常用半导体器件基础知识讲解

合集下载

半导体及其常用器件资料

半导体及其常用器件资料
值得注意的是,由于本征激发随温度的升高而加剧,导致 电子—空穴对增多,因而反向电流将随温度的升高而成倍增 长。反向电流是造成电路噪声的主要原因之一,因此,在设 计电路时,必须考虑温度补偿问题。
章目录
电工电子技术
1. 半导体中少子的浓度虽然很低 ,但少子对温度 非常敏感,因此温度对半导体器件的性能影响很 大。而多子因浓度基本上等于杂质原子的掺杂浓
是这种半导体的导 电主流。
+4
+4
+4
在室温情况下,本征硅中的磷杂质等于10-6数量级时,电 子载流子的数目将增加几十万倍。掺入五价元素的杂质半导
体由于自由电子多而称为电子型半导体,也叫做N型半导体。
章目录
电工电子技术
+4
+- 4
+4
掺入硼杂质的硅半
+
B
导体晶格中,空穴 载流子的数量大大
+4
+4
+4
章目录
电工电子技术
+4
+4
+4
自由电子载流子运动可以形
容为没有座位人的移动;空穴
载流子运动则可形容为有座位
+4
+4
+4 的人依次向前挪动座位的运动。
半导体内部的这两种运动总是
共存的,且在一定温度下达到
动态平衡。
+4
+4
+4
半导体的导电机理
半导体的导电机理与金属导体导电机理有本质上的区别: 金属导体中只有自由电子一种载流子参与导电;而半导体中 则是本征激发下的自由电子和复合运动形成的空穴两种载流 子同时参与导电。两种载流子电量相等、符号相反,即自由 电子载流子和空穴载流子的运动方向相反。
学习与归纳 度,所以说多子的数量基本上不受温度的影响。
2. 半导体受温度和光照影响,产生本征激发现象而出现电子、空 穴对;同时,其它价电子又不断地 “转移跳进”本征激发出现 的空穴中,产生价电子与空穴的复合。在一定温度下,电子、空 穴对的激发和复合最终达到动态平衡状态。平衡状态下,半导体 中的载流子浓度一定,即反向电流的数值基本不发生变化。

1.1半导体基础知识

1.1半导体基础知识
无外电场力作用时,扩散与漂移达到动态平衡,空间电荷 区具有一定宽度,形成PN结。有电位差Uho、无电流。
P、N两区杂质浓度相等——对称结 P、N两区杂质浓度不相等——不对称结 高掺杂浓度区域 用N+表示
离子密 度小
P
_ _ _ _ _ _
空间电荷 层较厚
+ + + + + +
N+
离子密 度大
空间电荷 层较薄
导电。
半导体--导电性能介于导体和绝缘体之间的物质。
大多数半导体器件所用的主要材料是硅(Si)和锗(Ge)。
半导体的几个重要特性: (1) 热敏特性
(2)光敏特性 (3)掺杂特性 半导体导电性能是由其原子结构决定的。
最常用的半导体材料


硅(Si)、锗(Ge),均为四价元素,它们原子的最外层电子
受原子核的束缚力介于导体与绝缘体之间。
二、 PN 结的单向导电性
PN结正向偏置—— 当外加直流电压使PN结P型半导体的一
端的电位高于N型半导体一端的电位时,称PN结正向偏置, 简称正偏。 PN结反向偏置—— 当外加直流电压使PN结N型半导体的一 端的电位高于P型半导体一端的电位时,称PN结反向偏置,
简称反偏。 正向偏置——PN结外加正向电压(P+,N-)
杂质半导体有两种 N (Negative)型半导体 P (Positive)型半导体
一、 N 型半导体
掺入五价杂质元素(如磷、砷)的杂质半导体
掺入少量五价杂质元素磷 +4 +4 +4
P
+4
+4
+4
+4
+4
+4

1.1 半导体基础知识

1.1 半导体基础知识
1.1 1.2 1.3 1.4 1.5
半导体基础知识 二极管 晶体管 场效应晶体管 半导体器件技能训练
诚信
善思
崇德
励志
1.1 半导体基础知识
1.1 .1 半导体特点 1.1.2 PN结的单向导电性
诚信
善思
崇德
励志
1.1.1 半导体特点
一、物质根据其导电性能的不同可分为三大类 1、导体
容易导电、电阻率小于10-4Ω /cm的物质,例如金、银、 铜、铝、铁银等金属材料;
一、PN结的形成——多子扩散
PN结特点: 多子被耗尽 剩余不能移动的带电离子 存在内电场,且阻碍多子运动
诚信
善思
崇德
励志
1.1.2 PN结的单向导电性
一、PN结的形成——少子漂移
PN结特点: 多子被耗尽 剩余不能移动的带电离子 存在内电场,且阻碍多子运动,利于少子漂移 诚信 善思 PN结对外呈电中性
3、掺杂特性
半导体的导电能力因掺入适量杂质而发生很大的变化; 在材料硅中, 只要掺入亿分之一的硼, 电阻率就会 下降到原来的几万分之一
诚信 善思 崇德 励志
1.1.1 半导体特点
三、 本征半导体
纯净的、结构排列整齐的半导体晶体称为本征半导体。
硅和锗的原子结构 简化模型
硅和锗的晶体结构
诚信 善思 崇德 励志
崇德
励志
1.1.2 PN结的单向导电性
二、PN结的单向导电性
PN结外加正偏电压导通
PN结外加反偏电压截止
诚信
善思
崇德
励志
1.1.1 半导体特点
1、两种载流子——自由电子与空穴
硅和锗的晶体结构
热激发产生的自由电子和空穴

半导体知识点总结

半导体知识点总结

半导体知识点总结半导体是一种介于导体和绝缘体之间的材料,它具有一些特殊的电子性质,因此在现代电子技术中具有重要的应用。

本文将对半导体的基本概念、特性、原理以及应用进行详细的介绍和总结。

一、半导体的基本概念1、半导体材料半导体材料是一类电阻率介于导体和绝缘体之间的材料,它具有一些特殊的电子能带结构。

常见的半导体材料包括硅(Si)、锗(Ge)、GaAs等。

2、半导体的掺杂半导体材料经过掺杂后,可以改变其电子结构和导电性质。

常见的掺杂有N型和P型两种类型,分别通过掺入杂质原子,引入额外的自由电子或空穴来改变半导体的导电性质。

3、半导体的结构半导体晶体结构通常是由大量的晶格排列组成,具有一定的晶格参数和对称性。

在半导体器件中,常见的晶体结构有晶体管、二极管、MOS器件等。

二、半导体的特性1、能带结构半导体的能带结构是其特有的性质,它决定了半导体的导电性质。

半导体的能带结构通常包括价带和导带,其中价带中填充电子的能级较低,而导带中电子的能级较高,两者之间的能隙称为禁带宽度。

2、电子迁移和载流子在外加电场的作用下,半导体中的自由电子和空穴可以在晶体内迁移,并形成电流。

这些移动的载流子是半导体器件工作的基础。

3、半导体的导电性半导体的导电性是由自由电子和空穴共同贡献的,通过掺杂和外加电场的调制,可以改变半导体的导电性。

三、半导体的原理1、P-N结P-N结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。

P-N结具有整流、放大、开关等功能,是二极管、光电二极管等器件的基础。

2、场效应器件场效应器件是一类利用外加电场控制半导体导电性质的器件,包括MOS场效应管、JFET场效应管等。

场效应器件具有高输入电阻、低功耗等优点,在数字电路和模拟电路中得到广泛应用。

3、半导体光电器件半导体光电器件是一类利用光电效应将光能转化为电能的器件,包括光电二极管、光电导电器件等。

光电器件在光通信、光探测、光伏等领域有着重要的应用。

半导体的基本 知识

半导体的基本 知识
• 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大 类。锗和硅是最常用的元素半导体;化合物半导体包括l一V族化合物 (砷化嫁、磷化嫁等),II一VI族化合物(硫化福、硫化锌等)、氧化物(锰、 铬、铁、铜的氧化物),以及由l一V族化合物和B一VI族化合物组成的 固溶体(嫁铝砷、嫁砷磷等)。除上述晶态半导体外,还有非晶态的玻 璃半导体、有机半导体等。
下一页 返回
第二节 半导体二极管
• 二、二极管的结构和符号 • 将PN结的两个区,即P区和N区分别加上相应的电极引线引出,并
用管壳将PN结封装起来就构成了半导体二极管,其结构与图形符号 如图6一1所示,常见外形如图6一2所示。从P区引出的电极为阳极 (或正极),从N区引出的电极为阴极(或负极),并分别用A,K表示。 • 三、二极管的伏安特性 • 二极管的主要特性是单向导电性,其伏安特性曲线如图6一3所示(以 正极到负极为参考方向)。 • 1.正向特性 • 外加正向电压很小时,二极管呈现较大的电队,几乎没有正向电流通 过。曲线OA段(或OA‘段)称作死区,A点(或A‘点)的电压称为死区电 压,硅管的死区电压一般为0. 5 V,锗管则约为0. 1 V 。
下一页 返回
第一节 半导体的基本知识
• 电阻是随着温度的上升而降低的。这是半导体现象的首次发现。 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照 下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发 现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫 化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端 加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电, 这就是半导体的整流效应,也是半导体所特有的第三种特性。同年, 舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发 现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特 有的性质。

第七章半导体器件基础

第七章半导体器件基础
1 m+2
Cj =
εε 0 S
d
=
C0 V 1 + V D
n
1 变容二极管指数: n = m+2
C ~ V特性
电路与电子学基础
m -13/7 -3/2 -1 0 1 2 3 4 n 7 2 1 1/2 1/3 1/4 1/5 1/6 势垒电容 PN结类型 超突变结
Cj =
C0 V 1 + V D
电路与电子学基础
第七章 半导体器件基础
7.1 半导体的基本知识 7.2 半导体二极管 7.3 半导体三极管 7.4 晶体管的主要参数 7.5 场效应晶体管
电路与电子学基础
7.1 半导体的基本知识
• 电阻率介于10e-3∼10e8Ω.cm,可变化区间大, 电阻率介于10e- 10e8Ω.cm,可变化区间大, 10e 介于金属(10e-6Ω.cm~10e-3Ω.cm) 介于金属(10e-6Ω.cm~10e-3Ω.cm)和绝缘体 10e8Ω.cm~10e20Ω.cm) (10e8Ω.cm~10e20Ω.cm)之间 • 热敏性:纯净半导体负温度系数,掺杂半导体在 热敏性:纯净半导体负温度系数, 一定温度区域出现正温度系数 • 光敏性:具有光敏性,用适当波长的光照射后, 光敏性:具有光敏性,用适当波长的光照射后, 材料的电阻率会变化, 材料的电阻率会变化,即产生所谓光电导 • 掺杂性:半导体中存在着电子与+ +
多子扩散电流
电路与电子学基础
补充耗尽层失去的多子,耗尽层窄, 补充耗尽层失去的多子,耗尽层窄,E 少子飘移 又失去多子,耗尽层宽, 又失去多子,耗尽层宽,E 多子扩散
内电场E
P型半导体 - - - - - - - - - - -

半导体重要基础知识点

半导体重要基础知识点
半导体是指具有介于导体和绝缘体之间电导率的材料。

它在现代电子
学中起着重要的作用,广泛应用于各种电子器件和技术中。

在学习半
导体的基础知识时,以下几个关键概念是不可或缺的。

1. 能带理论:
能带理论是解释半导体电导性质的基础。

它将固体材料中电子的能量
划分为能量带,包括导带和禁带。

导带中的电子可以自由移动,导致
材料具备良好的导电性;而禁带中没有电子,因此电子无法自由移动。

2. 纯净半导体:
纯净半导体由单种原子构成,并且没有杂质。

其中,硅是最常用的半
导体材料之一。

纯净的半导体通常表现为绝缘体,因为其禁带宽度较大,电子无法跃迁到导带。

3. 杂质掺杂:
为了改变半导体的导电性质,可以通过掺杂过程引入杂质。

其中,掺
入五价元素(如磷、砷)的半导体称为n型半导体,因为杂质的额外
电子可以增加导电性能;而掺入三价元素(如硼、铝)的半导体称为p 型半导体,因为杂质的缺电子位可以增加导电性能。

4. PN 结:
PN结是由n型半导体和p型半导体相接触而形成的结构。

在PN结中,形成了一个漏斗状的能带结构,其中P区域的缺电子位和N区域的额
外电子形成了势垒。

这个势垒可以控制电子的流动,使得PN结可以用
于逻辑门、二极管等电子器件中。

半导体作为现代电子技术的基础之一,无论是手机、计算机还是各种
智能设备,都离不开半导体器件的应用。

因此,熟悉半导体的基础知识对于理解和应用现代科技至关重要。

第一章半导体基础知识

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。

〖本章学时分配〗本章分为4讲,每讲2学时。

第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。

半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。

2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。

在热力学温度零度和没有外界激发时,本征半导体不导电。

3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合。

在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。

4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。

第一章常用半导体器件 (2)


Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

半导体行业必备知识

半导体行业必备知识标题: 半导体行业必备知识:从基础概念到未来发展引言:半导体行业是现代科技和电子行业的核心,对我们的生活产生了深远的影响。

为了更好地理解和掌握半导体行业,本文将从基础概念开始,逐步深入探讨相关主题。

我们将介绍半导体的定义、材料和工艺,以及半导体芯片的制造和应用。

此外,我们还将讨论半导体行业的未来发展趋势和挑战,以及对环境和社会的影响。

第一部分:半导体基础知识1. 半导体的定义和特性- 解释什么是半导体,以及半导体材料的特性。

- 讨论半导体材料的能带结构和导电性质。

2. 半导体材料- 介绍常见的半导体材料,如硅(Si)和砷化镓(GaAs)。

- 分析不同材料的特点、优缺点和在半导体行业中的应用。

3. 半导体器件和工艺- 介绍半导体器件的基础结构,如二极管和晶体管。

- 解释常用的半导体工艺,如光刻和离子注入,以及它们对半导体器件性能的影响。

第二部分:半导体芯片制造和应用1. 半导体芯片制造工艺- 详细描述半导体芯片的制造过程,包括晶圆加工、沉积、刻蚀和清洗等步骤。

- 分析不同制造工艺对芯片性能和产量的影响。

2. 半导体芯片应用领域- 探讨半导体芯片在各个领域的应用,如通信、计算机、医疗和能源。

- 强调半导体芯片在现代科技和电子领域的关键作用。

第三部分:半导体行业的未来发展1. 新兴半导体技术- 介绍新兴的半导体技术,如碳纳米管和量子点。

- 分析这些技术在提高芯片性能和创新应用方面的潜力。

2. 挑战和趋势- 讨论半导体行业面临的挑战,如技术复杂性和成本压力。

- 分析行业的发展趋势,如人工智能和物联网对半导体需求的增长。

第四部分:半导体行业的环境和社会影响1. 可持续发展- 探讨半导体行业在可持续发展方面的挑战和努力。

- 分析行业在能耗、废弃物管理和碳减排方面的可持续性措施。

2. 社会责任- 强调半导体行业在社会责任方面的作用,如创造就业机会和支持教育项目。

- 讨论行业在社会和经济发展中的贡献和责任。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档