半导体器件基础知识

合集下载

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

半导体基础知识

半导体基础知识

第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。

多子。

3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。

4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。

5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。

半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。

从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。

这一流动,就形成了一个Ib。

这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。

6、
展开。

半导体的基本知识

半导体的基本知识

半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。

半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。

以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。

绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。

半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。

2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。

电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。

能隙:价带和导带之间的能量差称为能隙。

半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。

4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。

杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。

掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。

5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。

这是许多半导体器件的基础,如二极管和晶体管。

6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。

晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。

集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。

7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。

光电子学:光电二极管、激光二极管等。

太阳能电池:利用半导体材料的光伏效应。

这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

半导体基础知识

半导体基础知识
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
结电容: C j Cb Cd
清华大学 华成英 hchya@
§2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
导通电压
0.6~0.8V 0.1~0.3V
反向饱 和电流
开启 电压
温度的 电压当量
开启电压
0.5V 0.1V
反向饱和电流
1µA以下 几十µA
从二极管的伏安特性可以反映出: 1. 单向导电性 u i IS (eU T 1) 正向特性为
指数曲线
若正向电压 UT,则i ISe u
u UT
3、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
二、杂质半导体
1. N型半导体
多数载流子 杂质半导体主要靠多数载流 子导电。掺入杂质越多,多子 浓度越高,导电性越强,实现 导电性可控。
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u )
i IS (e
u UT
1)
(常温下 UT 26m ) V
材料
硅Si 锗Ge

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识在当今科技飞速发展的时代,半导体器件已经成为了现代电子技术的核心基石。

从我们日常使用的智能手机、电脑,到各种先进的医疗设备、航空航天系统,半导体器件无处不在,深刻地影响着我们的生活和社会的发展。

那么,什么是半导体器件?它们是如何工作的?又有哪些常见的类型和应用呢?接下来,让我们一起走进半导体器件的世界,探寻其中的奥秘。

一、半导体的基本特性要理解半导体器件,首先需要了解半导体材料的特性。

半导体是一种导电性介于导体和绝缘体之间的材料,常见的半导体材料有硅(Si)、锗(Ge)等。

半导体的导电性可以通过掺杂等方式进行精确控制,这使得它们在电子器件中具有独特的应用价值。

半导体的一个重要特性是其电导特性对温度、光照等外部条件非常敏感。

例如,随着温度的升高,半导体的电导通常会增加。

此外,半导体还具有光电效应,即当半导体受到光照时,会产生电流或改变其电导特性,这一特性在太阳能电池、光电探测器等器件中得到了广泛应用。

二、半导体器件的工作原理半导体器件的工作原理主要基于 PN 结。

PN 结是在一块半导体材料中,通过掺杂工艺形成的P 型半导体区域和N 型半导体区域的交界处。

P 型半导体中多数载流子为空穴,N 型半导体中多数载流子为电子。

当P 型半导体和 N 型半导体结合在一起时,由于两种区域的载流子浓度差异,会发生扩散运动,形成内建电场。

在 PN 结上加正向电压(P 区接正,N 区接负)时,内建电场被削弱,多数载流子能够顺利通过 PN 结,形成较大的电流,此时 PN 结处于导通状态。

而加反向电压时,内建电场增强,只有少数载流子能够形成微小的电流,PN 结处于截止状态。

基于 PN 结的这一特性,可以制造出二极管、三极管等多种半导体器件。

三、常见的半导体器件1、二极管二极管是最简单的半导体器件之一,它只允许电流在一个方向上通过。

二极管在电路中常用于整流(将交流电转换为直流电)、限幅、稳压等。

例如,在电源适配器中,二极管组成的整流电路将交流市电转换为直流电,为电子设备供电。

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

半导体器件基础

二、半导体二极管及其特性
半导体二极管,也叫晶体二极管。它由一个PN结构成,具有单向导电性,是整流电路的核心器件。
几种常见二极管的外形
二极管的结构及电路符号 二极管 = PN结 + 管壳 + 引线
二极管的特性——单向导电性
二极管在电路中受外加电压控制共有两种工作状态: 正向导通和反向截止。 正向导通特性: 正向电压达到一定程度(硅二极管为0.6V,锗二极管为0.2V), 二极管导通,正向电流增加很快,导通时正向电压有一个很小的变化,就会引起正向电流很大的变化,两引脚之间的电阻很小,相当于开关接通。
小结
半导体材料的导电性能介于导体和绝缘体之间。半导体具有热敏、光敏、杂敏等特性。常用的半导体材料是硅和锗,并被制作成晶体。 半导体导电时有两种载流子(自由电子和空穴)参与形成电流。在纯净的半导体中掺入不同的微量杂质,可以得到N型半导体(电子型)和P型半导体(空穴型)。 P型半导体和N型半导体相连接在结合处形成PN结,PN结的基本特性是具有单向导电性。
多数载流子——自由电子 少数载流子——空穴
N型半导体主要是电子导电。
N型半导体和P型半导体
P型半导体 【Positive空穴】
1
在锗或硅晶体内掺入少量三价元素杂质,如硼;这样在晶体中有了多余的空穴。
2
空穴
3
硼原子
4
硅原子
5
多数载流子——空穴 少数载流子——自由电子
6
P型半导体主要是空穴导电。
7
PN结及其增大,PN结被电击穿,失去单向导电性。如果没有适当的限流措施,PN结会被热烧毁。
综上所述
PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流,PN结导通(相当开关闭合); PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流,PN结截止(相当开关断开)。 由此可以得出结论:PN结具有单向导电性(开关特性)。

半导体器件的基础知识

半导体器件的基础知识半导体器件,听起来是不是有点高大上?其实啊,它就像我们生活里那些隐藏在幕后,却起着超级大作用的小能手。

就说咱们现在用的手机吧,那可是个半导体器件的大集合。

你看啊,手机里的芯片,就像人的大脑一样,控制着整个手机的运行。

这个芯片呢,就是一种典型的半导体器件。

半导体是个啥玩意儿呢?简单来讲,它就像是一种有特殊脾气的材料。

既不像导体那么热情好客,电流在里面跑得飞快;也不像绝缘体那么冷漠,电流根本进不去。

半导体啊,它就像是个有点小傲娇的家伙,电流在它里面的通行情况是可以被控制的。

咱再打个比方,半导体就像一扇有魔法的门。

有时候它可以开得大大的,让电流这个小客人畅通无阻地跑过去;有时候呢,它又会把门关得紧紧的,电流就只能在门外干着急。

这多神奇啊!那半导体器件是怎么做到控制电流的呢?这就不得不提到半导体里面的一些小秘密了。

半导体里有两种很重要的东西,一种叫电子,一种叫空穴。

这电子就像是一个个调皮的小豆子,空穴呢,就像是小豆子们跑走之后留下的小坑。

它们在半导体里跑来跑去,就像一群小朋友在操场上做游戏。

当我们给半导体加上一些特殊的条件,比如说电压啊,就像是给这些小朋友们下了一些特殊的指令,它们就会按照我们的想法来运动,这样就可以控制电流的大小和方向了。

像二极管这种半导体器件,就像是一个非常有原则的小卫士。

它只允许电流从一个方向通过,就像一个单行道。

如果电流想从反方向走,哼,二极管就会把它挡得死死的。

这在电路里可太有用了。

比如说在给电池充电的时候,就可以利用二极管的这个特性,防止电流倒流,保护电池不被损坏。

这就好比是在一条河上建了一个只能单向流水的小水坝,水只能按照我们想要的方向流,多聪明的设计啊。

还有三极管呢,这个家伙就更厉害了。

它就像是一个电流的小指挥官。

一点点小的电流变化,经过三极管这么一放大,就会变成很大的电流变化。

这就像我们在舞台上用一个小喇叭,本来很小的声音,通过喇叭一放大,就变得震耳欲聋了。

半导体重要基础知识点

半导体重要基础知识点
半导体是指具有介于导体和绝缘体之间电导率的材料。

它在现代电子
学中起着重要的作用,广泛应用于各种电子器件和技术中。

在学习半
导体的基础知识时,以下几个关键概念是不可或缺的。

1. 能带理论:
能带理论是解释半导体电导性质的基础。

它将固体材料中电子的能量
划分为能量带,包括导带和禁带。

导带中的电子可以自由移动,导致
材料具备良好的导电性;而禁带中没有电子,因此电子无法自由移动。

2. 纯净半导体:
纯净半导体由单种原子构成,并且没有杂质。

其中,硅是最常用的半
导体材料之一。

纯净的半导体通常表现为绝缘体,因为其禁带宽度较大,电子无法跃迁到导带。

3. 杂质掺杂:
为了改变半导体的导电性质,可以通过掺杂过程引入杂质。

其中,掺
入五价元素(如磷、砷)的半导体称为n型半导体,因为杂质的额外
电子可以增加导电性能;而掺入三价元素(如硼、铝)的半导体称为p 型半导体,因为杂质的缺电子位可以增加导电性能。

4. PN 结:
PN结是由n型半导体和p型半导体相接触而形成的结构。

在PN结中,形成了一个漏斗状的能带结构,其中P区域的缺电子位和N区域的额
外电子形成了势垒。

这个势垒可以控制电子的流动,使得PN结可以用
于逻辑门、二极管等电子器件中。

半导体作为现代电子技术的基础之一,无论是手机、计算机还是各种
智能设备,都离不开半导体器件的应用。

因此,熟悉半导体的基础知识对于理解和应用现代科技至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N区 内电场 外电场
漂移运动加强形成反向电流 IR IR = I少子 ? 0
外电场使少子背离 PN 结移动, 空间电荷区变宽。
PN 结的单向导电性:正偏导通,呈小电阻,电流较大; 反偏截止,电阻很大,电流近似为零。
2.2 晶体二极管
2.2.1 晶体二极管的结构、符号、类型
构成: PN 结 + 引线 + 管壳 = 二极管(Diode )
Uth = 0.5 V (硅管) 0.1 V (锗管)
U ? Uth
iD 急剧上升
击 穿
死区 电压
UD(on) = (0.6 ? 0.8) V 硅管 0.7 V (0.2 ? 0.4) V 锗管 0.3 V
︱U(BR) ︱> ︱U︱ > 0 iD = IS < 0.1 ? A(硅)几十 ? A (锗) ︱U ︱> ︱U(BR) ︱ 反向电流急剧增大 (反向击穿 )
漂 移:
自由电子和空穴在电场作用下的定向运动。
两种载流子
两种载流子的运动
电子(自由电子) 自由电子(在共价键以外 )的运动
空穴 (带正电 )
空穴(在共价键以内 )的运动
结论: 1. 本征半导体中电子空穴成对出现,且数量少; 2. 半导体中有电子和空穴两种载流子参与导电; 3. 本征半导体导电能力弱,并与温度有关 。
1. PN 结的伏安特性
iD ? I S (euD /UT ? 1)
反向饱 和电流
温度的 电压当量
玻尔兹曼 常数
UT
?
kT q
电子电量
当 T = 300(27?C):
UT = 26 mV
二极管的伏安特性
0 ? U ? Uth iD = 0
iD /mA
U (BR) IS
反 向
反向特性 O
正向特性 Uth uD /V
1. PN 结(PN Junction )的形成 载流子的 浓度差引起多子的 扩散
P区
N区
内建电场
复合使交界面 形成空间电荷区 (耗尽层) 空间电荷区特点 : 无载流子, 阻止扩散进行,利于少子的漂移。
扩散和漂移达到 动态平衡 扩散电流 等于漂移电流,
总电流 I = 0。
2. PN 结的单向导电性
击穿电压在 6 V 左右时,温度系数趋近零。
iD / mA
60 40 20 –50 –25
0 0.4 0.8 uD / V
– 0.02
– 0.04
硅管的伏安特性
iD / mA
15 10 5
– 50 – 25
–0.01 0 0.2 0.4 uD / V
–0.02
锗管的伏安特性
温度对二极管特性的影响
符号:A (anode )
C (cathode )
分类:
硅二极管 按材料分
锗二极管
点接触型 按结构分 面接触型
平面型
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
铝合金 小球
正极引线 PN 结
N型锗
金锑 合金
负极引线
底座
面接触型
P N
P 型支持衬底
集成电路中平面型
2.2.2 晶体二极管的伏安特性
反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。 热击穿 — PN 结烧毁。
反向击穿原因 : 齐纳击穿 :反向电场太强,将电子强行拉出共价键。 (Zener ) (击穿电压 < 6 V,负温度系数 )
雪崩击穿:反向电场使电子加速,动能增大,撞击 使自由电子数突增。 (击穿电压 > 6 V,正温度系数)
(1) 外加正向电压(正向偏置)— forward bias
IF P 区
外电场
N区 内电场
扩散运动加强形成正向电流 IF
外电场使多子向 PN 结移动, 中和部分离子使空间电荷区变窄
IF = I多子 ? I少子 ? I多子
限流电阻
(2) 外加反向电压(反向偏置) — reverse bias
IR
P区
(2)简化模型(恒压模型)
iD uD
UD(on)
u D = UD(on)
0.7 V (Si) 0.3 V (Ge)
2.2.3 晶体二极管的主要参数
iD IF
U (BR)
URM O
uD
1. IF — 最大整流电流 (最大正向平均电流) 2. URM — 最高反向工作电压 ,为 U(BR) / 2 3. IR — 反向电流(越小单向导电性越好 )
4. fM — 最高工作频率 (超过时单向导电性变差 )
*影响工作频率的原因 — PN 结的电容效应
结论: 1. 低频时,因结电容很小,对 PN 结影响很小。
高频时,因容抗增大,使 结电容分流 ,导致单向 导电性变差。 2. 结面积小时结电容小,工作频率高。
? 半导体二极管的型号
? 国家标准对半导体器件型号的命名举例如下:
? 2AP9
?
用数字代表同类型器件的不同型号
?
用字母代表器件的类型,P 代表普通管
?
用字母代表器件的材料,A代表N 型Ge
?
B 代表P 型Ge ,C代表N型Si ,D 代表P 型Si
硅(锗)的原子结构
硅(锗)的共价键结构 自 由 电 子
简化 模型
惯ቤተ መጻሕፍቲ ባይዱ核
空 穴
价电子 (束缚电子)
空穴
空穴可在共 价键内移动
本征激发:
在室温或光照下价电子获得足够能量摆 脱共价键的束缚成为自由电子,并在共价键 中留下一个空位 (空穴)的过程。 复 合:
自由电子和空穴在运动中相遇重新结合 成对消失的过程。
iD / mA 90?C
60
20?C
40
20 –50 –25
0 0.4
uD / V
– 0.02
T 升高时,
UD(on) 以 (2 ? 2.5) mV/ ?C 下降
2.电路模型 (1)理想模型(开关模型)
特性
iD uD
符号及
等效模型
S
S
正偏导通, uD = 0;反偏截止, iD = 0 U(BR) = ?
第2章半导体器件基础
半导体器件是构成各种电路的基础
2.1 半导体的基本知识
半导体的特点
① 导电能力介于导体与绝缘体之间
② 受到外界光和热的刺激时 ,导电能力会有显 著变化
③ 在纯净半导体中加入微量元素导电能力会 有显著变化
2.1 半导体的基本知识
? 2.1.1 本征半导体 本征半导体:纯净的半导体 载流子:自由运动的带电粒子 共价键:相邻原子共有价电子所形成的束缚
2.1.2 杂质半导体
N型
+4
+4
+4
1. N 型半导体
电子 为多数载流 子 空穴 为少数载流 子
+4
+5
+4
磷原子(施主原子)
自由电子
载流子数 ? 电子数
P型
+4
+4
+4
+4
+3
硼原子 (受主杂质 )
+4 空穴
载流子数 ? 空穴数
2. P 型半导体
空穴 — 多子 电子 — 少子
2.1.3 PN 结及其单向导电性
相关文档
最新文档