分BAD ∠,BC =3BD =BCD ∆的面积为S =,ABC ∠为锐角.(Ⅰ)求CD ; (Ⅱ)求ABC ∠ .试题分析: (I)在BCD ∆中,由三角形的面积公式可求得CBD ∠,再利用余弦定理求出CD ;(Ⅱ)在BCD ∆中,由正弦定理求出sin BDC ∠和cos BDC ∠,根据题意AC 平分BAD ∠,CAD BAC ∠=∠,在ACD ∆和ABC ∆中分别写出正弦定理,得出比例关系,求出ABC ∠.解:(I)在ABC ∆中,31sin 22S BD BC BCD ==⋅⋅∠.因为3BC BD ==+1sin 2CBD ∠=. 因为ABC ∠为锐角,所以30CBD ∠=︒.在BCD ∆中,由余弦定理得2222cos CD BC BD BC BD CBD =+-⋅⋅∠((22323=+-⋅+9= 所以CD 的长为3.(II)在BCD ∆中,由正弦定理得sin sin BC CDBDC CBD=∠∠3sin30=︒,解得sin BDC ∠= BC BD <Q ,BDC ∴∠也为锐角.cos 3BDC ∴∠=. 在ACD ∆中,由正弦定理得sin sin AC CDADC CAD=∠∠ 即3cos sin AC BDC CAD=∠∠①在ABC ∆中,由正弦定理得sin sin AC BCABC BAC=∠∠即sin AC ABC =∠② Q AC 平分BAD ∠,∴CAD BAC ∠=∠由①②得sincos ABC BDC ∠=∠sin 2ABC ∠= 因为ABC ∠为锐角,所以45ABC ∠=︒ .5.【2020届山东省潍坊市高三上学期期末考试】在①34asinC ccosA =;②22B Cbsin +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知,a =. (1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积【思路引导】(1)结合正弦定理,条件选择①3sin 4cos a C c A =,则34sinAsinC sinCcosA =,再利用公式22sin cos 1A A +=求sin A ;若选择条件②,由正弦定理和诱导公式可得22AsinBcos=,再根据二倍角公式求得2A sin=,再根据sin 2sin cos 22A A A =求解.(2)解法1:设BM MC m ==,在BMC △中由余弦定理,解得m =再由(1)4sin 5A =,解得AB 边长,最后求得到ABC ∆的面积;解法2:由MB MC =可知,3225sin C sin A cosA π⎛⎫⎭=⎪⎝=-=,,再根据正弦定理和面积公式ABC S ∆=4545sin cos sin 244C C C ==. 解:解:若选择条件①,则答案为:(1)在ABC V 中,由正弦定理得34sinAsinC sinCcosA =, 因为sin 0C ≠,所以2234,916sinA cosA sin A cos A ==, 所以22516sin A =,因为0sinA >,所以4=5sinA . (2)解法1:设BM MC m ==,易知45cos BMC cos BMA sinA ∠=-∠=-=-在BMC △中由余弦定理得:22418225m m ⎛⎫=-⋅- ⎪⎝⎭,解得m =所以2113352252BMC S m sin BMC =∠=⨯⨯=V 在Rt ABM V 中,4,52sinA BM ABM π==∠=所以AB =158ABM S =V ,所以31527288ABC S =+=V 解法2:因为MB MC =,所以MBC C ∠=∠, 因为,2ABM π∠=所以2,222A C C A ππ∠+∠=∠=-∠,所以22sin C sin A cosA π⎛⎫⎪⎝⎭=-= 因为A 为锐角,所以325sin C cosA ==又sin sin sin 4b c a B C A ===所以sin ,4b B =,4c C =所以11445sin sin sin sin 2244542ABC S bc A B C C C π⎛⎫==⨯⨯⨯=+ ⎪⎝⎭V 454527sin cos sin 2448C C C ===若选择条件②,则答案为:(1)因为22B C bsin +=,所以22Absin π-=,由正弦定理得22AsinBcos =,因为0sinB ≠,所以2,2A cos =222A A Acos cos =,因为02Acos≠,所以2A sin =,则2A cos=,所以4sin 2sin cos 225A A A ==. (2)同选择①6.【2020届广东省韶关市高三上学期期末调研】如图,在平面四边形ABCD 中,1,2,AD AB BC CD DB ====,设DAB θ∠=.(1)若23πθ=,求sin ADB ∠的值; (2)用θ表示四边形ABCD 的面积()S θ,并求()S θ的最大值. 【思路引导】(1)由余弦定理得BD ,再由正弦定理求得结论;(2)同(1)由余弦定理表示出BD ,求出两个三角形ABD ∆和BCD ∆的面积,可得()S θ,再由三角函数的公式变为一个角的一个三角函数形式,然后可得最大值.解:(1)在ABC ∆中,由余弦定理知2222cos BD AD AB AD AB BAD =+-⋅∠ 由已知21,2,3AD AB DAB π==∠=,代入上式得:211421272BD ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,即BD =又由正弦定理得:sin sin AB BDADB DAB=∠∠即:22sin sin 3ADB π=∠,解得:sin 7ADB ∠=(2)在ABC ∆中,由余弦定理知214212cos 54cos BD θθ=+-⨯⨯⨯=-故())112sin 54cos sin 2S θθθθθ=⨯⨯⨯-=-+2sin )34πθθπ⎛⎫=-+<< ⎪⎝⎭所以2333πππθ-<-<故max S 526S π⎛⎫==⎪⎝⎭. 7.【湖北省宜昌市2019-2020学年高三期末数学】已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且2222cos cos b c a ac C c A +-=+.(1)求A ;(2)在ABC ∆中,BC =D 为边AC 的中点,E 为AB 边上一点,且DE AC ⊥,DE =,求ABC ∆的面积. 【思路引导】(1)由余弦定理得2cos cos cos b A a C c A =+,再由正弦定理得2sin cos sin()B A A C ⋅=+,进而得1cos 2A =,即可求解(2)在Rt AED ∆中,求得AD =,AC =ABC ∆中由正弦定理得4B π=,结合三角形的面积公式,即可求解.解:(1)由余弦定理有22cos cos cos bc A ac C c A =+, 化简得2cos cos cos b A a C c A =+,由正弦定理得2sin cos sin cos cos sin sin()B A A C C A A C ⋅=⋅+=+ ∵A B C π++=,∴2sin cos sin B A B ⋅=,∵0B π<<,∴sin 0B ≠,∴1cos 2A =,又由0A π<<,∴3A π=. (2)在AEC ∆中,D 为边AC 的中点,且DE AC ⊥, 在Rt AED ∆中,2DE =,3A π=,所以2AD =,AC =ABC ∆中由正弦定理得sin sin AC BC B A =,得sin B ,4B π=,512C π=,所以1sin 2ABC S AC BC C ∆=⋅=8.【内蒙古呼和浩特市2019-2020学年高三上学期质量普查调研】 (1)当()k k z απ≠∈时,求证:1cos tan2sin ααα-=;(2)如图,圆内接四边形ABCD 的四个内角分别为A 、B 、C 、D .若6AB =,3BC =,4CD =,5AD =.求tantan tan tan 2222A B C D+++的值.【思路引导】(1)根据正余弦的二倍角公式从左边向右边即可化简证明(2)ABCD 为圆的内接四边形可知sin sin A C =,sin sin B D =,cos cos A C =-,cos cos B D =-,由(1)结论原式可化为22sin sin A B+,连接AC 、BD ,设AC x =,BD y =由余弦定理即可求解. 解:(1)证明21cos 22sin 1cos 22sin sin 22sin cos 222ααααααα-⋅-==⋅⋅tan 2α=.(2)因为ABCD 为圆的内接四边形,所以sin sin A C =,sin sin B D =,cos cos A C =-,cos cos B D =-,由此可知:tantan tan tan 2222A B C D+++1cos 1cos 1cos 1cos sin sin sin sin A B C DA B C D ----=+++22sin sin A B=+连接AC 、BD ,设AC x =,BD y =由余弦定理可得: 22536cos 256y A +-=⨯⨯,2916cos 234y C +-=⨯⨯,2369cos 263x B +-=⨯⨯,22516cos 254x D +-=⨯⨯,解得281919x =,22477y =,那么3cos 7A =,1cos 19B =,sin A =sin B =所以原式3=. 9.【山西省晋城市2019届高三第三次模拟考试】如图所示,锐角ABC ∆中,AC =D 在线段BC 上,且CD =,ACD ∆的面积为,延长BA 至E ,使得EC BC ⊥.(Ⅰ)求AD 的值; (Ⅱ)若2sin 3BEC ∠=,求AE 的值. 【思路引导】(Ⅰ)在ACD ∆中,由面积公式得sin 5ACD ∠=,进而得1cos 5ACD ∠=,再由余弦定理求解即可;(Ⅱ)由EC BC ⊥,得()1sin sin 90cos 5ACE ACD ACD ∠=︒-∠=∠=,在AEC ∆中,再由正弦定理求解即可 解:(Ⅰ)在ACD ∆中,1sin 2ACD S AC CD ACD ∆=⋅∠1sin 2ACD =⨯∠=所以sin 5ACD ∠=. 因为090ACD ︒<∠<︒,所以1cos 5ACD ∠==. 由余弦定理得2222cos 56AD CD CA CD CA ACD =+-⋅⋅⋅∠=,得AD =(Ⅱ)因为EC BC ⊥,所以()1sin sin 90cos 5ACE ACD ACD ∠=︒-∠=∠=. 在AEC ∆中,由正弦定理得sin sin AE ACACE AEC=∠∠,即1253AE =,所以AE =. 10.【北京市房山区2019-2020学年高三上学期期末】如图,在平面四边形ABCD 中,AB BC ⊥,AB =3CD =,sin 14DBC ∠=,3C π∠=.(1)求sin BDC ∠的值; (2)求BD ,AD 的值. 【思路引导】(1)由同角三角函数基本关系得13cos 14DBC ∠=,利用两角和的正弦及内角和定理展开求解即可 (2)利用正弦定理得7BD =,再利用余弦定理求解 解:(1)∵sin DBC ∠=,22sin cos 1,02DBC DBC DBC π∠+∠=<∠<,∴13cos 14DBC ∠=在△BDC 中,,3=C DBC C BDC ππ∠∠+∠+∠=,∴sin sin()BDC DBC C ∠=∠+∠sin cos cos sin DBC C DBC C =∠⋅+∠⋅113214=+=(2)在△BDC 中,由正弦定理得sin sin CD BD DBC C =∠= 解得7BD =,∵2ABD DBC π∠+∠=,sin 14DBC ∠=,∴cos ABD∠14=, 在△ABD中,AB =2222cos AD AB BD AB BD ABD=+-⋅∠2272749=+-⋅= 解得7AD = 11.【2020届福建省龙岩市高三上学期期末教学质量检查】如图,在平面四边形ABCD 中,2BC =,4CD =,且AB BD DA ==.(1)若6CDB π∠=,求tan ABC ∠的值; (2)求四边形ABCD 面积的最大值. 【思路引导】(1)根据条件由正弦定理,求出sin 1CBD ∠=,从而求出2CBD π∠=,即可求出结果;(2)设,0BCD θθπ∠=<<,根据余弦定理求出2BD ,将,BCD ABC ∆∆的面积和表示为θ的函数,由辅助角公式化简面积表达式,再结合正弦函数的最值,即可求解.解:(1)在BCD ∆中,由正弦定理得sin sin CD BC CBD BDC=∠∠, ∴4sin6sin 12CBD π⨯∠==,∵0CBD π<∠<,∴2CBD π∠=,∴()tan tan tan 32ABC ABD CBD ππ⎛⎫∠=∠+∠=+ ⎪⎝⎭5tan tan 66ππ==-=. (2)设BCD θ∠=,在BCD ∆中,由余弦定理得2222cos BD BC CD BC CD θ=+-⋅2224224cos θ=+-⨯⨯2016cos θ=-.∴21sin 2ABCD BC CD S BD θ=⋅+四边形4sin θθ=-+8sin 3πθ⎛⎫=-+ ⎪⎝⎭当56πθ=时,四边形ABCD 面积的最大值8+. 12.【2020届广东省东莞市高三期末调研测试】如图,在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,且2cos 2a C c b -=.(1)求角A 的大小;(2)若6ABC π∠=,AC 边上的中线BD 的长为7,求ABC V 的面积. 【思路引导】(1)利用正弦定理化边为角可得2sin cos sin 2sin A C C B -=,则()2sin cos sin 2sin A C C A C -=+,进而求得角A 即可;(2)由(1)可得6C π=,则AC AB =,设AD x =,则2AB x =,在ABD △中,根据余弦定理得2222cos BD AB AD AB AD A =+-⋅,可得x =进而求得ABC V 的面积即可解:(1)因为2cos 2a C c b -=,根据正弦定理,得2sin cos sin 2sin A C C B -=,即()2sin cos sin 2sin A C C A C -=+,所以2sin cos sin 2sin cos 2sin cos A C C A C C A -=+,整理得sin 2sin cos C C A -=,因为sin 0C ≠,所以1cos 2A =-, 又因为()0,A π∈,则23A π= (2)由(1)知23A π=,又因为6ABC π∠=,所以6C π=,所以AC AB =, 因为D 是AC 中点, 设AD x =,则2AB x =, 在ABD △中,根据余弦定理,得2222cos BD AB AD AB AD A =+-⋅, 即()22227222cos 3x x x x π=+-⋅⋅⋅即2749x =,解得x =故ABC V 的面积2112sin 4sin 223S AB AC A x π=⋅⋅=⋅⋅=。

专题07 等边三角形的判定与性质(解析版)

专题07 等边三角形的判定与性质(解析版)

1专题07 等边三角形的判定与性质知识对接考点一、等边三角形的判定与性质 1、性质: (1)三边相等.(2)三个内角相等,每一个内角都等于60°. (3)是轴对称图形,有三条对称轴. (4)面积:S=43a 2(a 为等边三角形的边长). 2、判定:(1)三边相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形.专项训练一、单选题1.(2021·陕西西安·交大附中分校九年级)如图,点A ,B ,C ,D 在⊙O 上,其中四边形OBCD 为平行四边形,连接AB ,AC ,则⊙A 的度数为( )A .20°B .25°C .30°D .35°【答案】A 【分析】连接OC ,先证明⊙OBC 是等边三角形,得到⊙BOC =60°,然后利用圆周角定理求解即可. 【详解】 解:连接OC .⊙四边形OBCD为平行四边形,⊙OD=BC,⊙OB=OC=OD,⊙OB=OC=BC,⊙⊙OBC是等边三角形,⊙⊙BOC=60°,⊙BOC=30°,⊙⊙BAC=12故选A.【点睛】本题主要考查了平行四边形的性质,等边三角形的性质与判定,圆周角定理,解题的关键在于能够熟练掌握相关知识进行求解.2.(2021·绍兴市柯桥区杨汛桥镇中学九年级二模)如图,正方形ABCD的顶点A、B在⊙O 上,顶点C、D在⊙O内,将正方形ABCD绕点B顺时针旋转α度,使点C落在⊙O上.若正方形ABCD的边长和⊙O的半径相等,则旋转角度α等于()A.36°B.30°C.25°D.22.5°【答案】B【分析】连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α,先证明⊙OAB和⊙OBG 都是等边三角形,得到⊙OBA=⊙OBG=60°,再由⊙ABO+⊙OBG=⊙ABC+⊙CBG=120°,求解即可.【详解】解:如图所示,连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α⊙正方形ABCD的边长和⊙O的半径相等,⊙OA=OB=OG=BG=AB,⊙⊙OAB和⊙OBG都是等边三角形,3⊙⊙OBA =⊙OBG =60°,⊙⊙ABO +⊙OBG =⊙ABC +⊙CBG =120°,⊙ABC =90°(正方形的性质), ⊙⊙CBG =30°, ⊙α=30°, 故选B .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,正方形的性质,解题的关键在于能够熟练掌握相关知识进行求解.3.(2021·西安市铁一中学)如图,在矩形ABCD 中,DAB ∠的平分线交BD 于点F ,CD 于点E ,15EAC ∠=︒,AB =EF 的长为( )A.2 BC.2 D1【答案】B 【分析】过点F 作FG AD ⊥于点G ,根据矩形性质证明OAD ∆是等边三角形,利用tan60=︒GF DG ,求出GF 的长,再根据勾股定理即可求出结果. 【详解】解:如图,过点F 作FG AD ⊥于点G ,在矩形ABCD 中,EA 是DAB ∠的平分线, ⊙45DAE EAB AED ∠=∠=∠=︒, ⊙AD DE =,AG GF =, ⊙15EAC ∠=︒,⊙60=︒∠DAC ,⊙OAD ∆是等边三角形, ⊙60ADB ∠=︒, ⊙AB = ⊙2AD =,4BD =, ⊙2AD DE ==, ⊙AE =⊙60GDF ∠=︒,2=-=-DG AD AG GF , ⊙tan60=︒GF DG ,⊙()2=-GF GF解得3=GF⊙==AF⊙(=-=EF AE AF . 故选B . 【点睛】本题主要考查了矩形的性质,角平分线的性质,勾股定理,等边三角形的性质与判定,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·海南三亚·九年级一模)如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点C 逆时针转60︒,得到MNC ,则BM 的长是( )A .1B .1C D .2+【答案】B 【分析】连接AM ,BM 交AC 于D ,如图,利用等腰直角三角形的性质得到AC ==2,再根据旋转的性质得CM =CA =2,⊙ACM =60°,则可判断⊙ACM 为等边三角形,直接证BM 垂直平分AC ,然后利用等腰直角三角形和等边三角形的性质计算出BD 和MD ,从而得到BM 的长. 【详解】5解:连接AM ,BM 交AC 于D ,如图,⊙⊙ABC =90°,AB =BC = ⊙AC ===2,⊙⊙ABC 绕点C 逆时针转60°,得到⊙MNC , ⊙CM =CA =2,⊙ACM =60°, ⊙⊙ACM 为等边三角形, ⊙MA =MC , 而BA =BC , ⊙BM 垂直平分AC , ⊙BD 12=AC =1,MD ==2 ⊙BM =1 故选:B . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形和等边三角形的性质. 5.(2021·河北九年级)如图,直线AB 、CD 交于点O ,若AB 、CD 是等边MNP △的两条对称轴,且点P 在直线CD 上(不与点O 重合),则点M 、N 中必有一个在( )A .AOD ∠的内部B .BOD ∠的内部PC .BOC ∠的内部D .直线AB 上【答案】D 【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可. 【详解】 解:如图,⊙⊙PMN是等边三角形,⊙⊙PMN的对称轴经过三角形的顶点,⊙直线CD,AB是⊙PMN的对称轴,又⊙直线CD经过点P,⊙直线AB一定经过点M或N,故选:D.【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.(2021·四川绵阳·)如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是()A.2B.3C D【答案】D【分析】如图所示,等边三角形ABC,BC边上的高AD即为所求.【详解】解:如图所示等边三角形ABC,AD是BC边上的高,由题意可知AD的长即为所求,AB=2,⊙B=60°,⊙sinAD AB B==故选D.7【点睛】本题主要考查了等边三角形的性质,三视图,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·四川雅安·)如图,四边形ABCD 为⊙O 的内接四边形,若四边形OBCD 为菱形,A ∠为( ).A .45°B .60°C .72°D .36°【答案】B 【分析】根据菱形性质,得OB OD BC CD ===;连接OC ,根据圆的对称性,得OB OC OD ==;根据等边三角形的性质,得BOD ∠,再根据圆周角和圆心角的性质计算,即可得到答案. 【详解】⊙四边形OBCD 为菱形 ⊙OB OD BC CD === 连接OC⊙四边形ABCD 为⊙O 的内接四边形 ⊙OB OC OD ==⊙OBC ,OCD 为等边三角形 ⊙60BOC COD ∠=∠=︒⊙120BOD BOC COD ∠=∠+∠=︒⊙1602A BOD ︒∠=∠=故选:B . 【点睛】本题考查了圆内接多边形、等边三角形、菱形的知识;解题的关键是熟练掌握圆的对称性、等边三角形、菱形、圆周角、圆心角的知识;从而完成求解.8.(2021·山东枣庄·中考真题)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,=AC 6BD =,点P 是AC 上一动点,点E 是AB 的中点,则PD PE +的最小值为( )A .B .C .3D .【答案】A 【分析】连接DE ,先根据两点之间线段最短可得当点,,D P E 共线时,PD PE +取得最小值DE ,再根据菱形的性质、勾股定理可得6AB =,然后根据等边三角形的判定与性质求出DE 的长即可得. 【详解】解:如图,连接DE ,由两点之间线段最短得:当点,,D P E 共线时,PD PE +取最小值,最小值为DE ,四边形ABCD 是菱形,=AC 6BD =, 11,3,22AB AD OB BD OA AC AC BD ∴=====⊥,6AB ∴=, 6AB AD BD ∴===,ABD ∴是等边三角形,9点E 是AB 的中点, 13,2AE AB DE AB ∴==⊥,DE ∴即PD PE +的最小值为 故选:A . 【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.9.(2021·天津)如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A .ABC ADC ∠=∠B .CB CD =C .DE DC BC +=D .AB CD ∥【答案】D 【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒, ⊙点A ,D ,E 在同一条直线上, ⊙18060ADC EDC ∠=︒-∠=︒, ⊙60ABC ∠<︒,⊙ABC ADC ∠≠∠,故A 选项错误,不符合题意; 由旋转可知CB CE =,⊙120EDC ∠=︒为钝角, ⊙CE CD >,⊙CB CD >,故B 选项错误,不符合题意; ⊙DE DC CE +>,⊙DE DC CB +>,故C 选项错误,不符合题意; 由旋转可知DC AC =, ⊙60ADC ∠=︒, ⊙ADC 为等边三角形, ⊙60ACD ∠=︒. ⊙180ACD BAC ∠+∠=︒,⊙//AB CD ,故D 选项正确,符合题意; 故选D . 【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.10.(2021·安徽)如图,在ABC 中,AB =BC =3,⊙ABC =30°,点P 为ABC 内一点,连接P A 、PB 、PC ,求P A +PB +PC 的最小值( )A .B .C .D .【答案】A 【分析】将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .易证P A +PB +PC =PC +PF +EF ,因为PC +PF +EF ≥EC ,推出当P ,F 在直线EC 上时,P A +PB +PC 的值最小,求出EC 的长即可解决问题. 【详解】解:将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .11由旋转的性质可知:⊙PBF 是等边三角形, ⊙PB =PF , ⊙P A =EF ,⊙P A +PB +PC =PC +PF +EF , ⊙PC +PF +EF ≥EC ,⊙当P ,F 在直线EC 上时,P A +PB +PC 的值最小, 由旋转可知:BC =BE =BA =3,⊙CBE =⊙ABC +⊙ABE =90°, ⊙EB ⊙BC , ⊙ECBC=⊙P A +PB +PC的最小值为 故选A . 【点睛】本题旋转变换,等边三角形的判定和性质,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题. 二、填空题11.(2021·杭州市十三中教育集团(总校))如图,点D 是等边⊙ABC 边BC 上一点,将等边⊙ABC 折叠,使点A 与点D 重合,折痕为EF (点E 在边AB 上). (1)当点D 为BC 的中点时,AE :EB =________; (2)当点D 为BC 的三等分点时,AE :EB =________.【答案】1:1 7:5或7:8 【分析】(1)连接AD ,然后根据折叠的性质和等边三角形的性质求解即可;(2)分当DC :BD =1:2时,当DC :BD =2:1时两种情况,利用相似三角形进行求解即可. 【详解】解:(1)如图,连接AD ,⊙D 为BC 的中点,⊙ABC 为等边三角形,折叠, ⊙AD ⊙BC ,⊙DAB =⊙DAC =1=2BAC ∠30°,⊙B =60°,⊙⊙EDB =90°﹣30°=60°=⊙B , ⊙⊙BED 为等边三角形,⊙AE =ED =BE ,即AE :EB =1:1, 故答案为:1:1;(2)当DC :BD =1:2时, 设CD =k ,BD =2k , ⊙AB =AC =3k , ⊙⊙ABC 为等边三角形, ⊙⊙EDF =⊙A =60°,⊙⊙EDB +⊙FDC =⊙BED +⊙EDB =120°, ⊙⊙BED =⊙FDC , ⊙⊙B =⊙C =60°, ⊙⊙BED ⊙⊙CDF , ⊙=BE BED DC CDF 的周长的周长, ⊙54BE kk k, ⊙BE =54k ,⊙AE =74k , ⊙AE :BE =7:5,13当DC :BD =2:1时, 设CD =2k ,BD =k , 同上一种情况得:=BE BED DC CDF 的周长的周长, ⊙425BE kk k⊙BE =85k , ⊙AE =75k, ⊙AE :BE =7:8, 故答案为:7:5或7:8.【点睛】本题主要考查了等边三角形的性质与判定,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.12.(2021·陕西西安·交大附中分校)如图,在边长为6cm 的正六边形中,点P 在边AB 上,连接PD 、PE .则PDE 的面积为______cm 2.【答案】【分析】首先求得正六边形的边心距,从而求得⊙PDE 边DE 上的高,利用三角形的面积公式求得答案即可.【详解】解:如图所示,连接OD 、OE ,此正六边形中DE=6,则⊙DOE=60°;⊙OD=OE,⊙⊙ODE是等边三角形,⊙OG⊙DE,⊙⊙DOG=30°,⊙OG=OD•cos30°=cm),⊙⊙PDE边DE上的高为2OG=cm),cm2),⊙S⊙PDE=12故答案为【点睛】此题考查了正六边形的性质,三角形面积的求法,解题的关键是根据题意作出辅助线.13.(2021·江苏九年级二模)若线段DE是等边⊙ABC的中位线,且DE=2,则⊙ABC的周长为____.【答案】12.【分析】根据三角形中位线定理求出BC,根据等边三角形的概念计算即可.【详解】解:如图,⊙DE是⊙ABC的中位线,⊙BC=2DE=4,⊙⊙ABC为等边三角形,15⊙AB =AC =BC =4, ⊙⊙ABC 的周长为12, 故答案为:12. 【点睛】本题考查的是三角形中位线定理、等边三角形的概念,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(2021·山东滨州·)如图,在ABC 中,90ACB ∠=︒,30BAC ∠=︒,2AB =.若点P 是ABC 内一点,则PA PB PC ++的最小值为____________.【分析】根据题意,首先以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,作出图形,然后根据旋转的性质和全等三角形的性质、等边三角形的性质,可以得到P A +PB +PC =PP ′+P ′B ′+PC ,再根据两点之间线段最短,可以得到P A +PB +PC 的最小值就是CB ′的值,然后根据勾股定理可以求得CB ′的值,从而可以解答本题. 【详解】解:以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,连接BB ′、PP ′,CB ',如图所示,则⊙P AP ′=60°,AP =AP ′,PB =P ′B ′, ⊙⊙APP ′是等边三角形, ⊙AP =PP ′,⊙P A +PB +PC =PP ′+P ′B ′+PC ,⊙PP ′+P ′B ′+PC ≥CB ′,⊙PP ′+P ′B ′+PC 的最小值就是CB ′的值, 即P A +PB +PC 的最小值就是CB ′的值, ⊙⊙BAC =30°,⊙BAB ′=60°,AB =AB '=2,⊙⊙CAB ′=90°,AB ′=2,AC =AB •cos ⊙BAC =2×cos 30°=2= ⊙CB=【点睛】本题考查旋转的性质、等边三角形的性质、最短路径问题、勾股定理,解答本题的关键是作出合适的辅助线,得出P A +PB +PC 的最小值就是CB ′的值,其中用到的数学思想是数形结合的思想.15.(2021·四川达州·中考真题)如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为___________.【答案】 【分析】首先证明120APB ∠=︒,推出点P 的运动轨迹是以O 为圆心,OA 为半径的弧.连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值. 【详解】如图所示,⊙边长为6的等边ABC ∆,17⊙6AC AB ==,60ACB CAB ∠=∠=︒ 又⊙AE CF = ⊙()ACF BAE SAS ≅ ⊙CAP PBA ∠=∠⊙60EPA PBA PAB CAP PAB CAB ∠=∠+∠=∠+∠=∠=︒ ⊙120APB ∠=︒⊙点P 的运动轨迹是以O 为圆心,OA 为半径的弧 此时120AOB ∠=︒连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值 ⊙CA CB =,CO CO =,OA OB = ⊙()ACO BCO SSS ≅⊙30ACO BCO ∠=∠=︒,60AOC BOC ∠=∠=︒ ⊙90CAO CBO ∠=∠=︒ 又⊙6AC =⊙'tan 306OP OA AB ==⋅︒==cos30AB OC =⋅==︒⊙''CP OC OP =-==即min CP =故答案为:【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、圆、特殊角的三角函数等相关知识.关键是学会添加辅助线,该题综合性较强. 三、解答题16.(2021·广东广州·中考真题)如图,在四边形ABCD 中,90ABC ∠=︒,点E 是AC 的中点,且AC AD =(1)尺规作图:作CAD ∠的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若45BAD ∠=︒,且2CAD BAC ∠=∠,证明:BEF 为等边三角形.【答案】(1)图见解析;(2)证明见解析. 【分析】(1)根据基本作图—角平分线作法,作出CAD ∠的平分线AF 即可解答;(2)根据直角三角形斜边中线性质得到12BE AC =并求出30BEC BAC ABE ∠=∠+∠=︒,再根据等腰三角形三线合一性质得出CF DF =,从而得到EF 为中位线,进而可证BE EF =,60BEF ∠=︒,从而由有一个角是60°的等腰三角形是等边三角形得出结论.【详解】解:(1)如图,AF 平分CAD ∠,(2)⊙45BAD ∠=︒,且2CAD BAC ∠=∠, ⊙30CAD ∠=︒,15BAC ∠=︒, ⊙AE EC =,90ABC ∠=︒, ⊙12BE AE AC ==, ⊙15ABE BAC ∠=∠=︒, ⊙30BEC BAC ABE ∠=∠+∠=︒, 又⊙AF 平分CAD ∠,AC AD =, ⊙CF DF =, 又⊙AE EC =, ⊙1122EF AD AC ==,//EF AD ,19⊙30CEF CAD ∠=∠=︒, ⊙60BEF BEC CEF ∠=∠+∠=︒ 又⊙12BE EF AC ==⊙BEF 为等边三角形. 【点睛】本题主要考查了基本作图和等腰三角形性质以及与三角形中点有关的两个定理,解题关键是掌握等腰三角形三线合一定理、直角三角形斜边中线等于斜边一半以及三角形中位线定理. 17.(2021·南山实验教育集团南海中学九年级三模)如图,BC 是O 的直径,点A 是O 上一点,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=.(1)求证:直线AD 是O 的切线; (2)若3CD =,求O 的半径;(3)若AE BC ⊥于点F ,点P 为ABE 上一点,连接AP ,CP ,EP ,请找出AP ,CP ,EP 之间的关系,并证明.【答案】(1)见解析;(2)3;(3)EP AP +=,理由见解析 【分析】(1)先求出⊙BAD =120°,再求出⊙OAB ,进而得出⊙OAD =90°,即可得出结论; (2)先判断出⊙AOC 是等边三角形,得出AC =OC ,再判断出AC =CD ,即可得出结论; (3)先判断出⊙CAP =⊙CEM ,进而得出⊙ACP ⊙⊙ECM (SAS ),进而得出CM =CP ,⊙APC =⊙M =30°,再判断出MN =,即可得出结论. 【详解】(1)证明:如图,连接AC OA ,,30AEC ∠=︒, 30ABC AEC ∴∠∠︒==,AB AD =,30D ABC ∴∠∠︒==,120BAD ∴∠=︒,OA OB =,,30OAB ABC ∴∠=∠=︒,90OAD BAD OAB ∴∠∠∠︒=-=,点A 在O 上, ⊙直线AD 是的切线; (2)解:如图1,连接AC ,由(1)知,30D ∠=︒,90OAD ∠=︒,9060AOC D ∴∠︒∠︒=-=,∴AOC △是等边三角形,OC AC ∴=,60OAC ∠=︒,30CAD OAD OAC D ∴∠∠-∠︒∠===, 3AC CD ∴==,3OC ∴=,即O 的半径为3;(3)EP AP +=, 理由:如图, 30AEC ︒∠=, 30APC AEC ︒∴∠=∠=,连接AC ,延长PE 至M ,使EM AP =,连接CM ,AE BC ⊥,BC 为O 的直径,AC EC ∴=,四边形APEC 是O 的内接四边形,CAP CEM ∴∠=∠,∴()ACP ECM SAS ≅,21CM CP ∴=,30APC M ︒∠=∠=,过点C 作CN PM ⊥于N ,2PM MN ∴=,在Rt CNM △中,MNcos CMM =,MN cos30CM ∴︒=MN ∴=,2PM MN ∴===,PM PE EM PE AP =+=+,PE AP ∴+=,即EP AP +=. 【点睛】此题是圆的综合题,主要考查了切线的判定和性质,等边三角形的判定和勾股定理,构造出直角三角形是解本题的关键.18.(2021·广州市八一实验学校九年级)如图,在⊙P AB 中,点C 、D 在AB 上,PC =PD =CD ,⊙A =⊙BPD ,求证:⊙APC ⊙⊙BPD .【答案】见解析 【分析】根据PC =PD =CD ,可得出PCD 为等边三角形,即可得出PCD PDC ∠=∠,进而得出ACP PDB ∠=∠,再根据相似三角形的判定推出即可.【详解】证明:⊙PC =PD =CD , ⊙PCD 为等边三角形, ⊙⊙PCD =⊙PDC 60=︒, ⊙120ACP PDC ∠=∠=︒, ⊙⊙A =⊙BPD , ⊙⊙APC ⊙⊙PBD . 【点睛】本题考查了等边三角形的判定与性质,相似三角形的判定等知识点,注意:如果两个三角形的两个角分别对应相等,那么这两个三角形相似.19.(2021·黄石市有色中学九年级)如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)若2DG =,求AC 的长; (2)求证:AB AE AF =+. 【答案】(1)4;(2)见解析 【分析】(1)连接BD 由等腰三角形的性质和已知条件得出⊙BAD =⊙DAC =12×120°=60°,再由AD =AB ,可得⊙ABD 是等边三角形,由等边三角形的性质得出DG =AG =12AD =2,,即可求解; (2)由⊙ABD 是等边三角形,得出BD =AD ,⊙ABD =⊙ADB =60°,证出⊙BDE =⊙ADF ,由ASA 证明⊙BDE ⊙⊙ADF ,得出AF =BE ,即可求解. 【详解】解:(1)证明:⊙AB =AC ,AD BC ⊥, ⊙⊙BAD =⊙DAC =12⊙BAC , ⊙⊙BAC =120°,⊙⊙BAD =⊙DAC =12×120°=60°,⊙AD =AB ,⊙⊙ABD 是等边三角形, ⊙AD =AB =BD , ⊙AD BC ⊥, ⊙DG =AG =12AD =2, ⊙AD =AB =AC =4, 即AC =4;(2)⊙⊙ABD 是等边三角形, ⊙⊙ABD =⊙ADB =60°,BD =AD , ⊙AB AC =,120BAC ∠=︒,AD BC ⊥,⊙⊙BAD=⊙DAC=12×120°=60°,⊙⊙ABD=⊙DAC,⊙⊙EDF=60°,⊙⊙ADB-⊙ADE=⊙EDF-⊙ADE,即⊙BDE=⊙ADF,⊙⊙BDE⊙⊙ADF(ASA),⊙BE=AF,⊙AB=AE+BE,⊙AB=AE+AF.【点睛】本题主要考查了三角形综合题,考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.20.(2021·合肥市五十中学东校九年级三模)如图1,已知等腰直角ΔABC,⊙ACB=90°,在直角边BC上取一点D,使⊙DAC=15°,以AD为一边作等边ΔADE,且AB与DE相交.(1)求证:AB垂直平分DE;(2)连接BE,判断EB与AC的位置关系,并说明理由;(3)如图2,若F为线段AE上一点,且FC=AC,求EFAF的值.【答案】(1)见解析;(2)互相平行;见解析;(3)1【分析】(1)根据⊙DAC=15°及等腰直角三角形的性质,可得⊙DAB=30°,根据等边三角形的性质可得⊙EAB=30°,由等腰三角形的性质可得结论;(2)由(1)的结论易得BD=BE,⊙EBA=⊙CBA=45°,即BE⊙BC,从而可得BE与AC的位置关系;(3)延长CF,与BE的延长线交于点G.易得CF=BF;其次由(2)的结论易得⊙G=30°,从而CG=2BC=2FC,即CF=GF,然后可证明⊙CAF⊙⊙GEF,从而得AF=EF,即可得结果.【详解】(1)⊙⊙ABC是等腰直角三角形,⊙ACB=90°⊙AC=BC,⊙CAB=⊙CBA=45°⊙⊙DAC=15°⊙⊙DAB=⊙CAB-⊙DAC=30°23⊙⊙ADE 是等边三角形 ⊙⊙DAE =60°⊙⊙EAB =⊙DAE -⊙DAB =30° ⊙⊙DAB =⊙EAB ⊙⊙ADE 是等边三角形 ⊙AB 垂直平分DE (2)互相平行 理由如下: ⊙AB 垂直平分DE ⊙BD =BE⊙⊙EBA =⊙CBA =45° ⊙⊙EBC =⊙EBA +⊙CBA =90° 即⊙EBC +⊙ACB =180° ⊙BE ⊙AC(3)延长CF ,与BE 的延长线交于点G ,如图所示⊙⊙F AC =⊙DAE +⊙DAC =75°,FC =AC ⊙⊙CF A =⊙F AC =75° ⊙⊙FCA =180°-2×75°=30° ⊙AC =BC ,AC =FC ⊙BC =FC由(2)知:BE ⊙AC ⊙⊙G =⊙FCA =30° ⊙⊙EBC =90° ⊙CG =2BC =2FC ⊙CF =GF在⊙CAF 和⊙GEF 中 FCA G CF GFCFA GFE ∠=∠⎧⎪=⎨⎪∠=∠⎩⊙⊙CAF ⊙⊙GEF (ASA ) ⊙AF =EF ⊙1EFAF=25【点睛】本题考查了等腰直角三角形的性质、等边三角形的性质、直角三角形的性质、全等三角形的判定与性质等知识,第(3)问的关键是作辅助线,构造三角形全等.21.(2021·广西柳州市·)如图,已知ABC 中,AC BC =,以BC 为直径的O 交AB 于E ,过点E 作EG AC ⊥于G ,交BC 的延长线于点F .(1)求证:FE 是O 的切线;(2)若30F ∠=︒,求证:24FG FC FB =⋅; (3)当6BC =,4EF =时,求AG 的长. 【答案】(1)见解析;(2)见解析;(3)245【分析】(1)连接EC ,OE ,由BC 为O 的直径,可得90BEC ∠=︒,由AC BC =,可得E 为AB 中点,由O 为BC 中点,利用中位线性质可得OE∥AC ,由EG AC ⊥,可得OE EG ⊥即可; (2)由OE OC =,可得OEC OCE ∠=∠,由EF 为圆的切线,可得90FEC OEC ∠+∠=︒,由90BEC ∠=︒,可得90B BCE ∠+∠=︒,可证FEC FBE △∽△,可得2FE FC FB =⋅,当30F ∠=︒时,可求60FOE ∠=︒,可证OEC △为等边三角形,可得30FEC F ∠=︒=∠,可证2FE FG =即可;(3)由(2)得2FE FC FB =⋅,可得()246FC FC =⋅+,解得2FC =或FC =-8舍去,可证FCG FOE △∽△,可得253CG=,可求65CG =即可. 【详解】解:(1)证明:连接EC ,OE , ⊙BC 为O 的直径, ⊙90BEC ∠=︒, ⊙CE AB ⊥, 又⊙AC BC =, ⊙E 为AB 中点, 又⊙O 为BC 中点, ⊙OE∥AC ,又⊙EG AC ⊥, ⊙OE EG ⊥, 又OE 为O 的半径, ⊙FE 是O 的切线.(2)⊙OE OC =, ⊙OEC OCE ∠=∠, ⊙EF 为圆的切线, ⊙90FEC OEC ∠+∠=︒, ⊙90BEC ∠=︒ ⊙90B BCE ∠+∠=︒, ⊙FEC B ∠=∠, 又⊙F F ∠=∠, ⊙FEC FBE △∽△, ⊙FE FCFB FE=, ⊙2FE FC FB =⋅,当30F ∠=︒时,60FOE ∠=︒, 又OE OC =,⊙OEC △为等边三角形, ⊙60OEC ∠=︒, ⊙30FEC F ∠=︒=∠, ⊙CE CF =, 又CG FE ⊥, ⊙2FE FG =, ⊙()22FG FC FB =⋅, 即24FG FC FB =⋅.(3)由(2)得2FE FC FB =⋅, 又6BC =,4FE =,FB=BC +FC =6+FC ,27⊙()246FC FC =⋅+,因式分解得(FC +8)(FC -2)=0, 解得2FC =或FC =-8舍去, ⊙6BC =, ⊙132OE OC BC ===,6AC BC ==, ⊙235FO FC CO =+=+=, ⊙CG∥OE ,⊙⊙GCF =⊙EOF ,⊙FGC =⊙FEO , ⊙FCG FOE △∽△, ⊙FC CG FO OE =,即253CG=, ⊙65CG =, ⊙624655AG AC CG =-=-=. 【点睛】本题考查圆的切线判定,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质,掌握圆的切线判断,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质是解题关键. 22.(2021·江苏九年级)如图,⊙ABC 为等边三角形,AB =6,将边AB 绕点A 顺时针旋转θ(0°<θ<120°)得到线段AD ,连接CD ,CD 与AB 交于点G ,⊙BAD 的平分线交CD 于点E ,F 为CD 上一点,且DF =2CF . (1)当⊙EAB =30°时,求⊙AEC 的度数;(2)当线段BF 的长取最小值时,求线段AG 的长; (3)请直接写出⊙ADE 的周长的最大值.【答案】(1)60°;(2)AG =12;(3)6+【分析】(1)用角平分线的性质和旋转性质即可;(2)作FM ⊙AD ,连接BM ,FM =2,点F 的运动轨迹是以M 为圆心、2为半径的圆,当B、F 、M 共线时,BF 取最小值; 由⊙ADG ⊙⊙BFG 可求AG ;(3)连接BE ,设BAE α∠=,AE 平分BAD ∠,可得,DAE ED EB α==∠,得到A E B C 、、、四点共圆,作ABC 的外接圆O ,CAB △是等边三角形,可将CAB △绕点C 顺时针旋转60︒得到CAN △,得E 、A 、N 三点共线,求出AE DE +的最大值,即可求出ADE 的周长. 【详解】(1)⊙AD 由AB 旋转得到AD =AB ⊙AE 平分BAD ∠ ⊙30DAE EAB ∠=∠=︒ ⊙120DAC ∠=︒ ⊙30D ∠=︒⊙=AEC D DAE ∠+∠∠ ⊙⊙AEC =60°; (2)如图,⊙CA =AB =6 ⊙2163CM CD ==,⊙13CM CA =,13FM AD =, 又DF 2CF = ⊙13CF CD = ⊙13CF CM CD CA == 又MCF ACD =∠∠ ⊙MCF ACD ∽∠∠ ⊙12,3MF AD CFM D ====∠∠ ⊙FM =2,⊙点F 的运动轨迹是以M 为圆心、2为半径的圆, ⊙当B 、F 、M 共线时,BF 取最小值 即min 2BM BM MF BM =-=- ⊙2,6,60CM BC ACB ===︒∠⊙BM =29⊙min 22BM BM MF BM -=-== ⊙CFM D =∠∠ ⊙FH ⊙AD又BF 取最小值点F 在BM 上, ⊙BFAD⊙⊙ADG ⊙⊙BFG ⊙AD AGBF BG=,6AGAG=-,⊙12AG =;⊙当BF取最小值时,12AG = (3)如图,连接BE ,设BAE α∠= ⊙AE 平分BAD ∠ ⊙,DAE ED EB α==∠ ⊙602DAC α=︒+∠ 又60ABC ∠=︒ ⊙A E B C 、、、四点共圆作ABC 的外接圆O ,则点F 在O 上, 180CBE CAE +=︒∠∠又CAB △是等边三角形,⊙可将CBF 绕点C 顺时针旋转60︒得到CAN △ 由旋转的性质得:,,60CN CE AN EB ECN ===︒∠,CAN CBE =∠∠ ⊙180CAN CAE +=︒∠∠ ⊙E 、A 、N 三点共线 ⊙ECN 为等边三角形,⊙,AE ED AE EB AE AN EN CE +=+=+== ⊙6AB =⊙ABC 的外接圆O 的半径R ==R⊙CE 的最大值为2R =即AE DE +的最大值为⊙ADE 的周长是AD AE DE ++⊙ADE 的周长是6+ 【点睛】本题考查了三角形相似的性质和判定,等边三角形的性质等知识,解题的关键是学会构建辅助圆来确定线段的最值问题.23.(2021·甘肃庆阳·九年级二模)如图,等边三角形ABC 的外部有一点P ,且30BPA ∠=︒,将AP 绕点B 逆时针旋转60°得到CQ ,连接BQ .(1)求证:ABP CBQ ≌△△.(2)若4AP =,3BP =,求P ,C 两点之间的距离. 【答案】(1)见解析(2)5 【分析】(1)由旋转的性质可知,对应边相等,旋转角相等,用“边角边”证明三角形全等即可 (2)连接,PQ PC ,根据已知条件构造直角三角形,用勾股定理求得P C ,的距离 【详解】(1)由旋转的性质可知,,,60AB CB PB QB PBQ ABC ==∠=∠=︒PBA PBQ QBA ABC QBA QBC ∴∠=∠+∠=∠+∠=∠ABP CBQ ∴≌(SAS )(2)连接,PQ PC,60PB BQ PBQ=∠=︒PBQ∴为等边三角形60PQB∴∠=︒,3PQ BQ==ABP CBQ≌△△∴30BPA BQC∠=∠=︒,4QC AP==603090PQB PQB BQC∴∠=∠+∠=︒+︒=︒222PC PQ QC∴=+5PC∴==【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质与判定,找到旋转角是解题的关键.31。

中考数学专题测试-四边形的证明与计算(答案解析)

中考数学专题测试-四边形的证明与计算(答案解析)

【考点分析】一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

二、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

中考专练之四边形的计算与证明——四边形与三角函数(解析版)

中考专练之四边形的计算与证明——四边形与三角函数(解析版)

中考专练之四边形的计算与证明——四边形与三角函数三角形及四边形的计算与证明是每年必考内容,经常与尺规作图、圆、函数等结合考查,偶尔单独考查.主要考查内容为:(1)求角度、线段长度、图形周长及面积、锐角三角函数值;(2)证明线段垂直、相等,三角形全等或相似,图形为特殊三角形或四边形;(3)判断图形形状,线段或角之间的数量关系.1. 如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点.(1)求证:∠CED=∠DAG;(2)若BE=1,AG=4,求sin AEB∠的值.【答案】(1)见解析(2)15 4【解析】:(1)证明:∵矩形ABCD,∴AD∥BC.∴∠CED =∠ADE.又∵点G是DF的中点,∴AG=DG.∴∠DAG =∠ADE.∴∠CED =∠DAG.(2) ∵∠AED=2∠CED,∠AGE=2∠DAG,∴∠AED=∠AGE.∴AE=AG.∵AG=4,∴AE=4.在Rt△AEB中,由勾股定理可求AB=15.∴15 sin4ABAEBAE∠==.2. 如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan ∠BDC=63.(1) 求BD 的长; (2) 求AD 的长. 【答案】 (1)10 (2) 2【解析】 (1)在Rt △BCD 中,∠BCD=90°,BC=2,tan ∠BDC= 63, ∴263CD . ∴CD= 6.∴由勾股定理得BD=BC 2+CD 2=10 .3. 已知:如图,四边形ABCD 中,对角线AC 、BD 相交于点E ,∠ABC =∠ACD =90°,AB =BC =26,tan ∠CDE =32. 求对角线BD 的长和△ABD 的面积.【答案】 (1)313(2)45 【解析】过点B 作BF AC ⊥于F∵90ABC ACD ∠=∠=︒, 62AB BC ==, ∴ 6BF AF CF ===90BFC ACD ∠=∠=︒∴BF ∥CD∴ FBE CDE ∠=∠ ∴ 2tan tan 3FBE CDE ∠=∠= 即23EF BF = ∴ 4EF = ∴2,3EC CD == ∴ 222264213BE BF EF =+=+= 22222313DE EC CD =+=+=∴313BD BE DE =+= (2) 114522ABD ABE ADE S S S AE BF AE CD ∆∆∆=+=⋅+⋅=4. 已知:如图,正方形ABCD 中,点E 为AD 边的中点,联结CE. 求cos ∠ACE 和tan ∠ACE 的值.【答案】3101013【解析】过点E 作AC EF ⊥于点F ,∵四边形ABCD 是正方形, ∴AC D BAD ,90︒=∠=∠平分BAD ∠, DC AD =.∴︒=∠45CAD ,AD AC 2=. ∵E 是AD 中点, ∴AD DE AE 21==.设x DE AE ==,则x DC AD 2==,x AC 22=,x CE 5=.在Rt △AEF 中,x CAD AE EF 22sin =∠⋅=,x EF AF 22==.∴x x x AF AC CF 2232222=-=-=.∴101035223cos ===∠xxCECF ACE , 3122322tan ===∠xx CFEF ACE .5. 如图,菱形ABCD 的对角线交于O 点,DE ∥AC ,CE ∥BD ,(1)求证:四边形OCED 是矩形;(2)若AD =5,BD =8,计算sin DCE ∠的值.【答案】 (1)见解析 (2)35【解析】(1) ∵DE ∥AC ,CE ∥BD ∴四边形OCED 是平行四边形 ∵四边形ABCD 是菱形∴ AC BD ⊥A BCDEF90DOC ∠=∴四边形OCED 是矩形 (2)∵四边形ABCD 是菱形,BD =8 ∴12OD BD ==4,OC=OA ,AD=CD ∵AD =5,由勾股定理得OC =3 ∵四边形OCED 是矩形 ∴DE=OC=3,在Rt △DEC 中,sin DCE ∠=35DE DC = 6. 已知:BD 是四边形ABCD 的对角线,AB ⊥BC ,∠C =60°,AB =1,BC =33+,CD =23.(1)求tan ∠ABD 的值; (2)求AD 的长.【答案】 (1)1(213 【解析】(1) 作DE BC ⊥于点E . ∵在Rt △CDE 中,∠C =60°,CD =3, ∴3, 3.CE DE == ∵BC =33+,∴333 3.BE BC CE =-== ∴ 3.DE BE ==∴在Rt △BDE 中,∠EDB = ∠EBD =45º. ∵AB ⊥BC ,∠ABC =90º, ∴∠ABD =∠ABC -∠EBD =45º. ∴ tan ∠ABD =1. (2) 作AF BD ⊥于点F .在Rt △ABF 中,∠ABF =45º, AB =1,2.2BF AF ∴==∵在Rt △BDE 中,3DE BE ==, ∴3.2BD =∴3.252222DF BD BF =-=-= ∴在Rt △AFD 中,22.13AD DF AF =+=7. 如图,在△ABC 中,D 为AB 边上一点、F 为AC 的中点,过点C 作CE //AB 交DF 的延长线于点E ,连结AE .(1)求证:四边形ADCE 为平行四边形.(2)若EF =22,︒=∠︒=∠4530AED FCD ,,求DC 的长. 【答案】 (1)见解析 (2)2+32【解析】(1)证明:∵CE //AB ,∴∠DAF =∠ECF . ∵F 为AC 的中点,∴AF =CF . 在△DAF 和△ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠,,,CFE AFD CF AF ECF DAF ∴ △DAF ≌△ECF . ∴ AD =CE . ∵CE //AB ,H ABCEFD∴ 四边形ADCE 为平行四边形. (2)作FH ⊥DC 于点H . ∵ 四边形ADCE 为平行四边形.∴ AE //DC ,DF = EF =22, ∴∠FDC =∠AED =45°. 在Rt △DFH 中,∠DHF=90°,DF =22,∠FDC=45°, ∴ sin ∠FDC=22=DFFH ,得FH =2,tan ∠FDC=1=HDHF ,得DH =2.在Rt △CFH 中,∠FHC=90°,FH =2,∠FCD=30°,∴ FC =4. 由勾股定理,得HC =32. ∴ DC=DH+HC=2+32.8. 如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值. 【答案】 (1)见解析 (27210【解析】(1)证明:四边形ABCD 是平行四边形,∴AD //BC .∴∠DAF=∠F .∠F =45°, ∴∠DAE=45°. AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=.FBED90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°. AB =14,DE =8,∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得 2210BE BC CE =+=.在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= .在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=7210BH BE =. 9.如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE .(1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值. 【答案】 (1)见解析 (2)45【解析】(1)证明:∵DE BC ∥,CE AB ∥,H FBAED∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得5AB x =. ∵1122AB CF AC BC ⋅=⋅, ∴255AC BC CF x AB ⋅==. ∵1522CD AB x ==, ∴4sin 5CF CDB CD ∠==. 10. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、DF .(1)求证:四边形BFDE 是平行四边形;(2)若AB =4,CF =1,∠ABC =60°,求sin DEO ∠的值. 【答案】 (1)见解析 (2)217(2)菱形ABCD ,60ABC ∠=∴BD AC ⊥4AB BC AD DC ==== 30ADO CDO ∠=∠=ADC 为等边三角形∴122AO AD ==, ∴23OD =作OM AD ⊥于M ∴122AO AD ==3OM =∴221AM OA OM =-= ∴2EM = ∴7OE =在Rt EOM ∆中,217sin DEO ∠=11. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E .E ODC(1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值. 、【答案】 (1)见解析 (2)49【解析】(1) 证明:∵ 四边形ABCD 为矩形, ∴ AC =BD ,AB ∥CD.∵ BE ∥AC ,∴ 四边形ABEC 为平行四边形.∴ BE =AC =BD.∴BD=BE(2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形,∴ 90BCD ∠=︒.∵ 10BE BD ==,∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =.在Rt △BCE 中,由勾股定理可得8BC =.∵ OB=OD ,∴ OF 为△BCD 的中位线.∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. 12.如图,在矩形ABCD 中,AE 平分∠BAD ,交BC 于E ,过E 做EF ⊥AD 于F ,连接BF 交AE 于P ,连接O APD.(1)求证:四边形ABEF是正方形;(2)如果AB=4,AD=7,求tan∠ADP的值.【答案】(1)见解析(2)2 5【解析】(1)证明:∵四边形ABCD是矩形,∴∠FAB =∠ABE =90°,AF∥BE.又∵EF⊥AD,∴∠FAB =∠ABE =∠AFE=90°.∴四边形ABEF是矩形又∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB.∴AB=BE.∴四边形ABEF是正方形.(2)解:如图,过点P作PH⊥AD于H.∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°.∴AB∥PH.又∵AB=4,∴AH=PH=2.又∵AD=7,∴DH=AD-AH=7-2=5.在Rt△PHD中,∠PHD=90°.∴tan∠ADP=25PHHD.HPFE CDAB。

北师大中考数学复习专题_三角形四边形的有关计算证明

北师大中考数学复习专题_三角形四边形的有关计算证明

三角形四边形的有关计算证明一、考点,热点分析:(1) 了解多边形的内角和与外角和公式,掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系•了解四边形的不稳定性;(2) 掌握平行四边形对边相等、对角相等、对角线互相平分的性质,四边形是平行四边形的条件(一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形)• 了解中心对称图形及其基本性质;(3) 掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件;⑷了解等腰梯形同一底上的两底角相等,两条对角线相等的性质,以及同一底上的两底角相等的梯形是等腰梯形的结论5•进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

6. 了解图形的全等,能利用全等图形进行简单的图案设计。

7. 经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

8. 在分别给出两角夹边、两边夹角和三边的条件下,能够利用尺规作出三角形(会写已知、求作和作法,不要求证明)。

二、知识点归纳:般多边形的内角和(n—2) • 180。

,外角和为360°平面图形的密铺般的多边形点证:此题是让学生动手拼接,把/ 1移至/ 2,已知a // b ,根据两直线平行,?同旁内角互补,得到“三角形三内角的和等于 180。

”的结论,由于此题剪拼的方法很多,证明的 方法也很多,注意对学生的引导.探索三角形全等的条件例 2 .如图所示,/ E=Z F=90°,Z B=Z C, AE=AF 给出 下列结论:①/ 仁/ 2;② BE=CF ③厶 ACN^A ABM ④ CD=DN 其中正确的结论是 ________________ .解析:由/ E=Z F ,Z B=Z C, AE=AF可判定△ AEB^A AFC 从而得/ EAB 玄FAC.•••/仁/ 2,又可证出厶 AEM2A AFN依此类推得①、②、③点评:注意已知条件与隐含条件相结合.全等三角形的应用例3. (20XX 年重庆市)如图所示, A 、D F 、B 在同一直线 上,AD=BFAE=BC 且 AE// BC.求证:(〔)△ AEF ^A BCD (2) EF// CD【解析】(1)因为AE// BC,所以/ A=Z B.又因AD=BF 所以AF=AD+DF=BF+FD=B 取因 AE=BC 所以△ AEF ^A BCD(2)因为△ AEF ^A BCD 所以/ EFA=Z CDB 所以 EF // CD.【点评】根据平行寻求全线于点F ,求证:S ^ ABF =S -【解析】•••四边形 ABCD 为平行四边形,• AD// BC.•/ E 是DC 的中点,• DE=CE• △ AED^A FEC 三角形的高,中线,角平分线 三角形 k 三角形全等的表示及特征 三角形的全等:探索三角形全等的条件 [ 匸角形全等的应用 三、【例题经典】 三角形内角和定理的证明 例1 •如图所示,把图(1)中的/ 1撕下来,拼成如图(2)所示的图形,从中你能得到什 么结论?请你证明你所得到的结论.三角形的基本要素及基本性质 •三角形的概念及表示 ’三边的关系,三内角的关AAED =S△FEC -二S^ ABF =S 四边形ABCE+S^ CEF =S 四边形ABCE+S° AED =S I ABCD会根据条件选择适当方法判定平行四边形例5. (20XX年山东省)如图,在.—D中,对角线AC BD相交于点0, E、F?是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. 0E=0F B . DE=BF C . Z ADE=Z CBF D . Z ABE=/ CDF【分析】虽然判别平行四边形可从“边、角、对角线”三个角度来考虑, 但此例图中已有对角线,所以最适当方法应是“对角线互相平分的四边形为平行四边形”.能利用平行四边形的性质进行计算例6. (20XX年西宁市)如图,在ABCD中,已知对角线AC和BD相交于点0,A A0B?勺周长为15, AB=6,那么对角线AC+BD= _________【分析】本例解题依据是:平行四边形的对角线互相平分,先求出A0+B0=9 ?再求得 AC+BD=18四、【考点精练】(一)、基础训练1 .如图 1 所示,若△ 0AD^A 0BC 且/ 0=65,Z C=20°,则/ 0AD= _________________2.如图2,在厶ABC 中,/ C=90°, AD 平分/ CAB BC=8cm BD=5cm 那么 D?点到直线 AB的距离是 _________ cm.3.如图3, AD AF 分别是△ ABC 的高和角平分线,已知/ B=36°, / C=?76?°,则/ DAF= ___________度.4.( 20XX 年烟CD?交于点 0, ?且A0?平分/ BAC那么图中全等三角形共有 ____________ 对.6. ________________________________________ ( 20XX 年河南省)如图 6,在厶ABC 中,AC=BC=2 / ACB=90 , D 是BC 边的中点,E?是 AB 边上一动点,贝U EC+ED 勺最小值是 . 7. 以下列各组线段长为边,能组成三角形的是( )A . 1cm, 2cm, 4cmB . 8cm, 6cm, 4cm C. 12cm, 5cm, 6cm D . 2cm, 3cm, 6cm& ( 20XX 年绍兴市)若有一条公共边的两个三角形称为一对“共边三角形” 为公共边的“共边三角形”有( )A . 2对B . 3对C . 4对D . 6对,?则图中以BC9. (20XX年德阳市)已知△ ABC的三边长分别为20cm, 50cm, 60cm,现要利用长度分别为30cm和60cm的细木条各一根,做一个三角形木架与厶ABC相似.?要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边.那么另外两边的长度(单位:cm)分别为()(7) (8)A . 10, 25B . 10, 36 或12, 36C . 12, 36D . 10, 25 或12, 3610. (20XX年黄冈市)如图所示,已知△ ABC中,AB=AC / BAC=90,直角/ EPF的顶点P 是BC中点,两边PE PF分别交AB AC于点E、F,给出以下四个结论:① AE=CF②厶1EPF是等腰直角三角形;③ S四边形AEPF=—0ABC :④EF=AP当/ EPF在厶ABC内绕顶点P2旋转时(点E?不与A B重合),上述结论中始终正确的有()A .①④B .①②C .①②③D .①②③④12. ___________________________________________________________________________ 如图2, E、F是LI ABCD寸角线BD上的两点,请你添加一个适当的条件:_________________________ 使四边形AECF是平行四边形.13. _________________________ (20XX年长沙市)如图3,四边形ABCD中, AB//CD要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).14. (20XX年扬州市)ABCD勺对角线交于点O,下列结论错误的是()A . ABCD是中心对称图形B . △ AOB^A CODC . △ AOD^A BOCD . △ AOB与△ BOC的面积相等15. (20XX年天津市)如图4,在口ABCD中, EF/ AB, GH// AD EF与GH交于点O,则该图中的平行四边形的个数共有()A . 7 个B . 8 个C . 9 个D . 11 个16 . (20XX年广东省)如图5所示,在ABCD中,对角线AC BD交于点O,下列式子中一定成立的是()A. ACL BD B . OA=OC C . AC=BD D . AO=OD(4) (5)17. (20XX年淄博市)如图6,在厶MBN中, BM=6点A, C, D分别在MB NB MN上,?四边形ABCE为平行四边形,/ NDC=/ MDA贝M I ABCD的周长是()A. 24 B . 18 C . 16 D . 1218. (20XX年怀化市)如图7, AB=AC AD L BC, AD=BC若用剪刀沿AD剪开,?则最多能拼出不同形状的四边形个数是()26. (20XX 年德阳市)如图,已知点 的中点,?求证:? / DAN=/ BCM27. (20XX 年临安市)已知:如图, E 、F 是平行四边形 ABCD 的 对角线AC?h 的两点,AE=CF求证:(〔)△ ADF^A CBE (2) EB// DF.B . 3个C . 4个D . 5个 A . 2个 19.如图8, ABCD 中,点E 、F 分别是 AD AB 的中点, 值为(? A. 1 : EF 交AC 于点G,那么AG GC 的 3 C 3 (9) ■ 匕旦 ⑺ (20XX 年南通市) ) .6m B . 20. ( A (二八能力提升 21.已知:如图,点 (8) 如图 9, ABCD 的周长是 12cm C . 4cm D 28cm, △ ABC 的周长是 22cm,则AC 的长为 8cm C D 在线段AB 上,PC=PD 请你添加一个 条件,?使图中存在全等三角 形,并给予证明.所添条件为 ___________ •你得到的一对全等三角形是厶 ____________ ◎△ ______ . 22.已知:如图,△ ABC 是等边三角形,过 AB 边上的点 D 作DG/ BC,交AC 于点G, ?在GD 的延长线上取点 E ,使DE=DB 连结AE 、CD. (1) 求证:△ AGE^A DAC (2) 过点E 作EF // DC 交BC 于点F ,请你连结 AF ,并判断△ AEF 是怎样 的三角形,试证明你的结论. 23. (20XX 年大连市)如图, AB// CD AB=CD 点 B 、E 、F 、D 在一条直线上, / A=Z C, 求证:AE=CF (说明:证明过程中要写出每步的证明依据) 24. (20XX 年内江市)如图,在△ ABD 和△ ACE 中,有下列四个等式: ①AB=AC ②AD=AE ③/ 仁/ 2 ④ BD=CE 请你以其中三个等式作为题设,余下的作为结论,写出一个真命题( 要求写出已知,求证及证明过程) 25.如图,在L_l ABCD 中, E 、F 是对角线 AC 上的两点,AE=CF 求证: BE=DF M N 分别是.ABCD 的边AB DC D128. 如图,DB// AC,且DB= AC, E是AC的中点,求证:BC=DE2(三)、应用与探究29. (20XX年浙江省)如图,△ ABC与△ ABD中, AD与BC 相交于0点,/ 1= / 2, ?请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD并给出证明.你添加的条件是:_______________ .B 30. (20XX年江阴市)已知平行四边形ABCD中,点E、F分别在边AB BC上.(1)若AB=10, AB与CD间距离为8, AE=EB BF=FC 求厶DEF的面积.(2)若厶ADE △ BEF △ CDF的面积分别为5、3、4,求△ DEF的面积.答案:考点精练I. 95° 2 . 3 3 . 20° 4 . 60° 5 . 4 对6 . 、.57. B 8 . B 9 . D 10 . CII. 答案不唯一,比如:/ A=Z B,A PAC^A PBD12 . (1)证略(2)连接AF, ?则厶AEF是等边三角形.证略13 . •/ AB// CD AB=CD Z A=Z C,•••△ABE^A CDF(ASA) ?, ?••• AE=CF(全等三角形对应边相等)14. ①②③为题设④为结论,证略15. / C=Z D,证略.例题经典例2. B考点精练I . 900 2 .答案不唯一,女口BE=DF等3 .答案不唯一,女口AB=CD等4. D 5 . C 6 . C 7 . D 8 . D 9 . B 10 . DII .证厶ABE^A CDF( SAS,即可得到BE=?DF12 .证厶BCM2A DAN( SAS,即可得/ DAN/ BCM13 . (1)根据(?SAS ?证厶ADFT^A CBE(2)连接BF、DE DB, ?根据对角线互相平分的四边形是平行四边形. 证四边形BEDF是平行四边形即可14 .证四边形BCED是平行四边形即可15 . ( 1 ) S^ DEF =30 (2) S^ DEF =68。

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

专题07 全等三角形【真题测试】 一、选择题1.(长宁2019期末18)下列所叙述的图形中,全等的两个三角形是( ) A. 含60︒角的两个直角三角形; B.腰对应相等的两个等腰三角形; C.边长均为5厘米的两个等边三角形; D.一个钝角对应相等的两个等腰三角形. 【答案】C ;【解析】含60度角的两个直角三角形的对应边不一定相等,因此不一定全等,A 错误;腰对应相等的两个等腰三角形的顶角不一定相等,故B 错误;边长为5厘米的两个等边三角形全等,因此C 正确;一个钝角对应相等的两个等腰三角形的对应边不一定相等,因此D 错误;故此题选C.2.(长宁2018期末18)在ABC ∆中,已知点D 、E 分别在AB 、AC 上,BE 与CD 相交于点O ,依据下列各个选项中所列举的条件,不能说明AB=AC 的是( ) A. BE=CD ,EBC DCB ∠=∠; B. AD=AE ,BE=CD ; C. OD=OE ,ABE ACD ∠=∠; D. BE=CD ,BD =CE .O D C BA E【答案】B ;【解析】 A 、因为EBC DCB ∠=∠,所以OB=OC ,又BE=CD ,故OD=OE ,可证DOB EOC ∆∆≌,得ABE ACD ∠=∠,可得ABC ACB ∠=∠,即得AB=AC ;B 、已知两边及一边的对角对应相等,不一定能得出ABE ACD ∆∆≌,故不一定能得AB=AC ;C 、由OD=OE ,ABE ACD ∠=∠及DOB EOC ∠=∠得DOB EOC ∆∆≌,所以OB=OC ,所以OBC OCB ∠=∠,因此ABC ACB ∠=∠,所以AB=AC ; D 、由BE=CD ,BD =CE 胶BC=CB 得出DBC ECB ∆∆≌,所以ABC ACB ∠=∠即AB=AC ;故此题选B.二、填空题3.(普陀2018期末14)如图,四边形ABCD 的对角线AC 、DB 交于点E ,AB=CD ,AC=DB ,图中全等的三角形共有 对.DC BAE【答案】3;【解析】解:∵AB=CD ,AC=DB ,BC=BC ,∴△ABC ≌△DBC ,∴∠BAC=∠BDC ,∵∠AEB=∠DEC ,AB=DC ,∴△ABE ≌△DEC ,∴BE=CE ,AE=DE ,∵AB=DC , BD=AC ,AD=AD ,∴△ABD ≌△ADC ,∴图中全等的三角形共有3对,故答案为:34.(松江2018期末16)如图,已知ABC ∆与DEF ∆全等,且724563A B E ∠=︒∠=︒∠=︒、、、BC=10、EF=10,那么D ∠= 度.1045°72°C BA【答案】72;【解析】因为7245A B ∠=︒∠=︒、,所以180724563C ∠=︒-︒-︒=︒,又63E ∠=︒,故E C ∠=∠,又BC=EF=10,依题得ABC DFE ∆∆≌,故72D A ∠=∠=︒.5.(浦东四署2019期末16)如图,ABC DCB ∆∆≌,A 、B 的对应顶点分别为点D 、C ,如果AB=6cm ,BC=12cm ,AC=10cm ,DO=3cm ,那么OC 的长是 cm.OD CBA【答案】7;【解析】因为ABC DCB ∆∆≌,所以AC=BD ,ACB DBC ∠=∠,所以OB=BC ,所以AO=DO=3cm ,所以OC=AC-AO=10-3=7cm. 三、解答题6.(闵行2018期末24)如图,在△ABC 中,已知点D 、E 、F 分别在边BC 、AC 、AB 上,且FD =ED ,BF =CD ,∠FDE =∠B ,那么∠B 和∠C 的大小关系如何?为什么? 解:因为∠FDC =∠B +∠DFB ,即∠FDE +∠EDC =∠B +∠DFB . 又因为∠FDE =∠B (已知), 所以∠=∠ . 在△DFB 和△EDC 中,所以△DFB ≌△EDC . 因此∠B =∠C .DFBA E【答案与解析】解:因为∠FDC =∠B +∠DFB (三角形的一个外角等于与它不相邻的两个内角的和), 即∠FDE +∠EDC =∠B +∠DFB .又因为∠FDE =∠B (已知),所以∠DFB =∠EDC . 在△DFB 和△EDC 中,()(FB ED DFB EDC BF CD =⎧⎪∠=∠⎨⎪=⎩已知已知),所以△DFB ≌△EDC (SAS ).因此∠B =∠C .7.(黄浦2018期末26)如图,在ABC V 中,点D 在AC 边上,AE//BC ,联接ED 并延长交BC 于点F. 若AD=CD ,请说明ED=FD 的理由.DFCB AE【答案与解析】解:如图所示,Q AE//BC ,1,2C E ∴∠=∠∠=∠,在AED CFD ∆∆和中,12C E AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AED CFD ∴∆∆≌(AAS ),ED FD ∴=.21DF CBA E8.(宝山2018期末27)如图,已知点D、E、F分别在AB、BC、CA上,DEF∆是等边三角形,且123∠=∠=∠,ABC∆是等边三角形吗?试说明理由.【答案与解析】解:ABC∆是等边三角形.因为DEF∆是等边三角形,可知60DEF∠=︒(等边三角形每个内角是60︒),因为31DEC DEF B∠=∠+∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角之和),又13∠=∠,所以60B DEF∠=∠=︒(等式性质),同理可证:60,60A C∠=︒∠=︒,所以A B C∠=∠=∠,所以ABC∆是等边三角形(三个内角都相等的三角形是等边三角形).9.(松江2018期末27)如图,在ABC∆中,已知AB=AC,点D、E、F分别在BC、AC、AB上,且BD=CE,BF=CD. (1)说明BDF CED∆∆≌的理由;(2)说明FDE=B∠∠的理由.DFCBAE【答案与解析】(1)因为在ABC∆中,已知AB=AC,所以B C∠=∠,在BDF CED∆∆与中,BF CDB CBD CE=⎧⎪∠=∠⎨⎪=⎩,所以BDF CED∆∆≌(SAS);(2)因为BDF CED∆∆≌,所以BFD CDE∠=∠,又FDC B BFD∠=∠+∠,所以FDE CDE B BFD∠+∠=∠+∠,所以FDE B∠=∠.10.(浦东2018期末25)如图,在ABC∆中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,FDE=B∠∠,那么B C∠∠与的大小关系如何?为什么?【答案与解析】因为FDC B BFD ∠=∠+∠即FDE CDE B BFD ∠+∠=∠+∠,又因为FDE=B ∠∠,所以CDE BFD ∠=∠,在BFD CDE ∆∆与中,BF CD BFD CDE FD DE =⎧⎪∠=∠⎨⎪=⎩,所以BFD CDE ∆∆≌(SAS ),所以B=C ∠∠.11.(普陀2018期末25)如图,在△ABC 中,∠B=∠C ,D 、E 、F 分别在AB 、BC 、AC 上,且BD=CE ,∠DEF=∠B ,问:DE 和EF 是否相等?并说明理由.【答案与解析】解:∵∠B=∠C ,∵∠DEF=∠B ,∵∠DEC=∠B +∠BDE (三角形的外角定理), ∴∠BDE=∠FEC ,在△BDE 与△CEF 中,∵,∴△BDE ≌△CEF (ASA ),得DE=EF .12.(普陀2018期末26)如图,∠1=∠2,AD=AE ,∠B=∠ACE ,且B 、C 、D 三点在一条直线上. (1)试说明△ABD 与△ACE 全等的理由.(2)如果∠B=60°,试说明线段AC 、CE 、CD 之间的数量关系,并说明理由.【答案与解析】解:(1)理由:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD ,即∠BAD=∠CAE , 在△ABD 与△ACE 中,,∴△ABD ≌△ACE (AAS );(2)由(1)△ABD ≌△ACE 可得:BD=CE ,AB=AC ,∵∠B=60°,∴△ABC 是等边三角形,∴AB=BC=AC ,∴BD=CE=BC +CD=AC +CD ,即CE=AC +CD .13.(杨浦2018期末25)如图,已知90,B C AE ED ∠=∠=︒⊥,AB=EC ,点F 是AD 的中点,说明EF AD ⊥的理由.解:AE ED ⊥Q (已知),90AED ∴∠=︒(垂直的意义), 又90B ∠=︒Q (已知),B AED ∴∠=∠(等量代换).AEC B BAE ∠=∠+∠Q()即AED DEC B BAE ∠+∠=∠+∠Q ,DEC BAE ∴∠=∠(等式性质)在ABE ECD ∆∆与中,B CAB EC DEC BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ECD ∴∆∆≌( )AE ED ∴=( )Q (已知)EF AD ∴⊥( )【答案与解析】解:三角形的一个外角等于与它不相邻的两个内角之和);ASA ;全等三角形对应边相等;点F 是AD 的中点;等腰三角形的三线合一.14.(松江2018期末26)阅读并补充完成下列解题过程:如图:用尺规作线段中点的方法,作出了线段AB 的中点C ,请说明这种方法正确的理由. 解:联结AE 、BE 、AF 、BF.在AEF BEF ∆∆与中,(______________)(________EF EF AE BE =⎧⎪=⎨⎪=⎩画弧时所取的半径相等)(画弧时所取的半径相等),所以AEF BEF ∆∆≌( ). 所以AEF=BEF ∠∠( ).又因为AE=BE ,所以AC=BC ( ).即点C 是线段AB 的中点.【答案与解析】公共边; AF=BF ;SSS ;全等三角形对应角相等; 等腰三角形的三线合一. 15.(闵行2018期末26)已知∠AOB =120°,OC 平分∠AOB ,点P 是射线OC 上一点. (1)如图1,过点P 作PD ⊥OA ,PE ⊥OB ,说明PD 与PE 相等的理由;(2)如图2,如果点F 、G 分别在射线OA 、OB 上,且∠FPG =60°,那么线段PF 与PG 相等吗?请说明理由;(3)在(2)的条件下,联结FG ,△PFG 是什么形状的三角形,请说明理由.【答案与解析】解:(1)∵OC 是∠AOB 的平分线,∴∠AOC =∠BOC ,∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°,在△POD 和△POE 中,90PDO PEO POD POE OP OP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△POD ≌△POE ,∴PD =PE ;(2)相等,理由:如图2,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,∴∠PMO =∠PNO =90°, 同(1)的方法得,PM =PN ,在四边形PMON 中,∠MPN =360°﹣90°﹣90°﹣120°=60°,∵∠FPG =60°,∴∠FPG =∠MPN ,∴∠MPF =∠NPG ,在△PMF 和△PNG 中,90FPM NPG PM PN PMF PNG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△PMF ≌△PNG ,∴PF =PG ;(3)△PFG 是等边三角形,理由:如图2,连接FG ,由(2)知,PF =PG ,∵∠FPG =60°, ∴△PFG 是等边三角形.16.(杨浦2019期末30)在ABC ∆中,90,60C BAC ∠=︒∠=︒,ABC ∆绕点C 顺时针旋转,旋转角为(0180)αα︒<<︒,点A 、B 的对应点分别是点D 、E.(1)如图1,当点D 恰好落在边AB 上时,试判断DE 与AC 的位置关系,并说明理由.(2)如图2,当点B 、D 、E 三点恰好在一直线上时,旋转角α=︒,此时直线CE 与AB 的位置关系是 .(3)在(2)的条件下,联结AE ,设BDC ∆的面积为1S ,AEC ∆的面积为2S ,则12S S 与的数量关系是 .(4)如图3,当点B 、D 、E 三点不在一直线上时,(3)中的12S S 与的数量关系仍然成立吗?试说明理由.【答案与解析】解:(1)DE//AC. 理由:ABC ∆Q 旋转后与DCE ∆全等,,A CDE AC DC ∴∠=∠=,60,BAC AC DC ∠=︒=Q ,DAC ∴∆是等边三角形. 60DCA ∴∠=︒. 又60CDE BAC ∠=∠=︒Q ,60DCA CDE ∴∠=∠=︒,DE AC ∴∥.(2)如图4所示:延长EC 交AB 于点F. 由旋转的性质可知:CB=CE ,30CBE E ∴∠=∠=︒.120BCE ∴∠=︒,即旋转角120α=︒,30,30ABC CBE ∠=︒∠=︒Q ,60FBE ∴∠=︒,306090E FBE ∴∠+∠=︒+︒=︒,90BFE EC AB ∴∠=︒∴⊥. 故旋转角120α=︒,EC AB ⊥(3)如图5所示,延长EC 交AB 于点F ,过点D 作DG BC ⊥于G . Q 由(2)可知CE AB ⊥,120BCE ∠=︒,9030CFA BCD ∴∠=︒∠=︒,6030FAC FCA ∠=︒∴∠=︒Q ,30FCA DCG ∴∠=∠=︒. 由旋转的性质可知:AC=CD ,在FCA GCD ∆∆和中,90FCA DCG CFA DGC AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,FCA GCD ∆∴∆≌,AF GD ∴=,又因BC=CE , 1122EC AF CB DG ∴=g g 即12S S =. (4)12S S =仍然成立;理由:如图6所示:过D 作DH BC ⊥于H ,过A 作AG EC ⊥交EC 的延长线于G.,DH BC AG EC ⊥⊥Q ,90AGC DHC ∴∠=∠=︒,ABC ∆Q 旋转后与DCE ∆全等,90ACB DCE ∴∠=∠=︒,AC=DC ,BC=CE. 180,ACE BCD ∠+∠=︒Q180,GCA ECA ∠+∠=︒Q ACG DCH ∴∠=∠.在AGC DHC ∆∆和中,AGC DHCACG DCHAC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, AGC DHC ∴∆∆≌,AG DH ∴=,1122EC AF CB DG ∴=g g ,即12S S =.。

中考数学专题复习 与三角形、四边形有关的计算与证明

中考数学专题复习  与三角形、四边形有关的计算与证明
第二部分 专题突破
专题五 与三角形、四边形有关的计算与证明
上一页 返回首页 下一页
专题解读:与三角形和四边形有关的计算和证明是每年必考内容,经 常与尺规作图、图形的简单变换、函数等结合考查.主要考查内容为:(1) 求角度、线段长度、图形周长或面积、锐角三角函数值等;(2)证明线段平 行、垂直、相等、三角形全等或相似,图形为特殊三角形或四边形等;(3) 判断线段和角之间的数量关系.常用到三角形内角和定理、三角形全等的 判定和性质、三角形相似的判定和性质、等腰三角形的判定和性质、平行 四边形的判定和性质、特殊四边形的性质、勾股定理、锐角三角函数等知 识.
上一页 返回首页 下一页
如图,在△ABC 中,AD 平分∠BAC,交 BC 于点 D,且∠ADE=∠EAD.
(1)求证:DE∥AB;
上一页 返回首页 下一页
证明:∵AD 平分∠BAC, ∴∠BAD=∠EAD. 又∵∠ADE=∠EAD, ∴∠BAD=∠ADE. ∴DE∥AB.
上一页 返回首页 下一页
上一页 返回首页 下一页
(2)若 AC=12,AB=16,求菱形 ADCF 的面积. 解:设 AF 到 CD 的距离为 h,则 S 菱形 ADCF=CD·h. ∵CD=BD=12BC, ∴S 菱形 ADCF=12BC·h. 又∵BC·h=2S△ABC, ∴S 菱形 ADCF=S△ABC. ∵S△ABC=12AB·AC=12×12×16=96. ∴S 菱形 ADCF=96.
上一页 返回首页 下一页
(2)若 DE=6,BC=16,求△FCD 的面积. 解:如图,过点 A 作 AH⊥BC 于点 H. ∵BC=16,点 D 是 BC 的中点,∴CD=BD=8. ∵AD=AC,AH⊥DC,∴DH=CH=4.∴BH=12. ∵ED∥AH,∴ADHE=BBHD,∴A6H=182.∴AH=9. ∵△ABC∽△FCD,∴SS△△FACBDC=CBDC2.∴S△FCD=14S△ABC=18.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题07 三角形及四边形的计算与证明一、三角形1.三角形的概念及性质概念:(1)由三条线段首尾顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.性质:(1)三角形的内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.(2)三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边.2.三角形中的重要线段(1)三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这点叫做三角形的内心.(2)三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点.(3)三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点.3.全等三角形的性质与判定概念:能够完全重合的两个三角形叫做全等三角形.性质:全等三角形的对应边、对应角分别相等.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).4.等腰三角形等腰三角形的有关概念及分类:有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形.等腰三角形的性质:(1)等腰三角形的两个底角相等(简称为“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);(3)等腰三角形是轴对称图形.等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).5.等边三角形的性质与判定等边三角形的性质:(1)等边三角形的内角相等,且都等于60°;(2)等边三角形的三条边都相等.等边三角形的判定:(1)三条边相等的三角形是等边三角形;(2)三个角相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.6.直角三角形的性质与判定(1)直角三角形的两锐角互余.(2)直角三角形中,30°角所对的边等于斜边的一半.(3)直角三角形斜边上的中线等于斜边的一半.(4)勾股定理:直角三角形两直角边的平方和等于斜边的平方.(5)有一个角等于90°的三角形是直角三角形.(6)有两角互余的三角形是直角三角形.(7)如果三角形一边上的中线等于这边的一半,则该三角形是直角三角形.(8)勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.二、多边形1.多边形概念定义:在平面内,由一些不在同一直线上的线段首尾顺次相接组成的图形叫做多边形.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.2.性质n边形的内角和为(n-2)·180°,外角和为360°.三、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形的对边相等且平行.(2)平行四边形的对角相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形.3.平行四边形的判定(1)两组对边分别相等的四边形是平行四边形.(2)两组对边分别平行的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)对角线相互平分的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.四、矩形1.矩形的定义:有一个角是直角的平行四边形是矩形.2.矩形的性质:(1)矩形的四个角都是直角.(2)矩形的对角线相等.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是对角线的交点.3.矩形的判定:(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形.五、菱形1.菱形的定义:一组邻边相等的平行四边形叫做菱形.2.菱形的性质:(1)菱形的四条边都相等.(2)菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角.3.菱形的判定:(1)对角线互相垂直的平行四边形是菱形.(2)四条边都相等的四边形是菱形.六、正方形1.正方形的定义:一组邻边相等的矩形叫做正方形.2.正方形的性质:(1)正方形的四条边都相等,四个角都是直角.(2)正方形的对角线相等,且互相垂直平分;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.正方形的判定:(1)一组邻边相等并且有一个角是直角的平行四边形是正方形.(2)一组邻边相等的矩形是正方形.(3)对角线互相垂直的矩形是正方形.(4)有一个角是直角的菱形是正方形.(5)对角线相等的菱形是正方形.方法技巧1.判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段即可.2.“截长法”和“补短法”是证明和差关系的重要方法,无论用哪一种方法都是要将线段的和差关系转化为证明线段相等的问题,因此添加辅助线构造全等三角形是通向结论的桥梁.3.根据多边形的一个内角和一个相邻外角的互补关系,灵活选择公式求内角或外角.4.牢记平行四边形的性质和判定方法,注意它们的区别与联系,可以提高解决平行四边形问题的速度和准确性.5.牢固掌握矩形、菱形、正方形的定义、性质和判定定理,它们大多是从边、角、对角线三个方面来描述的,分类记忆,便于灵活应用.6.适当进行动手操作训练,从实践中认识特殊平行四边形的轴对称性和中心对称性,再进行相应的证明和计算,也是正确解答综合性问题的有效途径.核心考点三角形、四边形中的相关证明及计算纵观近近年中考题,三角形常与旋转、折叠、平移等知识点结合起来考查;四边形中要特别关注平行四边形、矩形、菱形和正方形的性质和判定,以及运用其性质解决有关计算的问题.【经典示例】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE =135°时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF AB =k (k 的常数),直接用含k 的代数式表示AMMF的值.答题模板【满分答案】 (1)如题图1,∵四边形ABCD 为菱形,∴AB =CD ,AB ∥CD , ∵四边形ABEF 为平行四边形, ∴AB =EF ,AB ∥EF , ∴CD =EF ,CD ∥EF , ∴∠CD M =∠FEM ,在△CDM 和△FEM 中,∠CMD =∠FME ,∠CDM =∠FEM ,CD =EF , ∴△CDM ≌△FEM , ∴DM =EM ,即点M 是DE 的中点;(2)∵△CDM ≌△FEM ,∴CM =FM , 设AD =a ,CM =b ,∵∠ABE =135°,∴∠BAF =45°, ∵四边形ABCD 为菱形,∴∠NAF =45°,∴四边形ABCD 为正方形,∴AC AD a , ∵AB ∥EF ,∴∠AFN =∠BAF =45°, ∴△ANF 为等腰直角三角形,∴NF =2AF =2a +b +b )=a b ,∴NE =NF +EF =a b +a =2a b ,∴AM NE =(3)∵AM AB b a =k ,∴ba =k ,∴ab ,∴AMFM =bb+a b .【解题技巧】本题主要考查了三角形与四边形的综合题,解题关键是要灵活运用平行四边形和菱形的性质;全等三角形的知识解决线段相等的问题;会利用代数法表示线段之间的关系,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.模拟训练如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB . (1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由).(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△PAB 周长的最小值.【答案】(1)证明见解析;(2)成立;(34+. 【解析】(1)证明:∵四边形ABCD 是正方形, ∴AD =AB ,∠EAF =∠ABG =90°,∵点E 、G 分别是边AD 、BC 的中点,AF =14AB , ∴AF AE =12,BG BA =12, ∴AF BGAE BA=, ∴△AEF ∽△BAG ,∴∠AEF =∠BAG , ∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°, ∴∠AOE =90°, ∴EF ⊥AG ;(2)成立;理由如下: 根据题意得:AF BG =12, ∵AE AB =12, ∴AF BG =AEAB, 又∵∠EAF =∠ABG ,∴△AEF ∽△BAG , ∴∠AEF =∠BAG , ∵∠BAG +∠EAO =90°, ∴∠AEF +∠EAO =90°, ∴∠AOE =90°, ∴EF ⊥AG ;(3)过O 作MN ∥AB ,交AD 于M ,BC 于N ,如图所示:则MN ⊥AD ,MN =AB =4,∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上, 当P 为MN 的中点时,△PAB 的周长最小,此时PA =PB ,PM =12MN =2, 连接EG 、PA 、PB ,则EG ∥AB ,EG =AB =4,∴△AOF ∽△GOE ,∴OF AF OE EG ==14, ∵MN ∥AB ,∴AM OF EM OE ==14, ∴AM =15AE =15×2=25, 由勾股定理得:PA, ∴△PAB 周长的最小值=2PA +AB4+.1.(2018•广州)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .【答案】证明详见解析. 【解析】在△AED 和△CEB 中,AE CE AED CEB DE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△CEB (SAS ),∴∠A =∠C (全等三角形对应角相等).2.(2018•广东)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADE ≌△CED ; (2)求证:△DEF 是等腰三角形.【答案】(1)证明详见解析;(2)证明详见解析. 【解析】(1)∵四边形ABCD 是矩形, ∴AD =BC ,AB =C D .由折叠的性质可得:BC =CE ,AB =AE , ∴AD =CE ,AE =CD .在△ADE 和△CED 中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CED (SSS ). (2)由(1)得△ADE ≌△CED , ∴∠DEA =∠EDC ,即∠DEF =∠EDF , ∴EF =DF ,∴△DEF 是等腰三角形.3.(2018•广东)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC . (1)填空:∠OBC =_________°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O →C →B 路径匀速运动,N 沿O →B →C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【答案】(1)60;(2)7;(3)当x 83=时,y . 【解析】(1)由旋转性质可知:OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60. (2)在图1中,∵OB =4,∠ABO =30°,∴OA 12=OB =2,AB ==∴S △AOC 12=•OA •AB 12=⨯2×=∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,∴AC ==,∴OP 2AOC S AC ===△. (3)①当0<x 83≤时,M 在OC 上运动,N 在OB 上运动,此时在图2中,过点N 作NE ⊥OC 且交OC于点E ,则NE =ON •sin60°=,∴S △OMN 12=•OM •NE 12=⨯1.5x 2⨯x ,∴y =x 2.∴x 83=时,y .②当83<x ≤4时,M 在BC 上运动,N 在OB 上运动.作MH ⊥OB 于H (如图3).则BM =8–1.5x ,MH =BM •sin60°=8–1.5x ),∴y 12=⨯ON ×MH =2.当x 83=时,y 取最大值,y 3<,③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G (如图4).MN =12–2.5x ,OG =AB =,∴y 12=•MN •OG =2x ,当x =4时,y 有最大值,∵x >4,∴y 最大值综上所述,当x 83=时,y .4.(2018•宜昌)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【答案】(1)65°;(2)25°.【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°–∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE12∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°–65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.5.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【答案】证明详见解析.【解析】过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC =180°, ∴∠BAC +∠B +∠C =180°, 即∠A +∠B +∠C =180°.6.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC =BD .【答案】证明详见解析.【解析】∵∠ABD +∠3=180°∠ABC +∠4=180°,且∠3=∠4, ∴∠ABD =∠ABC ,在△ADB 和△ACB 中,12AB AB ABD ABC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB ≌△ACB (ASA ), ∴BD =BC .7.(2018•昆明)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:BC =DE .【答案】证明详见解析. 【解析】∵∠1=∠2, ∵∠DAC +∠1=∠2+∠DAC ∴∠BAC =∠DAE ,在△ABC 和△ADE 中,B D AB AD BAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△ABC (ASA ), ∴BC =DE .8.(2018•铜仁市)已知:如图,点A 、D 、C 、B 在同一条直线上,AD =BC ,AE =BF ,CE =DF ,求证:AE ∥FB .【答案】证明详见解析.【解析】∵AD =BC ,∴AC =BD ,在△ACE 和△BDF 中,AC BD AE BF CE DF =⎧⎪=⎨⎪=⎩,∴△ACE ≌△BDF (SSS ), ∴∠A =∠B , ∴AE ∥BF .9.(2018•柳州)如图,AE 和BD 相交于点C ,∠A =∠E ,AC =EC .求证:△ABC ≌△EDC .【答案】证明详见解析.【解析】∵在△ABC 和△EDC 中,A E AC EC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△EDC (ASA ).10.(2018•通辽)如图,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF =CD ,连接CF . (1)求证:△AEF ≌△DEB ;(2)若AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.【答案】(1)证明详见解析;(2)四边形ADCF是矩形,证明详见解析.【解析】(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.11.(2018•鄂州)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC的中点,连接AE、EF、AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系式.【答案】(1)证明详见解析;(2)2α+β=60°.【解析】(1)点E、F分别为DB、BC的中点,∴EF12=CD,∵∠DAB=90°,∴AE12=BD,∵DB=DC,∴AE=EF;(2)∵AF=AE,AE=EF,∴△AEF是等边三角形,∴∠AEF=60°,∵∠DAB=90°,点E、F分别为DB、BC的中点,∴AE=DE,EF∥CD,∴∠ADE=∠DAE,∠BEF=∠BDC=β,∴∠AEB=2∠ADE=2α,∴∠AEF=∠AEB+∠FEB=2α+β=60°,∴α,β之间的数量关系式为2α+β=60°.12.(2018•鞍山)如图,在矩形ABCD中,分别取AB,BC,CD,DA的中点E,F,G,H,连接EF,FG,GH,HE,求证:四边形EFGH是菱形.【答案】证明详见解析.【解析】连接AC,BD,如图所示.∵E为AB的中点,F为BC的中点,∴EF为△ABC的中位线,∴EF12=AC,同理HG12=AC,EH=FG12=BD,∵矩形ABCD,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形.13.(2018•本溪)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.【答案】(1)证明详见解析;(2)26.【解析】(1)∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长为:AD+AB+BE+DE=26.。

相关文档
最新文档