(精选)半导体基本知识
半导体基础知识

设VCC = 5V 加到A,B的 VIH=3V
VIL=0V 二极管导通时 VDF=0.7V
A BY 0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
规定2.3V以上为1 0V以下为0
A BY 0 00 0 11 1 01 1 11
二极管构成的门电路的缺点
• 电平有偏移 • 带负载能力差
第三章 门电路
3.1 概述 • 门电路:实现基本运算、复合运算的单元电路,如
与门、与非门、或门 ······
门电路中以高/低电平表 示逻辑状态的1/0
获得高、低电平的基本原理
高/低电平都允许有 一定的变化范围
正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1
3.2半导体二极管门电路
T1 , T2同时导通
若T1 , T2参数完全对称,VI
1 2
VDD时,VO
1 2 VDD
三、输入噪声容限
在VI 偏离VIH 和VIL的一定范围内,VO 基本不变; 在输出变化允许范围内,允许输入的变化范围称为输入噪声容限
VNH VOH(min) VIH (min) VNL VIL(max) VOL(max)
• 硅管,0.5 ~ 0.7V • 锗管,0.2 ~ 0.3V
• 近似认为:
• VBE < VON iB = 0 • VBE ≥ VON iB 的大小由外电路电压,电阻决定
iB
VBB VBE Rb
三极管的输出特性
• 固定一个IB值,即得一条曲线, 在VCE > 0.7V以后,基本为水平直线
iC f (VCE )
iC f (VCE )
三、双极型三极管的基本开关电路
半导体基础知识

半导体基础知识1. 本征半导体及其特点纯洁的半导体称为本征半导体。
在热“激发”条件下,本征半导体中的电子和空穴是成对产生的;当电子和空穴相遇“复合”时,也成对消逝;电子和空穴都是载流子;温度越高,“电子—空穴”对越多;在室温下,“电子—空穴”对少,故电阻率大。
2. 掺杂半导体及其特点(1 )N 型半导体:在本征硅或锗中掺入适量五价元素形成N 型半导体,N 型半导体中电子为多子,空穴为少子;电子的数目(掺杂+ 热激发)= 空穴的数目(热激发)+ 正粒子数;半导体对外仍呈电中性。
(2 )P 型半导体:在本征硅或锗中掺入适量三价元素,形成P 型半导体,其空穴为多子,电子为少子;空穴的数目(掺杂+ 热激发)= 电子的数目(热激发)+ 负粒子数;对外呈电中性。
在本征半导体中,掺入适量杂质元素,就可以形成大量的多子,所以掺杂半导体的电阻率小,导电力量强。
当N 型半导体中再掺入更高密度的三价杂质元素,可转型为P 型半导体;反之,P 型半导体也可通过掺入足够的五价元素而转型为N 型半导体。
3. 半导体中的两种电流( 1 )漂移电流:在电场作用下,载流子定向运动所形成的电流则称为漂移电流。
( 2 )集中电流:同一种载流子从浓度高处向浓度低处集中所形成的电流为集中电流。
4. PN 结的形成通过肯定的工艺,在同一块半导体基片的一边掺杂成P 型,另一边掺杂成N 型,P 型和N 型的交界面处会形成PN 结。
P 区和N 区中的载流子存在肯定的浓度差,浓度差使多子向另一边集中,从而产生了空间电荷和内电场;内电场将阻多子止集中而促进少子漂移;当集中与漂移达到动态平衡时,交界面上就会形成稳定的空间电荷层(或势垒区、耗尽层),即PN 结形成。
5. PN 结的单向导电性PN 结正向偏置时,空间电荷层变窄,内电场变弱,集中大于漂移,正向电流很大(多子集中形成),PN 结呈现为低电阻,称为正向导通。
正向压降很小,且随温度上升而减小。
PN 结反向偏置时,空间电荷层变宽,内电场增加,漂移大于集中,反向电流很小(少子漂移形成),PN 结呈现为高电阻,称为反向截止。
半导体的基本知识

半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。
半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。
以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。
绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。
半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。
2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。
电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。
能隙:价带和导带之间的能量差称为能隙。
半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。
4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。
杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。
掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。
5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。
这是许多半导体器件的基础,如二极管和晶体管。
6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。
晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。
集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。
7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。
光电子学:光电二极管、激光二极管等。
太阳能电池:利用半导体材料的光伏效应。
这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。
半导体基本知识

半导体基本知识一、半导体有关概念1、半导体半导体是导电能力介于导体与绝缘体之间的一种物体。
它内部运载电荷的粒子有电子载流子(带负电荷的自由电子)和空穴载流子(带正电荷的空穴)。
硅、锗、硒以及大多数金属氧化物和硫化物都是半导体。
2、晶体凡是原子按照一定规律、连续整齐地排列着的物体称为晶体。
半导体一般都具有这种结构,所以半导体也被称为晶体。
3、本征半导体本征半导体是完全纯净的(不含任何其它元素)、具有晶体结构的半导体。
本征半导体内部电子和空穴的数量在任何情况下总是相等的。
如锗单晶、硅单晶就是本征半导体。
4、半导体掺杂掺杂是指在本征半导体中掺进一定类型和数量的其它元素,掺进去的其它元素为杂质。
掺杂的目的是改善半导体的导电能力,亦即掺杂后,使半导体在原有的“电子-空穴对”的基础上,增加大量的电子或空穴。
5、N型半导体如果给本征半导体掺进某种微量的杂质后,使它获得大量电子,则掺有这种杂质的导体就称“电子型半导体”或“N型半导体”。
在N型半导体中,除“电子-空穴对”提供的载流子外。
主要的、大量的是电子载流子。
因此,电子称为多数载流子,而空穴则称少数载流子。
6、P型半导体如果本征半导体掺杂后能获得大量空穴,则这种半导体就称“空穴型半导体”或“P型半导体”。
在P型半导体中,除“电子-空穴对”提供的载流子外,主要的、大量的是空穴载流子,所以空穴称多数载流子,而电子则称少数载流子。
7、PN结将P型半导体和N型半导体用特殊工艺结合在一起时,由于P型半导体中的空穴多,N型半导体中的电子多,在交界面上,多数载流子就要分别向对方扩散,在交界处的两侧形成带电荷的薄层,称为空间电荷区,又称为PN结。
二、PN结的单向导电性1、PN结空间电荷区的一边带正电,另一边带负电,产生了PN结的内电场,其方向为N区的正电荷区指向P区的负电荷区,阻碍了P 区空穴进一步向N区扩散和N区电子向P区继续扩散。
2、如果把PN结的P区接电源正端,N区接电源负端,如上图(a),外加电场方向与内电场相反,并且外电场很强,这样,在外电场作用下,两侧的多数载流子不断越过PN结,形成正向电流。
半导体的基本知识

半导体的基本知识1. 导体、绝缘体和半导体物质按导电性能可分为导体、绝缘体和半导体。
物质的导电特性取决于原子结构。
(1)导体导体一般为低价元素, 如铜、铁、铝等金属, 其最外层电子受原子核的束缚力很小, 因而极易挣脱原子核的束缚成为自由电子。
因此在外电场作用下, 这些电子产生定向运动(称为漂移运动)形成电流, 呈现出较好的导电特性。
(2)绝缘体高价元素(如惰性气体)和高分子物质(如橡胶, 塑料)最外层电子受原子核的束缚力很强, 极不易摆脱原子核的束缚成为自由电子, 所以其导电性极差,可作为绝缘材Word文档 1料。
(3)半导体半导体的最外层电子数一般为4个,既不像导体那样极易摆脱原子核的束缚, 成为自由电子, 也不像绝缘体那样被原子核束缚得那么紧, 因此, 半导体的导电特性介于二者之间。
常用的半导体材料有硅、锗、硒等。
2. 半导体的独特性能金属导体的电导率一般在105s/cm量级;塑料、云母等绝缘体的电导率通常是10-22~10-14s/cm量级;半导体的电导率则在10-9~102s/cm量级。
半导体的导电能力虽然介于导体和绝缘体之间,但半导体的应用却极其广泛,这是由半导体的独特性能决定的:光敏性——半导体受光照后,其导电能力大大增强热敏性——受温度的影响,半导体导电能力变化很大;掺杂性——在半导体中掺入少量特殊杂质,其导电能力极大地增强;半导体材料的独特性能是由其内部的导电机理所决定的。
3.本征半导体纯净晶体结构的半导体称为本征半导体。
常用的半导体材料是硅和锗, 它们都是四价元素, 在原子结构中最外层轨道上有四个价电子。
如图1.1.1所示为便于讨论, 采用图 1.1.2 所示的简化原子结构模型。
把硅或锗材料拉制成单晶体时, 相邻两个原子的一对最外层电子(价电子)成为共有电子, 它们一方面围绕自身的原子核运动, 另一方面又出现在相邻原子所属的轨道Word文档 2上。
即价电子不仅受到自身原子核的作用, 同时还受到相邻原子核的吸引。
半导体基础知识(详细篇)

半导体基础知识(详细篇)中国半导体论坛半导体基础知识(详细篇)2.1.1 概念根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。
1. 导体:容易导电的物体。
如:铁、铜等2. 绝缘体:几乎不导电的物体。
如:橡胶等3. 半导体:半导体是导电性能介于导体和半导体之间的物体。
在一定条件下可导电。
半导体的电阻率为10-3~109 Ω·cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体特点:1) 在外界能源的作用下,导电性能显著变化。
光敏元件、热敏元件属于此类。
2) 在纯净半导体内掺入杂质,导电性能显著增加。
二极管、三极管属于此类。
2.1.2 本征半导体1.本征半导体——化学成分纯净的半导体。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
电子技术中用的最多的是硅和锗。
硅和锗都是4价元素,它们的外层电子都是4个。
其简化原子结构模型如下图:外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
2.本征半导体的共价键结构本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。
共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
如下图所示:硅晶体的空间排列与共价键结构平面示意图3.共价键共价键上的两个电子是由相邻原子各用一个电子组成的,这两个电子被成为束缚电子。
束缚电子同时受两个原子的约束,如果没有足够的能量,不易脱离轨道。
因此,在绝对温度T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。
只有在激发下,本征半导体才能导电4.电子与空穴当导体处于热力学温度0°K时,导体中没有自由电子。
半导体基础知识

半导体基础知识1.什么是导体、绝缘体、半导体?容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。
不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。
所谓半导体是指导电能力介于导体和绝缘体之间的物质。
如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。
半导体大体上可以分为两类,即本征半导体和杂质半导体。
本征半导体是指纯净的半导体,这里的纯净包括两个意思,一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。
本征半导体的特点是导电能力极弱,且随温度变化导电能力有显著变化。
杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质)所形成的半导体。
杂质半导体有两类:N型半导体和P型半导体。
2.半导体材料的特征有哪些?(1)导电能力介于导体和绝缘体之间。
(2)当其纯度较高时,电导率的温度系数为正值,随温度升高电导率增大;金属导体则相反,电导率的温度系数为负值。
(3)有两种载流子参加导电,具有两种导电类型:一种是电子,另一种是空穴。
同一种半导体材料,既可形成以电子为主的导电,也可以形成以空穴为主的导电。
(4)晶体的各向异性。
3.简述N型半导体。
常温下半导体的导电性能主要由杂质来决定。
当半导体中掺有施主杂质时,主要靠施主提供电子导电,这种依靠电子导电的半导体叫做N型半导体。
例如:硅中掺有Ⅴ族元素杂质磷(P)、砷(As)、锑(Sb)、铋(Bi)时,称为N型半导体。
4.简述P型半导体。
当半导体中掺有受主杂质时,主要靠受主提供空穴导电,这种依靠空穴导电的半导体叫做P型半导体。
例如:硅中掺有Ⅲ族元素杂质硼(B)、铝(Al)、镓(Ga)、铟(In)时,称为P型半导体。
5.什么是半绝缘半导体材料?定义电阻率大于107Ω*cm的半导体材料称为半绝缘半导体材料。
如:掺Cr的砷化镓,非掺杂的砷化镓为半绝缘砷化镓材料。
掺Fe的磷化铟,非掺杂的磷化铟经退火为半绝缘磷化铟材料。
半导体器件的基本知识

1.4.2 光敏二极管
a) 光敏二极管伏安特性曲线
b) 光敏二极管图形符号
图1-17 光敏二极管伏安特性曲线及图形符号
1.4.3 发光二极管
发光二极管简写为LED,其工作原理与光电二极管相反。 由于它采用砷化镓、磷化镓等半导体材料制成,所以在通 过正向电流时,由于电子与空穴的直接复合而发出光来。
a) 发光二极管图形符号
b) 发光二极管工作电路
图1-18 发光二极管的图形符号及其工作电路
1.5 双极型晶体管
• 双极型晶体管(Bipolar Junction Transistor, BJT),简称晶体管,它是通过一定的工艺 将两个PN结结合在一起的器件。由于PN结 之间相互影响,BJT表现出不同于单个PN 结的特性,具有电流放大作用,使PN结的 应用发生了质的飞跃。
1.输入特性曲线 UCE=0V的输入特性曲线类似二极管正向于特性曲线。UCE≥1V时,集电极 已反向偏置,而基区又很薄,可以把从发射极扩散到基区的电子中的绝大 部分拉入集电区。此后,UCE对IB就不再有明显的影响,其特性曲线会向 右稍微移动,但UCE再增加时,曲线右移很不明显,就是说UCE≥1V后的 输入特性曲线基本是重合的。所以,通常只画出UCE≥1V的一条输入特性 曲线。
PN结的两端外加不同极性的电压时,PN结呈现截然 不同的导电性能。
1.PN结外加正向电压
当外加电压V,正极接P区,负极接N区时,称PN结外加正 向电压或PN结正向偏置(简称正偏)。外加正向电压后,外 电场与内电场的方向相反,扩散与漂移运动的平衡被破坏。 外电场促使N区的自由电子进入空间电荷区抵消一部分正 空间电荷,P区的空穴进入空间电荷区抵消一部分负空间 电荷,整个空间电荷区变窄,内电场被削弱,多数载流子 的扩散运动增强,形成较大的扩散电流(正向电流)。在 一定范围内,外电场愈强,正向电流愈大,PN结呈现出一 个阻值很小的电阻,称为PN结正向导通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
掺入5价元素形成;少数载流 子(少子)是空穴, 由热激发形成。
N型半导体结构简图
2. P型半导体
P型半导体中掺入3价元素(硼B).多子是空穴,主要由掺 杂形成;少子是电子,由热激发形成。
P型半导体结构简图
应该注意到,半导体中的正负电荷是相等 的,因此保持电中性。
以上三个浓度基本上依次相差106/cm3 。
本节中的有关概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
end
个人观点供参考,欢迎讨论!
第二章 半导体二极管及其基本电路
2.1 半导体的基本知识 2.2 PN结的形成及特性 2.3 半导体二极管 2.4 二极管基本电路 2.5 特殊二极管
2.1 半导体的基本知识
1. 半导体材料
半导体
导体 纯
净(本征)
物质分类 半导体
(导电能力) 绝缘体 杂质半导体
本征半导体 化学成分纯净的半导体。它在物理结构上呈单晶体
形态。
半导体的导电能力介于导体、绝缘体之间,其导 电性能还有其独特的特点。常用的半导体材料有:
元素半导体:硅(Si)和锗(Ge)
化合物半导体:砷化镓(GaAs)等
2. 半导体共价键结构(硅)
硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它 们分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些 原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
本征激发
自由电子和空穴都称为载流子,自由电子的定 向运动形成了电子电流,空穴的定向运动也可 形成空穴电流,它们的方向相反。只不过空穴 的运动是靠相邻共价键中的价电子依次充填空 穴来实现的。
电子空穴移动
二.杂质半导体
在本征半导体中掺入某些微量元素作为杂质,可使半导体的 导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺 入杂质的本征半导体称为杂质半导体。
(a) 硅晶体的空间排列
+4
+4
+4
+4
+4
+4
+4
+4
+4
(b) 共价键结构平面示意图
3.本征激发
当半导体处于热力学温度0K时,其中只有束缚电子。当温度升 高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子 核的束缚,而参与导电,成为自由电子。这一现象称为本征激发, 也称热激发。
自由电子产生的同时 ,在其原来的共价键中 就出现了一个空位,原 子的电中性被破坏,呈 现出正电性,其正电量 与电子的负电量相等, 人们常称呈现正电性的 这个空位为空穴。
3. 杂质对半导体导电性的影响
掺入杂质对本征半导体的导电性有很大的影响, 一些典型的数据如下:
1 T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cm3
2 掺杂后 N 型半导体中的自由电子浓度: n=5×1016/cm3
3 本征硅的原子浓度: 4.96×1022/cm3