02 、开关电源基本拓扑结构
开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck 拓扑型开关电源就是属于串联式的开关电源。
上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
开关电源拓扑结构。

D1
NU o NU o Ui
N是变压器的变压比
Uo
Up Ni
iL
iL1 N
Hale Waihona Puke I L max N
2Io N
2U o NR
Ui D1Ts NL
i L1
Ui D1Ts L
L Ui D1Ts R 2U o
Flyback变换器的优缺点比较
优点: 1、电路简单,能高效提供多路直流输出,因此适合多组输 出的要求,并可通过调节占空比D1的大小升压或降压。 2、输出功率为20~100w,可以同时输出不同的电压且有较 好的电压调整率。不需接输出滤波电感,使反激变换器成本 降低,体积减小。 缺点: 1、输出的纹波电压较大,外特性差,负载调整精度不高, 因此输出功率受到限制,通常应用于150W 以下。适用于相对 固定的负载。 2、与其他隔离变换器相比效率较低。
K由接通突然转为关断瞬间,流过变压器初级线 圈的电流i1突然为0,由于磁通不能突变,因此, 在K关断的Toff期间,变压器铁心中的磁通主要由 N2线圈回路中的电流来维持,N2中产生反激电流 ,流过D向电容C和负载R供电。
开关管导通 时等效电路
开关管关断 时等效电路
Buck-Boost拓扑结构简介
反激式变压器开关电源的工作情况同BUCK-BOOST拓扑极为相似。
另两种电感电流模式的介绍
CCM模式 D1+D2=1
DCM模式 D1+D2<1
Uo D1 Ui (D1 D2 )
二、Boost拓扑结构——升压式变换电路(非隔离)
Boost变换器:也称升压式变换器,是一种输出电压高 于输入电压的单管不隔离直流变换器。 该稳压电路元器件与前面讲的Buck变换电路一样,只是 摆放位置不同,由此导致其功能也不同。
开关电源的基本拓扑结构

总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。
开关电源拓扑结构

开关电源拓扑结构回顾Lloyd H·Dixon Jr前言本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。
工作方式的选择对整体电路特性有很大的影响。
所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。
三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。
本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。
一、三种基本拓扑结构:三种基本的拓扑结构降压式,升压式,反激式如图1所示。
串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC的变换),不作论述。
这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。
理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。
有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。
三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。
例如:降压调整器的功能是使输出电压V0小于输入电压Vin,并和它Vin 有相同的极性。
升压电路的作用是使V大于Vin,并且有相同的极性。
反激拓扑电路的作用是使V0既可大于也可小于Vin,但是两者极性相反。
二、断流工作模式:在电感电流断续方式下,或者说“断流模式”下,降压、升压和反激电路的动作方式是相似的,电感电流在每个开关周期的最后部分期间为零(因此不连续)。
在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。
在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。
开关电源基本拓扑结构剖析

Vout Dy Vin Dy D
(1.12)
Io
1 Ts
I Lf max 2
(Ton
T' off
)
1 2 I Lf max(Dy D)
(1.13)
开关电源基本拓扑
开关电源技术——郑琼林
9
电感电流临界连续
2 I o Lf max i
1
(1.14)
iLf
max
Vin Vo Lf
DyTs
(1.15)
IoG
(1 Dy )Dy 2Lf fs
Vin
Fig 1.4 Vin=const
开关电源基本拓扑
开关电源技术——郑琼林
11
Vout = constant (输出电压恒定) For Vo=Vin Dy, so eq.(1.16) can be reformed as:
I oG
(1 2L
Dy f fs
)
Fig 3.1 Configuration of Buck/Boost converter main circuit
开关电源基本拓扑
开关电源技术——郑琼林
15
电感电流连续时的工作模式 (CCD)
Mode 1
Fig 3.2
Mode 2
开关电源基本拓扑
开关电源技术——郑琼林
16
电流连续时(CCM)的工作原理(operating principle)
Vout
Fig 1.5 Vout=const
开关电源基本拓扑
开关电源技术——郑琼林
12
开关电源基本拓扑结构
二、并联型——boost converter
升压式(Boost)变换器是一种输出电压等于或高于输入电压的单管非隔离直流变换 器。下图给出了它的电路拓扑图。Boost变换器的主电路由开关管Q,二极管 D,输出滤波电感Lf和输出滤波电容Cf构成。
开关电源的基本拓扑结构

反相型(Inverting)
总结词
反相型开关电源是输出电压与输入电压相位 相反的电源转换器。
详细描述
反相型开关电源主要由开关管、储能元件 (电容器)和二极管组成。当开关管导通时, 输入电压加在电容器上,电能转化为电场能 储存;当开关管断开时,电容器放电,输出 电压为输入电压减去二极管的压降,从而达 到改变输出电压相位的目的。
输出滤波器通常由电容、电感和电阻组成,能够有效地抑制纹波电压和电磁干扰。
输出滤波器的性能对电源的输出电压和电流的稳定性和精度具有重要影响。
控制电路
控制电路:用于控制开关管的 通断时间,实现电源的稳压或 稳流输出。
控制电路通常由比较器、运放、 逻辑门电路等组成,能够根据 输出电压或电流的变化调整开 关管的通断时间。
正激式(Forward)
总结词
正激式开关电源是输出电压与输入电压相位相同的电源转换器。
详细描述
正激式开关电源主要由开关管、储能元件(电感器)和变压器组成。当开关管导通时, 输入电压加在电感器上,电能转化为磁能储存;当开关管断开时,变压器原边产生反向 电动势,输出电压为输入电压减去二极管的压降,从而达到提高输出电压幅度的目的。
反激式(Flyback)
要点一
总结词
反激式开关电源是输出电压与输入电压相位相反的电源转 换器。
要点二
详细描述
反激式开关电源主要由开关管、储能元件(变压器原边) 和二极管组成。当开关管导通时,输入电压加在变压器原 边,电能转化为磁能储存;当开关管断开时,变压器副边 产生反向电动势,输出电压为输入电压减去二极管的压降 ,从而达到改变输出电压相位的目的。
升压型(Boost)
总结词
升压型开关电源是输出电压大于输入电压的电源转换器。
常用的开关电源拓扑结构-基础电子

常用的开关电源拓扑结构-基础电子下面简单介绍一下常用的开关电源拓扑结构。
Buck电路首先我们要讲的就是Buck电路。
Buck电路也成为降压(step-down)变换器。
它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。
Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。
反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
应用多的是单端反激式开关电源。
优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。
Boost电路Boost(升压)电路是基本的反激变换器。
Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
上面的图就是Boost电路图。
Boost电路是一个升压电路,它的输出电压高于输入电压。
Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。
Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。
它的电路图如下:上面提到的Buck和Boost电路,都是输出与输入共地,在电路上没有隔离。
采用变压器后,输出与输入电气隔离,可以多路输出。
而反激变换器是隔离变换器中简单的一种。
它分为两种工作模式,断续模式反激变换器和连续模式反激变换器。
开关电源拓扑结构全解

开关电源拓扑结构全解!什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。
最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。
开关电源的拓扑结构,常见拓扑大约有14种,每种都有自身的特点和适用场合。
选择原则是要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。
因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。
错误的选择会使电源设计一开始就注定失败。
下面为大家整理汇总了开关电源20种基本拓扑,帮助系统掌握每种电路结构的工作原理与基本特性。
一、20种开关电源拓扑对比常见的基本拓扑结构:■Buck 降压■Boost 升压■Buck-Boost 降压-升压■Flyback 反激■Forward 正激■Two-Transistor Forward 双晶体管正激■Push-Pull 推挽■Half Bridge 半桥■Full Bridge 全桥■SEPIC■C’uk二、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关,基本的脉冲宽度调制波形定义如下:三、Buck降压特点:■把输入降至一个较低的电压■可能是最简单的电路■电感/电容滤波器滤平开关后的方波■输出总是小于或等于输入■输入电流不连续(斩波)■输出电流平滑四、Boost升压特点:■把输入升至一个较高的电压■与降压一样,但重新安排了电感、开关和二极管■输出总是比大于或等于输入(忽略二极管的正向压降)■输入电流平滑■输出电流不连续(斩波)五、Buck-Boost降压-升压特点:■电感、开关和二极管的另一种安排方法■结合了降压和升压电路的缺点■输入电流不连续(斩波)■输出电流也不连续(斩波)■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.13)
开关电源基本拓扑
开关电源技术——郑琼林
9
电感电流临界连续
1 oI x a m fLi 2
Vin Vo iLf max DyTs Lf
(1.14)
(1.15)
若用IoG表示临界电流连续的负载电流, then
I oG I o
开关电源基本拓扑
1 I Lf max 2
I oG
iLf I Lf max
Vin V Ton in Ts Dy Lf Lf
(3.9)
iLf I Lf max where D
Dy Vo Vin D
Vo Ts D Lf
' Toff
(3.10)
Ts
(1 Dy )
(3.11)
I in I Lf
I o
1 I Lf max ( Dy D) 2
开关电源技术——郑琼林 18
开关电源基本拓扑
Fundamental relationship
iLf () iLf ( ) iLf
Dy Vo From (3.2 ) & (3.4) V 1 Dy in
(3.5) (3.6)
I Lf
Io 1 Dy
(3.7)
VQ VD Vin Vo
(3.12)
V D I i in Dy D 2L f f s
(3.13)
开关电源技术——郑琼林 21
开关电源基本拓扑
电感电流临界连续
V sTyD f L2
ni
1 ni I x am fLi 2
(3.14)
设ILfG是临界连续电流电感平均值, then
I LfG
I oG
1 I i I Lf max
电流连续时的工作模式 (CCD)
Mode 1
Fig 1.2
开关电源基本拓扑 开关电源技术——郑琼林
Mode 2
3
电流连续时(CCM)的工作原理(operating principle)
Assumptions:
1. 所用电力电子器件理想,即Q和D的导通和关断时间为0,通态电压为0, 断态漏电流为0;
开关电源基本拓扑
开关电源技术——郑琼林
4
Mode 1 [0, Ton]
Lf
diLf dt
Vin Vout
(1.1)
iLf ( )
Vin Vout V V Ton in out Ts Dy Lf Lf
(1.2)
开关电源基本拓扑
开关电源技术——郑琼林
5
Mode 2 [Ton, Ts]
开关电源基本拓扑 开关电源技术——郑琼林 11
Vout = constant (输出电压恒定) For Vo=Vin Dy, so eq.(1.16) can be reformed as:
I oG
(1 Dy ) 2L f f s
Vout
Fig 1.5 Vout=const
开关电源基本拓扑 开关电源技术——郑琼林 12
(1.9)
7
开关电源技术——郑琼林
电流断续时的工作模式 (DCD)
Mode 1
Mode 2
Mode 3
Fig 1.3
开关电源基本拓扑 开关电源技术——郑琼林 8
电流断续时(DCM)的工作原理(operating principle) 及基本关系
iLf
Vin Vout V V Ton in out Ts Dy (1.10) Lf Lf
Vin V o 1 Dy Dy
(3.8)
Q DyTs I o Vo Cf Cf
开关电源基本拓扑
开关电源技术——郑琼林
19
电感电流断续时的工作模式 (DCD)
Mode 1
Mode 2
Mode 3
Fig 3.3
开关电源基本拓扑 开关电源技术——郑琼林 20
电流断续时(DCM)的工作原理(operating principle) 及基本关系
Fig 3.1 Configuration of Buck/Boost converter main circuit
开关电源基本拓扑
开关电源技术——郑琼林
15
电感电流连续时的工作模式 (CCD)
Mode 1
Fig 3.2
开关电源基本拓扑 开关电源技术——郑琼林
Mode 2
16
电流连续时(CCM)的工作原理(operating principle)
开关电源基本拓扑
开关电源技术——郑琼林
25
开关电源基本拓扑结构
五、Sepic converter
Sepic变换器是由Boost变换器和Buck/Boost变换器串联而成. 他将两只开关管合并为一 只开关管。下图中给出了它的电路拓扑图。Sepic变换器的主电路由开关管Q,二极管 D,输出滤波电感L1、L2和输出滤波电容C1、Cf构成。
开关电源基本拓扑
开关电源技术——郑琼林
28
开关电源基本拓扑结构
八、fly-back converter
由buck-boost推演而得.
特点: 1.电路简单,效率高; 2.输出电压纹波较大; 3.处理功率在150W以下; 4.应用于电压和负载调整率 要求不高的场合(6-10%); 5.小功率多组输出特别有效; 6.变压器工作原理与其他类型 的隔离变换器不同; 7.变压器铁芯必须加气隙.
开关电源基本拓扑
开关电源技术——郑琼林
26
开关电源基本拓扑结构
六、Zeta converter
Zeta变换器是由Buck/Boost变换器和Buck变换器串联而成. 他将两只开关管合并 为一只开关管。下图中给出了它的电路拓扑图。Zeta变换器的主电路由开关管Q, 二极管D,输出滤波电感L1、L2和输出滤波电容C1、Cf构成。
开关电源基本拓扑
开关电源技术——郑琼林
27
开关电源基本拓扑结构
七、 Forward converter
Forward converter 是在Buck converter 中插入一个transformer 得到的.
特点:
1.电路比较简单,铜耗较低; 2.输出电压电流纹波较小; 3.变压器磁芯单边磁化; 4.开关管峰值电流较低; 5.变压器是个纯粹的变压器; 6.变压器铁芯不必加气隙; 但 在有的铁芯中为了减少Br,需 加很小的气隙.
开关电源基本拓扑 开关电源技术——郑琼林 29
开关电源基本拓扑结构
九、push-pull converter
A. 特点:
1、磁芯利用率高; 2、存在铁芯偏磁; 3、器件承受电压高。
开关电源基本拓扑
开关电源技术——郑琼林
(1.11)
iLf
Vout V Toff out Ts D Lf Lf
' Toff
where D
Ts
(1 Dy )
(1.12)
Dy Vout Vin Dy D
Io
1 I Lf max ' (Ton Toff ) Ts 2 1 I Lf max ( Dy D) 2
开关电源基本拓扑结构
二、并联型——boost converter
升压式(Boost)变换器是一种输出电压等于或高于输入电压的单管非隔离直流变换 器。下图给出了它的电路拓扑图。Boost变换器的主电路由开关管Q,二极管 D,输出滤波电感Lf和输出滤波电容Cf构成。
开关电源基本拓扑
开关电源技术——郑琼林
Lf
diLf dt
Vout
(1.3)
iLf ( )
Vout V Toff out Ts (1 Dy ) Lf Lf
(1.4)
开关电源基本拓扑
开关电源技术——郑琼林
6
Fundamental relationship
iLf () iLf ( ) iLf (1.5)
13
开关电源基本拓扑结构
三、倒极性——buck-boost converter
主电路拓扑和控制方式(Circuit topology and control mode)
升降压式(Buck/Boost)变换器是由Buck变换器和Boost变换器串联而成. 他将两只开 关管合并为一只开关管。图3.1给出了它的电路拓扑图。Buck/Boost变换器的主电路由 开关管Q,二极管D,输出滤波电感Lf和输出滤波电容Cf构成。
开关电源基本拓扑结构
开关电源基本拓扑
开关电源技术——郑琼林
1
开关电源基本拓扑结构
一、串联型——buck converter
降压式(Buck)变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换 器。下图给出了它的电路拓扑图。Buck变换器的主电路由开关管Q,二极管 D,输出滤波电感Lf和输出滤波电容Cf构成。
Vin Vout Dy 2L f f s
(1.16)
开关电源技术——郑琼林
10
Vin = constant (输入电压恒定) For Vo=Vin Dy, so eq.(1.16) can be reformed as:
I oG
(1 Dy ) Dy 2L f f s
Vin
Fig 1.4 Vin=const
(3.15)
若用IoG表示临界电流连续的负载电流, then
1 iLf (1 Dy ) I Lf (1 Dy ) 2
(3.16)
22
开关电源基本拓扑
开关电源技术——郑琼林
Vin = constant (输入电压恒定) From eq. (2.14), then the eq.(2.16) and eq.(2.15) can be reformed as: