半导体器件工艺基础知识
半导体器件基础

自由电子 带负电荷 电子流
载流子
空穴 带正电荷 空穴流 +总电流
6
N型半导体和P型半导体
多余电子
N型半导体
硅原子
【Negative电子】
+4
+4 +4
在锗或硅晶体内
掺入少量五价元素
杂质,如磷;这样
+4
在晶体中就有了多 磷原子 余的自由电子。
+4
+5 +4 +4 +4
多数载流子——自由电子
少数载流子——空穴
不失真——就是一个微 弱的电信号通过放大器 后,输出电压或电流的 幅度得到了放大,但它 随时间变化的规律不能 变。
放大电路是模拟电路中最主要的电路,三极管是 组成放大电路的核心元件。
具有放大特性的电子设备:收音机、电视机、
手机、扩音器等等。
36
利用三极管组成的放大电路,最常用的接法是:基 极作为信号的输入端,集电极作为输出端,发射极 作为输入回路、输出回路的共同端(共发射极接法)
38
饱和工作状态
调节偏流电阻RP的阻值, 使基极电流充分大时,集电 极电流也随之变得非常大, 三极管的两个PN结则都处于 正向偏置。集电极与发射极 之间的电压很小,小到一定 程度会削弱集电极收集电子 的能力,这时Ib再增大, Ic也不能相应地增大了, 三极管处于饱和状态,集电 极和发射极之间电阻很小, 相当开关接通。
27
▪ 几种常见三极管的实物外形
大功率三极管
功率三极管
普通塑封三极管
28
▪ 三极管的分类
① 按频率分
高频管 低频管
硅管 ③ 按半导
体材料分 锗管
② 按功率分
半导体基础知识

生20%波动时,负载电压基本不变。
求:电阻R和输入电压 ui 的正常值。
解:令输入电压达到上限时,流过稳压管的电
流为Izmax 。
i
I zmax
U ZW RL
25mA
1.2ui iR U zW 25R 10
——方程1
(1-37)
令输入电压降到下限 时,流过稳压管的电 流为Izmin 。
i
iL
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
R
ui
DZ
iZRL uo
i
I
zm in
U ZW RL
10mA
0.8ui iR U zW 10R 10
——方程2
联立方程1、2,可解得:
ui 18.75V, R 0.5k
(1-38)
1.3.2 光电二极管
反向电流随光照强度的增加而上升。
I U
照度增加
(1-39)
1.3.3 发光二极管
有正向电流流过 时,发出一定波长 范围的光,目前的 发光管可以发出从 红外到可见波段的 光,它的电特性与 一般二极管类似。
注意:
1、空间电荷区中没有载流子。
半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。
半导体器件的基本知识

半导体器件的基本知识在当今科技飞速发展的时代,半导体器件已经成为了现代电子技术的核心基石。
从我们日常使用的智能手机、电脑,到各种先进的医疗设备、航空航天系统,半导体器件无处不在,深刻地影响着我们的生活和社会的发展。
那么,什么是半导体器件?它们是如何工作的?又有哪些常见的类型和应用呢?接下来,让我们一起走进半导体器件的世界,探寻其中的奥秘。
一、半导体的基本特性要理解半导体器件,首先需要了解半导体材料的特性。
半导体是一种导电性介于导体和绝缘体之间的材料,常见的半导体材料有硅(Si)、锗(Ge)等。
半导体的导电性可以通过掺杂等方式进行精确控制,这使得它们在电子器件中具有独特的应用价值。
半导体的一个重要特性是其电导特性对温度、光照等外部条件非常敏感。
例如,随着温度的升高,半导体的电导通常会增加。
此外,半导体还具有光电效应,即当半导体受到光照时,会产生电流或改变其电导特性,这一特性在太阳能电池、光电探测器等器件中得到了广泛应用。
二、半导体器件的工作原理半导体器件的工作原理主要基于 PN 结。
PN 结是在一块半导体材料中,通过掺杂工艺形成的P 型半导体区域和N 型半导体区域的交界处。
P 型半导体中多数载流子为空穴,N 型半导体中多数载流子为电子。
当P 型半导体和 N 型半导体结合在一起时,由于两种区域的载流子浓度差异,会发生扩散运动,形成内建电场。
在 PN 结上加正向电压(P 区接正,N 区接负)时,内建电场被削弱,多数载流子能够顺利通过 PN 结,形成较大的电流,此时 PN 结处于导通状态。
而加反向电压时,内建电场增强,只有少数载流子能够形成微小的电流,PN 结处于截止状态。
基于 PN 结的这一特性,可以制造出二极管、三极管等多种半导体器件。
三、常见的半导体器件1、二极管二极管是最简单的半导体器件之一,它只允许电流在一个方向上通过。
二极管在电路中常用于整流(将交流电转换为直流电)、限幅、稳压等。
例如,在电源适配器中,二极管组成的整流电路将交流市电转换为直流电,为电子设备供电。
半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。
半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。
用于制作半导体元件的材料通常用硅或锗材料。
(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。
掺入杂质后的半导体称为杂质半导体。
根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。
(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。
它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。
2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。
称这时的PN结处于导通状态。
当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。
称这时的PN结处于截止状态。
当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。
这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。
导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。
其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。
以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。
半导体器件基础

半导体器件基础半导体器件是由半导体材料制成的电子元件,用于控制和放大电流和电压。
常见的半导体器件有二极管、晶体管、场效应管、双极型晶体管、光电二极管等。
半导体器件的基础知识包括以下几个方面:1. 半导体材料:半导体器件主要使用硅(Si)和砷化镓(GaAs)等半导体材料。
半导体材料具有介于导体和绝缘体之间的电导特性,可以通过控制材料的掺杂来调节其导电性。
2. PN结:PN结是半导体器件中最基本的结构,由P型和N型半导体材料直接接触而成。
在PN结中,P型半导体中的空穴与N型半导体中的电子发生复合,形成一个电子云区,这称为耗尽区。
耗尽区的存在使得PN结具有正向导通和反向截止的特性。
3. 二极管:二极管是一种最简单的半导体器件,由PN结构成。
在正向偏置(即P端连接正电压)时,二极管导通,允许电流通过;在反向偏置(即N端连接正电压)时,二极管截止,电流无法通过。
二极管广泛用于整流和保护电路中。
4. 晶体管:晶体管是一种三层构造的半导体器件,通常分为NPN和PNP两种类型。
晶体管可以作为开关或放大器使用,可以控制一个输入电流或电压来控制另一个输出电流或电压。
晶体管的放大性能使得它在电子设备中有广泛的应用。
5. 场效应管:场效应管是一种基于电场效应的半导体器件,包括MOSFET(金属-氧化物-半导体场效应管)和JFET (结型场效应管)两种。
场效应管具有高输入电阻、低输入电流、低噪声等特点,常用于放大和开关电路中。
6. 光电器件:光电器件包括光电二极管和光电三极管,它们能够将光信号转换为电信号。
光电器件广泛应用于光通信、光电传感、光能转换等领域。
以上是半导体器件基础的概述,深入了解半导体器件还需要学习更多的电子物理和电路理论知识。
半导体重要基础知识点

半导体重要基础知识点
半导体是指具有介于导体和绝缘体之间电导率的材料。
它在现代电子
学中起着重要的作用,广泛应用于各种电子器件和技术中。
在学习半
导体的基础知识时,以下几个关键概念是不可或缺的。
1. 能带理论:
能带理论是解释半导体电导性质的基础。
它将固体材料中电子的能量
划分为能量带,包括导带和禁带。
导带中的电子可以自由移动,导致
材料具备良好的导电性;而禁带中没有电子,因此电子无法自由移动。
2. 纯净半导体:
纯净半导体由单种原子构成,并且没有杂质。
其中,硅是最常用的半
导体材料之一。
纯净的半导体通常表现为绝缘体,因为其禁带宽度较大,电子无法跃迁到导带。
3. 杂质掺杂:
为了改变半导体的导电性质,可以通过掺杂过程引入杂质。
其中,掺
入五价元素(如磷、砷)的半导体称为n型半导体,因为杂质的额外
电子可以增加导电性能;而掺入三价元素(如硼、铝)的半导体称为p 型半导体,因为杂质的缺电子位可以增加导电性能。
4. PN 结:
PN结是由n型半导体和p型半导体相接触而形成的结构。
在PN结中,形成了一个漏斗状的能带结构,其中P区域的缺电子位和N区域的额
外电子形成了势垒。
这个势垒可以控制电子的流动,使得PN结可以用
于逻辑门、二极管等电子器件中。
半导体作为现代电子技术的基础之一,无论是手机、计算机还是各种
智能设备,都离不开半导体器件的应用。
因此,熟悉半导体的基础知识对于理解和应用现代科技至关重要。
半导体器件工艺基础知识

半导体器件⼯艺基础知识半导体基础知识和半导体器件⼯艺第⼀章半导体基础知识 通常物质根据其导电性能不同可分成三类。
第⼀类为导体,它可以很好的传导电流,如:⾦属类,铜、银、铝、⾦等;电解液类:NaCl⽔溶液,⾎液,普通⽔等以及其它⼀些物体。
第⼆类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、⽊板等。
第三类为半导体,其导电能⼒介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,⼆、六族元素的化合物氧化物、硫化物等。
物体的导电能⼒可以⽤电阻率来表⽰。
电阻率定义为长1厘⽶、截⾯积为1平⽅厘⽶的物质的电阻值,单位为欧姆*厘⽶。
电阻率越⼩说明该物质的导电性能越好。
通常导体的电阻率在10-4欧姆*厘⽶以下,绝缘体的电阻率在109欧姆*厘⽶以上。
半导体的性质既不象⼀般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能⼒介于导体和绝缘体之间,⽽是由于半导体具有以下的特殊性质:(1) 温度的变化能显著的改变半导体的导电能⼒。
当温度升⾼时,电阻率会降低。
⽐如Si在200℃时电阻率⽐室温时的电阻率低⼏千倍。
可以利⽤半导体的这个特性制成⾃动控制⽤的热敏组件(如热敏电阻等),但是由于半导体的这⼀特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件⾃⾝产⽣的热量,需要考虑器件使⽤环境的温度等,考虑如何散热,否则将导致器件失效、报废。
(2) 半导体在受到外界光照的作⽤是导电能⼒⼤⼤提⾼。
如硫化镉受到光照后导电能⼒可提⾼⼏⼗到⼏百倍,利⽤这⼀特点,可制成光敏三极管、光敏电阻等。
(3) 在纯净的半导体中加⼊微量(千万分之⼀)的其它元素(这个过程我们称为掺杂),可使他的导电能⼒提⾼百万倍。
这是半导体的最初的特征。
例如在原⼦密度为5*1022/cm3的硅中掺进⼤约5X1015/cm3磷原⼦,⽐例为10-7(即千万分之⼀),硅的导电能⼒提⾼了⼏⼗万倍。
物质是由原⼦构成的,⽽原⼦是由原⼦核和围绕它运动的电⼦组成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体基础知识和半导体器件工艺第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。
第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。
第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。
第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。
物体的导电能力可以用电阻率来表示。
电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。
电阻率越小说明该物质的导电性能越好。
通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。
半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质:(1) 温度的变化能显著的改变半导体的导电能力。
当温度升高时,电阻率会降低。
比如Si在200℃时电阻率比室温时的电阻率低几千倍。
可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。
(2) 半导体在受到外界光照的作用是导电能力大大提高。
如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。
(3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。
这是半导体的最初的特征。
例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。
物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。
电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。
当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。
物体导电通常是由电子和电洞导电。
前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。
将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。
这时的半导体叫N型半导体。
施主杂质主要为五族元素:锑、磷、砷等。
将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。
受主杂质主要为三族元素:铝、镓、铟、硼等。
电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞快。
电洞和电子运动速度的大小用迁移率来表示,迁移率愈大,截流子运动速度愈快。
假如把一些电洞注入到一块N型半导体中,N型就多出一部分少数载子――电洞,但由于N型半导体中有大量的电子存在,当电洞和电子碰在一起时,会发生作用,正负电中和,这种现象称为复合。
单个N型半导体或P型半导体是没有什么用途的。
但使一块完整的半导体的一部分是N型,另一部分为P型,并在两端加上电压,我们会发现有很奇怪的现象。
如果将P型半导体接电源的正极,N型半导体接电源的负极,然后缓慢地加电压。
当电压很小时,一般小于0.7V时基本没有电流流过,但大于0.7V以后,随电压的增加电流增加很快,当电压增加到一定值后电流几乎就不变化了。
这样的连接方法为正向连接,所加的电压称为正向电压。
将N型半导体接电源的正极,P型半导体接电源的负极,当电压逐渐增大时,电流开始会有少量的增加,但达到一定值后电流就保持不变,并且电流值很小,这个电流叫反向饱和电流、反向漏电流。
当电压继续加到一定程度时,电流会迅速增加,这时的电压称为反向击穿电压。
这是由于载子(电子和电洞)的扩散作用,在P型和N型半导体的交界面附近,由于电子和电洞的扩散形成了一个薄层(阻挡层),这个薄层称作PN接面。
在没有外加电压时,PN接面本身建立起一个电场,电场的方向是由N区指向P区,从而阻止了电子和电洞的继续扩散。
当外加正电压时,削弱了原来存在于PN接面中的电场,在外加电场的作用下,N区的电子不断地走向P区,P区的电洞不断地走向N区,使电流流通。
当外加反向电压时,加强了电场阻止电子和电洞流通的作用,因此电流很难通过。
这就是PN接面的单向导电性。
半导体二极管是由一个PN接面组成,而三极管由两个PN接面组成:射极接面和集极接面。
这两个接面把晶体管分成三个区域:发射区、基区和集电区。
由于这三个区域的电类型不同,又可分为PNP晶体管和NPN晶体管。
PNP 晶体管和NPN晶体管虽然形式不同,但工作原理是一样的,都可以用PN接面论来说明。
2 半导体器件和工艺第一节半导体器件的发展过程1947年发明了晶体管,有了最简单的点接触电晶体和接面型晶体管。
五十年代初期才开始出现市售的晶体管产品。
在1959年世界上第一块集成电路问世,由于当时工艺手段的缺乏,例如采用化学方法选择的腐蚀台面、蒸发时采用金属掩模板来形成引线,使得线宽限制在100um左右,集成度很低。
在1961年出现了硅平面工艺后,利用氧化、扩散、光刻、外延、蒸发等平面工艺,在一块硅片上集成多个组件,因而诞生了平面型集成电路。
六十年代初,实现了平面集成电路的商品化,这时的集成电路是由二极管、三极管和电阻互连所组成的简单逻辑门电路。
随后在1964年出现MOS集成电路,从此双极型和MOS型集成电路并行发展,集成电路也由最初的小规模集成电路发展到中规模集成、大规模集成甚至于超大规模集成电路。
第二节半导体器件的分类大多数半导体器件可以分成四组:双极器件、单极器件、微波器件和光子器件。
双极器件可分成PN接面二极管、双极晶体管即三极管、晶体闸流管(又称晶闸管、可控硅)。
单极器件可分成接面型场效应晶体管(JFET)、金属—半导体场效应晶体管(MESFET)、MIS、金属—氧化物—半导体场效应晶体管(MOSFET)。
微波器件和光子器件各方面要求比较高,生产比较困难。
目前本公司主要生产双极器件(三极管和集成电路),另外还有少量的单极器件(场效应晶体管)和可控硅、芯片等。
第三节 半导体器件生产工艺概述半导体器件制造技术是一门新兴的电子工业技术,它是发展电子计算机、宇航、通讯、工业自动化和家用电器等电子技术的基础。
半导体技术的发展是与半导体器件的发展紧密相连的。
如用合金技术制成的合金管,然后又相继出现了合金扩散管、台面管等。
1960年左右硅平面工艺和外延技术的诞生,半导体器件的制造工艺获得了重大突破,使得半导体器件向微型化、低功耗和高可靠性方向发展。
平面晶体管具有许多优点:(一) 由于平面管在整个制造过程中硅片表面及最后的管芯表面都覆盖有一层二氧化硅薄膜。
使P—N结面始终不直接裸露在外面,因此一方面可减少生产过程中受到污染,同时也可避免在管子制成后环境中水汽、各种离子和气体分子对P—N接面状态的影响,从而有效地提高了平面管的可靠性和稳定性。
(二) 提高了晶体管的参数性能,主要是三项:1.噪音低。
晶体管的低频噪音与接面状态关系非常密切,而平面管P—N结面有二氧化硅保护,表面非常稳定,所以比其它类型的晶体管都要小。
2.反向电流特别小。
由于二氧化硅的保护,使接面比较洁净,因此表面漏电流非常小,使得反向电流特别小。
3.高频大功率特性好。
通过光刻和选择扩散可以得到电极图形十分精致复杂的晶体管,使晶体管的高频大功率性能有了很大的提高。
(三)特别适合于大量的成批生产且参数一致性好。
平面管管芯是用选择扩散、蒸发电极等工艺制成,在硅片上可同时生产许多管芯,而且平面工艺比较稳定,重复性好,所以一致性也比其它类型的晶体管好。
第四节 硅外延平面管制造工艺以NPN管为例硅外延平面管的结构如图其主要工艺流程如下所示: SIO2 E BP 外延层C nn 衬底图5-2 硅外延平面管结构(1)切、磨、抛衬底(2)外延(3)一次氧化(4)基区光刻(5)硼扩散/硼注入、退火(6)发射区光刻(7)磷扩散(磷再扩)(8)低氧(9)刻引线孔(10)蒸铝(11)铝反刻(12)合金化(13)CVD(14)压点光刻(15)烘焙(16)机减(17)抛光(18)蒸金(19)金合金(20)中测。
下面对上述各工序进行简单说明。
(1)切、磨、抛:根据管子的性能选择相应的单晶硅,按要求的厚度沿(111)面进行切割,然后用金刚砂进行研磨,最后用抛光粉进行抛光,使表面光亮,无伤痕。
(2)外延:在低电阻率的硅片上外延生长一层电阻率较高的硅单晶,这样高电阻率的外延层可提高集电极的击穿电压,低电阻率的衬底硅片可降低集电极的串联电阻,减少饱和压降。
(3)一次氧化(基区氧化):将硅片放在高温炉中进行氧化使表面生长一层一定厚度的二氧化硅薄膜。
(4)一次光刻(基区光刻):在二氧化硅层上,按器件要求的基区图形刻出窗口,使杂质只能通过此窗口进入硅片,而不能进入有二氧化硅覆盖的硅片其它区域。
基区光刻要求窗口、边缘平整,无小凸起和针孔。
(5)硼扩散/硼注入、退火:采用扩散或注入的方法在N型的外延层中形成P 型的导电区—基区。
采用注入的方法需使用退火来恢复注入对晶格的破坏以及激活注入进的硼原子。
(6)发射区光刻:为发射区磷扩散刻出一定图形的窗口。
要求同基区光刻。
(7)磷扩散(磷再扩):形成发射区的过程。
改变再扩条件来改变参数β值和BV CEO的值。
(8)低氧:在整个硅片上生长一层氧化层以进行引线光刻,同时也可进行放大系数β的微调。
(9)引线孔光刻:刻出电极引线接触窗口。
要求引线孔不刻偏,减少针孔。
(10)蒸铝:用真空蒸发的方法将铝蒸发到硅片表面。
(11)反刻铝:刻蚀掉电极引线以外的铝层,留下电极窗口处的铝作为电极内引线。
(12)合金化:蒸发在硅表面的铝和硅之间的接触不是欧姆接触,必须通过合金化使其变成欧姆接触。
(13)CVD:在硅片表面淀积一层二氧化硅,作为布线的最后钝化层,作为电极间绝缘,消除有害缺陷。
(14)压点光刻:刻蚀出压焊点。
(15)烘焙:改变硅片的表面状况,减小小电流不好。
(16)机减:根据硅片功率耗散的要求,减薄至所要求的厚度。
(17)抛光:使减薄后的表面更加平整。
(18)蒸金:在硅片背面蒸上一薄层高纯度金,提高电路的开关速度,而且便于以后芯片烧结。
(19)金合金:使金与硅形成更好的接触,防止在烧结时金脱落。
(20)中测:将参数不合格的管芯剔除。
半导体集成电路制造工艺基本与平面晶体管差不多。
具体流程如下:(1)衬底制备 (2)埋层氧化 (3)埋层光刻 (4)埋层扩散 (5)外延 (6)隔离氧化 (7) 隔离光刻 (8)隔离扩散 (9)基区氧化 (10)基区光刻 (11)硼扩散/硼注入、退火 (12)发射区光刻(13)磷扩散(磷再扩) (14)低氧 (15)刻引线孔 (16)蒸铝 (17)铝反刻 (18)合金化 (19)CVD (20)压点光刻 (21)烘培 (22)中测。