半导体基本知识

合集下载

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

半导体的基本知识

半导体的基本知识

半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。

半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。

以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。

绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。

半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。

2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。

电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。

能隙:价带和导带之间的能量差称为能隙。

半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。

4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。

杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。

掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。

5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。

这是许多半导体器件的基础,如二极管和晶体管。

6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。

晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。

集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。

7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。

光电子学:光电二极管、激光二极管等。

太阳能电池:利用半导体材料的光伏效应。

这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。

半导体的基本 知识

半导体的基本 知识
• 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大 类。锗和硅是最常用的元素半导体;化合物半导体包括l一V族化合物 (砷化嫁、磷化嫁等),II一VI族化合物(硫化福、硫化锌等)、氧化物(锰、 铬、铁、铜的氧化物),以及由l一V族化合物和B一VI族化合物组成的 固溶体(嫁铝砷、嫁砷磷等)。除上述晶态半导体外,还有非晶态的玻 璃半导体、有机半导体等。
下一页 返回
第二节 半导体二极管
• 二、二极管的结构和符号 • 将PN结的两个区,即P区和N区分别加上相应的电极引线引出,并
用管壳将PN结封装起来就构成了半导体二极管,其结构与图形符号 如图6一1所示,常见外形如图6一2所示。从P区引出的电极为阳极 (或正极),从N区引出的电极为阴极(或负极),并分别用A,K表示。 • 三、二极管的伏安特性 • 二极管的主要特性是单向导电性,其伏安特性曲线如图6一3所示(以 正极到负极为参考方向)。 • 1.正向特性 • 外加正向电压很小时,二极管呈现较大的电队,几乎没有正向电流通 过。曲线OA段(或OA‘段)称作死区,A点(或A‘点)的电压称为死区电 压,硅管的死区电压一般为0. 5 V,锗管则约为0. 1 V 。
下一页 返回
第一节 半导体的基本知识
• 电阻是随着温度的上升而降低的。这是半导体现象的首次发现。 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照 下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发 现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫 化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端 加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电, 这就是半导体的整流效应,也是半导体所特有的第三种特性。同年, 舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发 现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特 有的性质。

半导体基础知识

半导体基础知识
半导体基础知识 1.什么是导体、绝缘体、半导体?
容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。 不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。 所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半 导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思, 一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导 电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质) 所形成的半导体。杂质半导体有两类:N 型半导体和 P 型半导体。
多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此 处受到破坏。
7.常用半导体材料的晶体生长方向有几种?
我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶 格结构,常用半导体材料的晶体生长方向是<111>和<100>。
29.半导体芯片制造对厂房洁净度有什么要求?
空气中的一个小尘埃将影响整个芯片的完整性、成品率,并影响其电学性能和可*性,所以半导体芯片制造工艺需 在超净厂房内进行。1977 年 5 月,原四机部颁布的《电子工业洁净度等级试行规定》如下:
电子工业洁净度等级试行规定
洁净室等 洁净度 温度(℃) 相对湿度 正压值 噪声
电阻率 ρ=1/σ,单位为 Ω*cm
9.PN 结是如何形成的?它具有什么特性?
如果用工艺的方法,把一边是 N 型半导体另一边是 P 型半导体结合在一起,这时 N 型半导体中的多数载流子电子 就要向 P 型半导体一边渗透扩散。结果是 N 型区域中邻近 P 型区一边的薄层 A 中有一部分电子扩散到 P 型区域中去了, 如图 2-6 所示(图略)。薄层 A 中因失去了这一部分电子 而带有正电。同样,P 型区域中邻近 N 型区域一边的薄层 B 中有一部分空穴扩散到 N 型区域一边去了,如图 2-7 所示(图略)。结果使薄层 B 带有负电。这样就在 N 型和 P 型两 种不同类型半导体的交界面两侧形成了带电薄层 A 和 B(其中 A 带正电,B 带负电)。A、B 间便产生了一个电场, 这个带电的薄层 A 和 B,叫做 PN 结,又叫做阻挡层。

半导体基础知识

半导体基础知识

现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。

半导体基础知识

半导体基础知识

半导体基础知识1.什么是导体、绝缘体、半导体?容易导电的物质叫导体,如:⾦属、⽯墨、⼈体、⼤地以及各种酸、碱、盐的⽔溶液等都是导体。

不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯⽔、油、空⽓等都是绝缘体。

所谓半导体是指导电能⼒介于导体和绝缘体之间的物质。

如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。

半导体⼤体上可以分为两类,即本征半导体和杂质半导体。

本征半导体是指纯净的半导体,这⾥的纯净包括两个意思,⼀是指半导体材料中只含有⼀种元素的原⼦;⼆是指原⼦与原⼦之间的排列是有⼀定规律的。

本征半导体的特点是导电能⼒极弱,且随温度变化导电能⼒有显著变化。

杂质半导体是指⼈为地在本征半导体中掺⼊微量其他元素(称杂质)所形成的半导体。

杂质半导体有两类:N型半导体和P型半导体。

2.半导体材料的特征有哪些?(1)导电能⼒介于导体和绝缘体之间。

(2)当其纯度较⾼时,电导率的温度系数为正值,随温度升⾼电导率增⼤;⾦属导体则相反,电导率的温度系数为负值。

(3)有两种载流⼦参加导电,具有两种导电类型:⼀种是电⼦,另⼀种是空⽳。

同⼀种半导体材料,既可形成以电⼦为主的导电,也可以形成以空⽳为主的导电。

(4)晶体的各向异性。

3.简述N型半导体。

常温下半导体的导电性能主要由杂质来决定。

当半导体中掺有施主杂质时,主要靠施主提供电⼦导电,这种依靠电⼦导电的半导体叫做N型半导体。

例如:硅中掺有Ⅴ族元素杂质磷(P)、砷(As)、锑(Sb)、铋(Bi)时,称为N型半导体。

4.简述P型半导体。

当半导体中掺有受主杂质时,主要靠受主提供空⽳导电,这种依靠空⽳导电的半导体叫做P型半导体。

例如:硅中掺有Ⅲ族元素杂质硼(B)、铝(Al)、镓(Ga)、铟(In)时,称为P型半导体。

5.什么是半绝缘半导体材料?定义电阻率⼤于107Ω*cm的半导体材料称为半绝缘半导体材料。

如:掺Cr的砷化镓,⾮掺杂的砷化镓为半绝缘砷化镓材料。

掺Fe的磷化铟,⾮掺杂的磷化铟经退⽕为半绝缘磷化铟材料。

半导体的基本知识

半导体的基本知识
3.1 半导体的基本知识
3.2 PN结的形成及特性
3.3 二极管
3.4 二极管的基本电路及其分析方法
3.5 特殊二极管
3.1 半导体的基本知识
3.1.1 半导体材料
3.1.2 半导体的共价键结构 3.1.3 本征半导体、空穴及其导电作用
3.1.4 杂质半导体
3.1.1 半导体材料
导电能力(电阻率)介于导体和绝缘体之间的
物质,称为半导体。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体还具有有一些重要特点: Nhomakorabea1、光照或温度改变时,导电能力显著变化; 2、掺入某些微量杂质后,导电能力显著变化。
3.1.2 半导体的共价键结构
硅和锗的原子结构简化模型及晶体结构
3.1.3 本征半导体、空穴及其导电作用
本征半导体 —— 化学成分纯净的半导体。它在物理结构上呈单 晶体形态。(9个9) 空穴——共价键中的空位。 本征激发——在室温或光照 下,少数价电子可以获得足 够的能量挣脱共价键的束缚 称为自由电子,同时形成一 个空位的现象。
end
本征半导体、杂质半导体, 施主杂质、受主杂质,
N型半导体、P型半导体, 多数载流子、少数载流子
自由电子、空穴,
注意:
1、杂质离子虽然带电荷,但不能移动,因此不是载流子; 2、杂质半导体中虽然一种载流子占多数,但整个半导体仍 呈电中性; 3、杂质半导体的导电性能主要取决于多数载流子浓度,多 数载流子浓度取决于掺杂浓度,其值较大且稳定;少数载流子 浓度与本征激发有关,对温度敏感。
电子空穴对——由本征(热) 激发而产生的自由电子和空 穴总是成对出现。
3.1.3 本征半导体、空穴及其导电作用
空穴的移动——空穴的运动 是靠相邻共价键中的价电子 依次填充空穴来实现的。 复合——自由电子和空穴在 自由 电子 价电子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、电子技术三个分支介绍
1模拟电子技术
第一章 半导体二极管
第二章 半导体三极管及放大电路
第三章 集成运算放大器及其应用
第四章 直流稳压电源2.数字电子技术源自第五章 门电路及组合逻辑电路
第六章 触发器及时序逻辑电路
3.电力电子技术
第七章 晶闸管及其应用
第一章节、半导体的基本概念
1 什么是半导体 导 体: 导电率为105s.cm-1,量级,如金属。 导电率为10-22~10-14 s.cm-1量级,如:橡胶、云 绝缘体: 母、塑料,He,Ne,Ar等惰性气体。 半导体: 导电能力介于导体和绝缘体之间。如:硅、锗等。
二、PN结及其单向导电性
1. PN结
把P型半导体和N型半导体用特殊的工艺使其结 合在一起,就会在交界处形成一个特殊薄层,该薄 层称为“PN结”。PN结是制造半导体二极管、半导 体三极管、场效应管等各种半导体器件的基础。
PN结
2. PN结的单向导电性 (1)PN结加正向电压,PN结导通。
电源正极接P区,负极接N区,此时的外加电压称为“正向 电压”,或称“正向偏置”,简称“正偏”。开关S闭合后指示 灯泡HL亮,说明此时PN结电阻很小,像导体一样很容易 导电,这种现象称为“正向导通”。
综上所述: 当 PN 结正向偏置时,回路中将产生一个较大的 正向电流, PN 结处于 导通状态; 当 PN 结反向偏置时,回路中反向电流非常小, 几乎等于零, PN 结处于截止状态。
可见, PN 结具有单向导电性。
作业
电子技术基础习题册 第一章 半导体二极管 1.1 半导体的基本知识 一 填空题1-5 二判断题1 三选择题1-6
热敏电阻 二极管
光敏电阻 三极管
3 杂质半导体
纯净的半导体成为本征半导体,它的导电能力很弱。 但实际半导体不可能完全纯净。
利用半导体的参杂特性在本征半导体中掺入某些微量 元素作,可使半导体的导电性发生显著变化。掺入杂 质后的本征半导体称为杂质半导体。
根据掺入杂质的性质不同,杂质半导体分为两类:电 子型(N型)半导体和空穴型(P型)半导体。
结束!!!
谢谢!
(2)PN结加反向电压,PN结截止。 把电源的正负极对调后,这时电源负极接P区,正极接N 区,此时的外加电压称为“反向电压”,或称“反向偏置”, 简称“反偏”。开关S闭合后指示灯泡HL不亮,说明此时PN 结电阻很大,像绝缘体一样不能导电,这种现象称为“反 向截止”。
PN结加正向电压导通, 加反向电压截止,这就是PN 结的“单向导电性”。
2半导体的特点:
①热敏特性。大多数半导体对温度都比较敏感,且随温
度的升高导电能力增强,电阻减小。如热敏电阻器
②光敏特性。许多半导体在受光照射后,导电能力会增
强,电阻减小。如光敏电阻、光电二极管、光电探测器等
③掺杂特性。在纯净的半导体中参入微量的某种杂质元
素,导电能力会增强很多,电阻急剧减小。如半导体二极 管、半导体三极管
半导体基本知识
一、电子技术发展史
电子技术是十九世纪末、 二十世纪初开始发展起来 的新兴技术,二十世纪发 展最迅速,应用最广泛, 成为近代科学技术发展的 一个重要标志。
进入21世纪,人们面临的是以 微电子技术(半导体和集成电路为 代表)电子计算机和因特网为标志 的信息社会,高科技的广泛应用使 社会生产力和经济获得了空前的发 展。
现代电子技术在国防、科学、工 业、医学、通讯(信息采集、处 理、传输和交流)及文化生活等 各个领域中都起着巨大的作用。 现在的世界,电子技术无处不在。 收音机、彩电、音响、VCD、 DVD、电子手表、数码相机、微电 脑、大规模生产的工业流水线、 因特网、机器人、航天飞机、宇 宙探测仪,可以说,人们现在生 活在电子世界中,一天也离不开 它。
相关文档
最新文档