圆锥的表面积和体积课件
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
圆柱圆锥圆台体积和表面积课件

[答案] 14π
[解析] V=13π×(12+1×2+22)×6=14π.
圆柱圆锥圆台体积和表面积
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
5、棱台的上、下底面面积分别是 2,4,高为 3,则棱台的
体积是( )
A.18+6 2 C.24
B.6+2 2 D.18
[答案] B
[解析] 体积 V=13(2+ 2×4+4)×3=6+2 2.
6、圆台 OO′的上、下底面半径分别为 1 和 2,高为 6,
则其体积等于________.
圆柱圆锥圆台体积和表面积
【例2】一个正三棱锥的底面边长为6,侧棱长为 1 5 , 求这个三 棱锥的体积. 思路点拨:正三棱锥顶点和底面中心的连线与底面垂直,利用 此特点求出棱锥的高即可.
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
A.84π
B.60π
C.54π
D.40π
[答案] A
[解析] V=13π(22+2×4+42)×9=84π.
圆柱圆锥圆台体积和表面积
3.圆锥的高扩大为原来的n倍,底面半径缩小为原来的
1 n
倍,那么它的体积变为原来的( )
A.1倍
B.n倍
C.n2倍
D.1n倍
[答案] D
圆柱圆锥圆台体积和表面积
4.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正 三角形(如图),则三棱锥B1-ABC的体积为( )
圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得
人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2
−
2
3
=
6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的
2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球
圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册

1
= h(r 2 rr r 2 )
3
(五)布置作业
1、课本P119练习1-4题
2、阅读121-123探究与发现,思考如何利用祖暅原理
推导球的体积
(1)如何根据圆柱的展开图,求圆柱的表面积?
圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母
线).设圆柱的底面半径为r,母线长为l,
则S圆柱侧=2πrl,S圆柱表=2πr(r+l),其中r为圆柱底面半径,l为母线长.
(2)如何根据圆锥的展开图,求圆锥的表面积?
圆锥的侧面展开图为一个扇形,半径是圆锥的母线长,弧长等于圆锥底面
.
答案:20π
1
2
2×3=20π.
解析:圆柱的底面半径是2,高为4,圆锥底面半径是2,高为3,则V=π×2 ×4+ ×π×2
3
3、球的表面积、体积
设球的半径为R,它的表面积只与半径R有关,是以R为自变量的函数.
事实上,如果球的半径为R,那么它的表面积是
问题8:小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法
1
周长,侧面展开图扇形面积为 2×2πrl=πrl,
∴S圆锥侧=πrl,S圆锥表=πr(r+l),其中r为圆锥底面半径,l为母线长.
(3)如何根据圆台的展开图,求圆台的表面积?
圆台的侧面展开图是一个扇环,内弧长等于圆台上底周长,外弧长
l'
等于圆台下底周长
xl r
x r'
r'
x
l
r r'
体”,则它的体积是
VO ABCD
1
S ABCD R .
3
圆锥的表面积与体积

圆锥的表面积与体积圆锥是一种常见的几何图形,由一个圆面和一条连接圆心与圆平面外一点的曲线组成。
圆锥的表面积和体积是我们研究圆锥性质的重要内容。
本文将讨论圆锥的表面积和体积的计算方法。
一、圆锥的表面积圆锥的表面积是指圆锥所有表面的总面积。
为了计算圆锥的表面积,我们需要先了解圆锥的几个重要参数:底面半径(r)、斜高(l)以及母线(m)。
圆锥的底面半径指底圆的半径,斜高是指连接圆锥顶点和底圆圆心的直线段,而母线是指连接圆锥顶点和底圆上任意一点的直线段。
根据这些参数,我们可以得到以下公式来计算圆锥的表面积:表面积(S) = 底面积 + 侧面积底面积:圆锥的底面是一个圆,其面积可直接通过底面半径计算得到。
底面积的计算公式为:底面积= π * r^2侧面积:圆锥的侧面由直截了当的三角形构成,其面积可以通过圆锥的底面半径、斜高和母线计算得到。
侧面积的计算公式为:侧面积= (π * r * l)/2综上所述,圆锥的表面积公式可以表示为:表面积(S) = π * r^2 + (π * r * l)/2二、圆锥的体积圆锥的体积是指圆锥所占据的三维空间大小。
为了计算圆锥的体积,我们同样需要圆锥的底面半径和高(h)这两个参数。
圆锥的体积可以通过以下公式来计算:体积(V) = (1/3) * 底面积 * 高由于圆锥的底面积的计算公式已经在上一部分中给出,所以可以将这个公式代入到圆锥体积的计算公式中,得到圆锥体积的另一种计算公式:体积(V) = (1/3) * π * r^2 * h需要注意的是,在计算圆锥的体积时,高指的是从圆锥顶点到底面的垂直距离。
三、计算示例为了更好地理解以上的计算方法,我们来看一个具体的计算示例。
假设我们有一个圆锥,其底面半径为5cm,斜高为13cm。
我们需要计算这个圆锥的表面积和体积。
首先,根据给定参数,可以计算出圆锥的底面积:底面积= π * 5^2 ≈ 78.54cm^2接下来,利用底面半径、斜高和母线的值,可以计算出圆锥的侧面积:侧面积= (π * 5 * 13)/2 ≈ 102.31cm^2将底面积和侧面积相加,即可得到圆锥的表面积:表面积 = 78.54cm^2 + 102.31cm^2 ≈ 180.85cm^2最后,根据给定的底面半径和高的值,可以计算出圆锥的体积:体积= (1/3) * π * 5^2 * 13 ≈ 108.28cm^3综上所述,该圆锥的表面积约为180.85cm^2,体积约为108.28cm^3。
圆锥的表面积和体积高级课件

A. a÷3 C. 3a
B. 2a D. a3
精选医学
29
二、填空:
用字1、母圆表锥示的是体(V积==13(s13
×底面积×高 h )。
),
2、圆柱体积的13 与和它(等底等高 )的
圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱 的体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
4、一个圆锥的底面积是12平方厘米,高
A
B
C
精选医学
20
小结:
1.圆锥的侧面积和全面积
S侧 S扇形 rl
S全 S侧 S底 rl r2
2. 展开图中的圆心角n与r、R之间的关系:
360 l
n
r精选医学
21
童心玩具厂欲生产一种圣诞老人的帽子,其圆 锥形帽身的母线长为15cm,底面半 径为5cm,生产这种帽身10000个,你 能帮玩具厂算一算至少需多少平方 米的材料吗(不计接缝用料和余料, π取3 )?
意一点的线段叫做圆锥的母线。
Or
精选医学
8
1、圆锥有一个尖点,我们称它为 ( 顶点 ) 。
2、圆锥的底面是个( 圆 )形。
3、圆锥的侧面是个( 曲 )面,
4、从圆锥的顶点到底面圆心的距离 是圆锥的( 高 )。
精选医学
9
说一说下面哪些是圆锥,为什么?
√
√
×
×
精选医学
√
10
精选医学
11
探究新知 圆锥的底面半径、高线、母线长 三者之间的关系:
l
r
精选医学
22
圆锥体积
精选医学
23
等底等高的圆柱和圆锥, 圆锥的体积是圆柱
体积的三分之一。
《圆锥认识》PPTPPT课件

解释
这个公式是通过将圆锥侧面展开成一 个扇形来推导的,扇形的弧长等于圆 的周长,扇形的半径等于圆锥的斜边 长。
圆锥的底面积
公式
圆锥的底面积 = π × r^2
解释
这个公式是通过圆的面积公式推导出来的,其中r 是圆的半径。
应用
在计算圆锥的表面积时,需要加上圆锥的底面积 和侧面积。
圆锥的体积
公式
圆锥的体积 = (1/3) × π × r^2 ×h
《圆锥认识》PPT课 件
目录
CONTENTS
• 圆锥的初步认识 • 圆锥的面积和体积 • 圆锥的表面积计算 • 圆锥的展开图 • 圆锥的旋转体
01 圆锥的初步认识
圆锥的定义
圆锥定义
圆锥是由一个圆形底面和一个点 (称为顶点)通过圆心与底面圆 周上的任意一点相连所形成的立 体图形。
圆锥的表示方法
圆锥可以用顶点和底面圆心所确 定的直线(称为圆锥的轴线)以 及底面圆来表示。
解释
这个公式是通过将圆锥的体积看 作是一个圆柱的体积的三分之一 来推导的,其中r是圆柱的半径,
h是圆柱的高。
应用
在计算圆锥的体积时,需要知道 圆锥的底面半径和高。
03 圆锥的表面积计算
圆锥表面积的计算公式
圆锥表面积计算公式
圆锥的表面积 = π × r × (l + l'),其 中 r 是底面半径,l 是圆锥的斜高,l' 是圆锥的母线。
圆锥旋转体的分类
根据圆锥旋转体的形状,可以分为正圆锥旋转体和斜交圆锥旋转体。
圆锥旋转体的几何特性
圆锥旋转体的表面积
01
圆锥旋转体的表面积等于其底面圆盘的面积加上侧面圆锥的侧
面积。
圆锥旋转体的体积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、已知圆锥的底面周长C和高h,如
何求体积V?
r =C÷∏÷2
S=∏ r 2
圆锥的表面积和体积
1
V= 3 S h
只列式不计算: 求下面各圆锥的体积 .
①列底式面:面积13 是×77..88平×方1.8米,高是1.8米。
②底面半径是4厘米,高是21厘米。
列式:
1 3
×3.14×4 2×21
③底面直径是6分米,高是6分米。
1.圆锥的高 连结顶点与底面圆心的线段.
2.底面半径
l 3.圆锥的母线
h
把连结圆锥顶点和底面圆周上的任
Or
意一点的线段叫做圆锥的母线。
圆锥的表面积和体积
1、圆锥有一个尖点,我们称它为 ( 顶点 ) 。
2、圆锥的底面是个( 圆 )形。 3、圆锥的侧面是个( 曲 )面, 4、从圆锥的顶点到底面圆心的距离
圆锥的侧面积 和全面积
圆锥的表面积和体积
圆锥的表面积和体积
圆锥的表面积和体积
圆锥的表面积和体积
圆锥的表面积和体积
圆锥的表面积和体积
圆锥
想一想:圆锥有什么特征
圆锥的表面积和体积
圆锥的特征:
h
侧面展开
扇形
底面
圆形
圆锥的表面积和体积
点击概念
圆锥是由一个底面和一个侧面围成的,它的底 面是一个圆,侧面是一个曲面.
圆锥的表面积和体积
三、判断:
1、圆柱体的体积一定比圆锥体的体积大( × )
2、圆锥的体积等于和它等底等高的圆柱体积 1
的。 √
3
3、正方体、长方体、圆锥体的体积都等于底面
积×高。
×
4、等底等高的圆柱和圆锥,如果圆柱体的体积 是27立方米,那么圆锥的体积是9立方米.(√)
圆锥的表面积和体积
学以致用: 3.把一个底面直径为8分米, 高3分米的圆柱形钢材,熔成 一个直径为12分米的圆锥形, 能熔多高?
B. 2a D. a3
圆锥的表面积和体积
二、填空:
用字1、母圆表锥示的是体(V积==13(s13
×底面积×高 h )。
),
2、圆柱体积的13 与和它(等底等高 )的
圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱 的体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
4、一个圆锥的底面积是12平方厘米,高 是6厘米,体积是( 24 )立方厘米。
体积的三分之一。
圆锥的表面积和体积
基 本 圆 柱 体积=底面积高 公 式 圆 锥 体积=底面积高÷3
V圆锥体
1 πr 2h 3
圆锥的表面积和体积
1、已知圆锥的底面半径r和高h,如
何求体积V?
2、已知圆S=锥∏r的2 底面直V径= d13 S和h高h,如
何求体积V?
r= d÷2 S=∏ r 2
1
V= 3 S h
探究新知
l 思考:
你能探究展开图中的圆心角n 与 r 、 之间的关系吗?
)n
l
h Or
圆锥的表面积和体积
1、如图,圆锥的底面半径OB=10cm,它的侧面展
开图的扇形的半径AB=30cm,则这个扇形圆心角
α的度数是
.
2、一个圆锥的侧面展开图是半径为1的半圆,则该 圆锥的底面半径是( )
圆锥的表面积和体积
圆锥的表面积和体积
例2、在打谷场上,有一个近似于 圆锥的小麦堆,测得底面直径是4 米,高是1.2米。每立方米小麦约 重735千克,这堆小麦约有多少千 克?(得数保留整千克)
4米
圆锥的表面积和体积
1.2米
探究题:
你能算出酒瓶的容积是多少毫 升来吗?
1004.8
30 10
8
20
圆锥的表面积和体积
如图,圆锥的底面半径为1,母线长为3,一 只蚂蚁要从底面圆周上一点B出发,沿圆锥 侧面爬到过母线AB的轴截面上另一母线AC上, 问它爬行的最短路线是多少表面积和体积
小结: 1.圆锥的侧面积和全面积
S侧 S扇 形 rl
S全S侧S底 rlr2
2. 展开图中的圆心角n与r、R之间的关系:
列式:
1 3
×3.14×(
6 2
)2 ×6
圆锥的表面积和体积
选择
1.冬天护林工人给圆 柱形的树干的下端涂 防蛀涂料,那么粉刷树 干的面积是指( B ).
A.底面积 B.侧面积 C.表面积 D.体积
圆锥的表面积和体积
2.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是(C)立方米.
A. a÷3 C. 3a
3、如图1,在正方形铁皮上剪下一个扇形和一个 半径为1cm的圆形,使之恰好围成图2所示的一个 圆锥,则圆锥的高为( )
圆锥的表面积和体积
如图,圆锥的底面半径为1,母线长为6,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬行 一圈再回到点B,问它爬行的最短路线是多少?
B’
A
6
B
C
1
圆锥的表面积和体积
是圆锥的( 高 )。
圆锥的表面积和体积
说一说下面哪些是圆锥,为什么?
√
√
×
×
√
圆锥的表面积和体积
圆锥的表面积和体积
探究新知 圆锥的底面半径、高线、母线长 三者之间的关系:
l2 h2 r2
l
h
已知一个圆锥的高为6cm,半 径为8cm,则这个圆锥的母线
Or
长为_______
圆锥的表面积和体积
探究新知 问题1: 1.沿着圆锥的母线,把一个圆锥的侧面展开,得 到一个扇形,这个扇形的弧长与底面的周长有什 么关系? 问题2: 2.圆锥侧面展开图是扇形,这个扇形的半径与圆 锥中的哪一条线段相等?
图23.3.7
圆锥的表面积和体积
S
A
O
B圆锥的表面积和体积
例:已知一个圆锥的底面半径为10cm,母线长为 15cm,求这个圆锥的侧面积和全面积分别是多少?
解:S 圆锥侧 = πrl =10×15π=150π (cm2)
S 圆锥全 = πrl +πr2 =150π+102π=250π (cm2)
圆锥的表面积和体积
360 l nr
圆锥的表面积和体积
童心玩具厂欲生产一种圣诞老人的帽子,其圆 锥形帽身的母线长为15cm,底面半 径为5cm,生产这种帽身10000个,你 能帮玩具厂算一算至少需多少平方 米的材料吗(不计接缝用料和余料, π取3 )?
l r
圆锥的表面积和体积
圆锥体积
圆锥的表面积和体积
等底等高的圆柱和圆锥, 圆锥的体积是圆柱