数学必修1知识点总结
高一数学必修一知识点总结全

高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。
1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。
1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。
2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。
2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。
2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。
3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。
3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。
3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。
4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。
4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。
4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。
5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。
5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。
5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。
以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。
希望这份总结对你有所帮助!。
高中数学必修一知识点整理

高中数学 必修1知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示● 什么是集合集合中的元素具有确定性、互异性和无序性。
● 常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集。
集合的表示法①自然语言法:用文字叙述的形式来描述集合。
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
③描述法:{x |x 具有的性质},其中x 为集合的代表元素。
④图示法:用数轴或韦恩图来表示集合。
● 集合的分类①含有有限个元素的集合叫做有限集。
②含有无限个元素的集合叫做无限集。
③不含有任何元素的集合叫做空集(∅)。
【1.1.2】集合间的基本关系● 已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集。
交集、并集、补集 名称 记号 意义性质 示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集UA {|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>12{|}x x x x <<∅ ∅()()()UU U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念● 函数、区间的概念及其表示方法:函数:①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.区间及表示法:①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.● 求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. ● 求函数的值域或最值:求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法● 函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. ● 映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值● 函数的单调性①定义及判定方法函数的 性 质定义 图象 判定方法函数的 单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.● 打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. ● 最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1。
高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)一、数与式1、常数、变量和运算符号:常数是除变量外的有限定义的数量,变量是可以任意取值的量,而运算符号则是进行数学运算的符号。
2、十进制及其他进制:十进制是分别使用0~9十个数字、以及逢十进一的一种进制制度,而其他进制则有二进制、八进制、十六进制等。
3、有理数的表示及其运算:有理数可以使用两个整数的商和余数的形式来表示,其中余数可以是负数,而有理数的运算则有加减乘除求倒数等。
4、无理数及其后结果:无理数是不能用有理数恒等式表达的数,通常用∞或“无穷不等式”来表示。
结果表明,无理数不是有理数的整数倍。
5、算术表达式的因式分解:分解因式是把一个多项式拆分成几个不同的因式的过程,在因式分解得到的两个因子可以进行乘、除、幂数运算,从而继续分解多项式,直到把多项式分解成几个不可继续分解的因式。
二、等差数列1、等差数列的定义:等差数列是一系列数按照一定规律等间隔排列而成的数列,在其中数字之间的差值成等差数列,可以表示为a1,a2,…, an,an+1,…,其中,a2-a1=a3-a2=…an+1-an=d,可以看出所有数之间都是等差的。
2、等差数列的求和:求和是求等差数列所有数字的和,其求和的公式为Sn=(n)(2a1+d(n-1))/2,在给定等差数列第一项和项数的情况下,即可直接求出等差数列的求和。
三、函数与方程1、定义域和值域:所谓“定义域”是指函数中可以取什么值,而“值域”则是指函数的值能够到达的最小和最大结果。
2、函数的定义及其基本性质:函数是定义域和值域之间的关系,函数的基本性质有单调性、统一性、性质等,其中单调性指函数上升或是下降,统一性指当定义域多于值域时,将多余的值合并为一个值。
3、折线图:折线图是一种表达定义域与值域变化关系的图表,用折线就能清楚地反映函数的变化,而其反映出的变化规律可以帮助我们分析函数的特性。
4、一元一次方程的求解:一元一次方程是一个有一个未知数的一元一次方程,其求解的方法有解析解法和求根解法,在一元一次方程求解得到未知数的值之后,可以利用求根解法把它带回原方程,验算正确性。
高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
必修一数学知识点归纳

一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。
3. 函数的性质:函数具有单值性、连续性、可导性等性质。
4. 函数的分类:根据函数的定义域和值域的不同,可以将函数分为常数函数、线性函数、二次函数、指数函数、对数函数、三角函数等。
5. 函数的运算:函数可以进行加法、减法、乘法、除法等运算。
6. 函数的复合:两个或多个函数可以组合成一个新的函数,称为函数的复合。
7. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。
8. 方程与不等式:方程是含有未知数的等式,不等式是含有未知数的大于或小于关系的式子。
9. 一元一次方程:只含有一个未知数的一次方程,可以通过移项、消去法等方法求解。
10. 一元二次方程:只含有一个未知数的二次方程,可以通过配方法、公式法等方法求解。
11. 一元一次不等式:只含有一个未知数的一次不等式,可以通过移项、消去法等方法求解。
12. 一元二次不等式:只含有一个未知数的二次不等式,可以通过配方法、判别式法等方法求解。
二、数与式1. 数的概念:数是用来表示数量的符号,包括整数、分数、小数等。
2. 整数的概念:整数是没有小数部分的数,包括正整数、负整数和零。
3. 整数的性质:整数具有加法和乘法的封闭性、交换律、结合律等性质。
4. 整数的运算:整数可以进行加法、减法、乘法、除法等运算。
5. 分数的概念:分数是表示部分数量的数,包括真分数、假分数和带分数。
6. 分数的性质:分数具有加法和乘法的封闭性、交换律、结合律等性质。
7. 分数的运算:分数可以进行加法、减法、乘法、除法等运算。
8. 小数的概念:小数是表示部分数量的数,包括有限小数和无限小数。
9. 小数的性质:小数具有加法和乘法的封闭性、交换律、结合律等性质。
10. 小数的运算:小数可以进行加法、减法、乘法、除法等运算。
高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。
以下是对这些知识点的详细总结。
一、集合1、集合的概念集合是由某些确定的对象所组成的整体。
这些对象称为集合的元素。
2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
(2)描述法:用确定的条件表示某些对象是否属于这个集合。
3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。
(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。
(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。
4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。
(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。
(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。
二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。
2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。
(2)值域:函数值的集合。
(3)对应关系:函数的表达式或法则。
3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。
(2)图象法:用图象表示函数关系。
(3)列表法:列出表格来表示两个变量之间的对应关系。
三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。
高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结第一章:集合与函数1. 集合的概念集合的定义元素与集合的关系集合的表示法2. 集合的运算交集、并集、补集的定义和性质子集和真子集3. 函数的概念函数的定义函数的三要素:定义域、值域、对应关系函数的表示方法:解析式、图象、列表4. 函数的性质单调性奇偶性周期性5. 反函数反函数的概念反函数的求法第二章:指数函数与对数函数1. 指数函数指数函数的定义指数函数的图象和性质2. 对数函数对数函数的定义对数函数的图象和性质3. 指数与对数的运算指数运算法则对数运算法则第三章:三角函数1. 角的概念任意角象限角2. 三角函数的定义正弦、余弦、正切函数的定义3. 单位圆上的三角函数单位圆的定义单位圆上的三角函数值4. 三角函数的图象正弦、余弦函数的图象正切函数的图象5. 三角函数的性质周期性奇偶性单调性第四章:解析几何1. 平面直角坐标系坐标系的建立点的坐标2. 直线的方程直线的斜率直线的点斜式、斜截式、一般式方程3. 圆的方程圆的标准方程圆的一般方程4. 点与圆的位置关系点与圆的切线点与圆的弦第五章:不等式1. 不等式的解法代数法图形法2. 不等式的性质不等式的基本性质不等式的传递性3. 一元一次不等式组不等式组的解法求解不等式组的技巧第六章:数学思维与方法1. 归纳推理归纳推理的定义归纳推理的应用2. 演绎推理演绎推理的定义演绎推理的应用3. 数学建模数学建模的概念数学建模的步骤第七章:数学文化1. 数学在日常生活中的应用数学在决策中的作用数学在数据分析中的应用2. 数学家的故事著名数学家的生平数学家的贡献3. 数学思想的发展数学思想的历史演变数学思想在现代科技中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1 知识点第一章集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:( 1)元素的确定性;(2)元素的互异性;(3)元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示: { ⋯ } 如{我校的篮球队员 },{太平洋,大西洋,印度洋,北冰洋 }( 1)用拉丁字母表示集合: A={ 我校的篮球队员 },B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
(Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例: { 不是直角三角形的三角形 }②数学式子描述法:例:不等式 x-3>2 的解集是 {x∈R| x-3>2} 或{x| x-3>2}( 3)图示法(文氏图):4、常用数集及其记法:非负整数集(即自然数集)记作: N 正整数集 N* 或 N+ 整数集 Z 有理数集 Q 实数集 R5、“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合 A 的元素,就说 a 属于集合 A 记作a∈A ,相反,a 不属于集合 A 记作 a A6、集合的分类:1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合二、集合间的基本关系1.“包含”关系———子集对于两个集合 A 与 B ,如果集合 A 的任何一个元素都是集合 B 的元素,我们就说两集合有包含关系,称集合 A 为集合 B 的子集,记作 A B注意:有两种可能( 1) A 是 B 的一部分,;( 2)A 与 B 是同一集合。
反之: 集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 A B或 B A 集合 A 中有 n 个元素 ,则集合 A 子集个数为 2n,真子集个数为 2n-1,非空真子集个数为 2n-2。
2.“相等”关系(5≥ 5,且 5≤ 5,则 5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同”结论:对于两个集合 A 与 B,如果集合 A 的任何一个元素都是集合 B 的元素,同时 ,集合 B 的任何一个元素都是集合 A 的元素,我们就说集合 A 等于集合 B,即: A=B A B且 B A①任何一个集合是它本身的子集。
A A②真子集 :如果 A B,且 A B 那就说集合 A 是集合 B 的真子集,记作 A B(或 B A)③如果 A B, B C ,那么 A C④如果 A B 同时 B A 那么 A=B3. 不含任何元素的集合叫做空集,记为Φ规定 : 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于 A 且属于 B 的元素所组成的集合 ,叫做 A,B 的交集.记作 A∩B(读作” A 交 B”),即 A ∩ B={x|x ∈A,且 x∈B} .2、并集的定义:一般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集。
记作: A∪B(读作”A 并 B”),即 A∪ B={x|x ∈A,或 x∈B}.3、交集与并集的性质: A∩A = A,A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A , A∪B =B∪A.4、全集与补集(1)全集:如果集合 S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用 U 来表示。
记作: C S A ,即 C S A ={x | x S 且 x A} CsA(2)补集:设 S是一个集合, A 是 S的一个子集(即 A S),由 S中 S 所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集(或余集)3)性质:⑴ C U(C U A)=A ⑵(C U A) ∩A= Φ ⑶(C U A) ∪ A=U(4)(C U A)∩(C U B)=C U(A∪B) (5)(C U A)∪(C U B)=C U(A ∩ B)、函数的有关概念1.函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合 A 中的任意一个数x,在集合 B中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数.记作: y=f(x) ,x∈A .其中, x 叫做自变量, x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合 {f(x)| x ∈A }叫做函数的值域.注意: 1、如果只给出解析式 y=f(x) ,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1;(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合 ;(6)指数为零底不可以等于零 ;(7)实际问题中的函数的定义域还要保证实际问题有意义。
(注意:求出不等式组的解集即为函数的定义域。
)2、构成函数的三要素:定义域、对应关系和值域注意:( 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 。
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①定义域一致;②表达式相同(两点必须同时具备 )值域补充(1) 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2)、应熟悉掌握一次函数、二次函数、指数、对数函数的值域,它是求解复杂函数值域的基础。
3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C,叫做函数 y=f(x),(x ∈A) 的图象.C 上每一点的坐标 (x, y)均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x、 y 为坐标的点 (x,y),均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈ A }图象 C一般的是一条光滑的连续曲线 (或直线 ),也可能是由与任意平行于 Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法:A 、描点法: 根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .B 、图象变换法:常用变换方法有三种,即平移变换、对称变换和伸缩变换 Ⅰ、对称变换 :(1)将 y= f(x) 在 x 轴下方的图象向上翻得到 y=∣ f(x) ∣的图象,将负数全转变为正数。
3) y= f(x) 和 y= -f(x) 的图象关于 x 轴对称。
如 y log a x 与 y Ⅱ、平移变换 : 由 f(x) 得到 f(x a) 左加右减; (3)作用: A 、直观的看出函数的性质; B 、利用数形结合的方法分析解题的思路;C 、提高解题的速度;发现解题中的错误。
2) y= f(x) 和 y= f(-x) 的图象关于 y 轴对称。
如 y a x 与 y x1xalog a x log 1 xa由 f(x) 得到 f(x) a 上加下减4.区间的概念1)区间的分类:开区间、闭区间、半开半闭区间;2)无穷区间; ( 3)区间的数轴表示.5.映射定义:一般地,设 A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯一确定的元素 y与之对应,那么就称对应 f:A B为从集合 A 到集合 B的一个映射。
记作“ f: A B ”给定一个集合 A 到 B 的映射,如果 a∈A,b∈B.且元素 a 和元素 b 对应,那么,我们把元素 b 叫做元素 a 的象,元素 a叫做元素 b 的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B 及对应法则 f 是确定的;②对应法则有“方向性” ,即强调从集合 A 到集合 B的对应,它与从 B到 A 的对应关系一般是不同的;③对于映射 f:A→B来说,则应满足:(Ⅰ)集合 A 中的每一个元素,在集合 B 中都有象,并且象是唯一的;(Ⅱ)集合 A 中不同的元素,在集合 B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合 A 中都有原象。
6、函数的表示法:常用的函数表示法及各自的优点:1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:作垂直于 x 轴的直线与曲线最多有一个交点。
2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征.注意:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值补充一:分段函数在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.注意:(1)分段函数是一个函数,不要把它误认为是几个函数; (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果 y=f(u),(u ∈ M),u=g(x),(x ∈A),则 y=f[g(x)]=F(x) ,(x∈A) 称为 f 是 g 的复合函数。
7.函数单调性( 1).增函数设函数 y=f(x) 的定义域为 I,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x1,x2,当 x1<x 2时,都有 f(x 1)<f(x 2),那么就说 f(x)在区间 D 上是增函数。