人教版数学必修1知识点总结及典型例题解析
人教版高一数学必修一精选知识点总结5篇

人教版高一数学必修一精选知识点总结5篇高一数学在整个高中数学中占有特别重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点13.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特殊地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑴当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α肯定存在,但是斜率k不肯定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,假如它们平行,那么它们的斜率相等;反之,假如它们的斜率相等,那么它们平行,即留意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即假如k1=k2,那么肯定有L1⑴L22、两条直线都有斜率,假如它们相互垂直,那么它们的斜率互为负倒数;反之,假如它们的斜率互为负倒数,那么它们相互垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
人教版高中数学必修一知识点和重难点

人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a∉A 3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2 集合间的基本关系【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
人教版高中数学必修一知识点和重难点

人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a∉A 3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2 集合间的基本关系【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
人教版高一数学必修一知识点总结5篇

人教版高一数学必修一知识点总结5篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在化学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。
人教版高一数学必修一知识点1一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N_.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∈B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∈B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∈B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∈A=A,A∈?=A,A∈B=B∈A;③Cu(A∈B)=CuA∩CuB,Cu(A∩B)=CuA∈CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高
![人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高](https://img.taocdn.com/s3/m/f8e49588011ca300a7c390b2.png)
人教版高中数学必修一知识点梳理重点题型(常考知识点)巩固练习指数函数、对数函数、哥函数综合【学习目标】1.理解有理指数哥的含义,掌握哥的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点.3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、哥函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、塞函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, awD.【知识框图】【要点梳理】要点一:指数及指数哥的运算1.根式的概念a的n次方根的定义:一般地,如果x n = a ,那么x叫做a的n次方根,其中n >1,n^ N*当n为奇数时,正数的n次方根为正数,负数的n次方根是负数,表示为V a ;当n为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为±V a .负数没有偶次方根,0的任何次方根都是0.式子垢叫做根式,n叫做根指数,a叫做被开方数.2. n次方根的性质:「LT a, a 之0,31)当n为奇数时,v a = a ;当n为偶数时,a a = a = 4[-a,a <0;-n22) (n/a ) = a3.分数指数哥的意义:m1n = —ma 0,m, n N ,n 1a n要点诠释:0的正分数指数哥等于 0,负分数指数哥没有意义. 4 .有理数指数哥的运算性质:a 0,b 0,r,s Qr s r sr 、srsrr r(1) a a =a(2) (a ) =a (3) (ab) =a b要点二:指数函数及其性质1.指数函数概念一般地,函数y =ax(a A0,且a =1 )叫做指数函数,其中 x 是自变量,函数的定义域为 R.2.指数函数函数性质:ma n = n /O m (a >0,m,n = N,n >1); a1.对数的定义(1)若a x = N(a >0,且a =1),则x叫做以a为底N的对数,记作x =log a N ,其中a叫做底数,N叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:x=log a Nu a x = N(a A0,a #1,N A0).2.几个重要的对数恒等式log a1=0, log a a =1, log a a b=b.3.常用对数与自然对数常用对数:lg N ,即iog10 N ;自然对数:lnN,即log e N (其中e = 2.71828…).4.对数的运算性质如果a >0, a#1,M >0,N >0,那么①加法:log a M log a N =log a(MN )②减法:log a M -log a N ^log a MN③数乘:nlog a M =log a M n(n R)④a log a N =N⑤log.b M n =nlog a M (b = 0,n R) a b⑥换底公式:log a N =l0gb N (b>0,且b#1) log b a要点四:对数函数及其性质1.对数函数定义一般地,函数y =log a x(a >0,且a 01 )叫做对数函数,其中x是自变量,函数的定义域(0,+“ ). 2.对数函数性质:1.反函数的概念设函数y = f (x)的定义域为A,值域为C ,从式子y = f (x)中解出x ,得式子x =平(y).如果对于y在C中的任何一个值,通过式子x=3(y),x在A中都有唯一确定的值和它对应,那么式子x=^(y)表示x是y的函数,函数x =?(y)叫做函数y = f (x)的反函数,记作x= f"( y),习惯上改写成y = f 0x).2.反函数的性质(1)原函数y = f(x)与反函数y = f」(x)的图象关于直线y = x对称.(2)函数y = f (x)的定义域、值域分别是其反函数y= f」(x)的值域、定义域.(3)若P(a,b)在原函数y = f(x)的图象上,则P'(b,a)在反函数y=f"(x)的图象上.(4)一般地,函数y = f (x)要有反函数则它必须为单调函数.要点六:哥函数1 .备函数概念形如y =x a(a w R)的函数,叫做哥函数,其中 a 为常数.2 .募函数的性质(1)图象分布:哥函数图象分布在第一、二、三象限,第四 象限无图象.募函数是偶函数时,图象分布在第一、二象限(图象 关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关 于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的哥函数在(0, ~)都有定义,并且图象都通过点(1,1).(3)单调性:如果 a >0 ,则募函数的图象过原点,并且在 [0, +=)上为增函数.如果 0 <0,则募函数的图象在(0, +8)上为减函数,在第一象限内,图象无限接近 x 轴与y 轴.(4)奇偶性:当a 为奇数时,哥函数为奇函数,当 ”为偶数时,募函数为偶函数.当 a =9 (其中Pq_qp,q 互质,p 和q w Z ),若p 为奇数q 为奇数时,则y=x p是奇函数,若p 为奇数q 为偶数时,则y = x pq是偶函数,若p 为偶数q 为奇数时,则y=x p是非奇非偶函数.(5)图象特征:哥函数 y =xa, x w (0,十无),当a >1时,若0<x<1,其图象在直线 y = x 下方,若x >1 ,其图象在直线y =x 上方,当a <1时,若0cx<1,其图象在直线y = x 上方,若x>1 ,其图 象在直线y=x 下方.【典型例题】类型一:指数、对数运算 例1 .计算(1)10g2^78+log 212—;10g 242;(2) lg 32+lg 35+3lg 2lg 5;o 21g52+—lg8 +lg51g 20 + lg 2 2; (4) 7lg20 3【思路点拨】运算时尽量把根式转化为分数指数骞,而小数也要化为分数为好.(1) -1; (2) 1 ; (3) 3; (4) 14.7 411、1 1 )用3 12不76「10g2H 2卜log 22(2)原式= (lg2+lg5 )Qg 2 2—lg 21g5 +lg 2 5 )+3lg 21g5= lg10 1(lg5+lg2 f —3lg 21g 51+31g 21g 5 =1-31g 21g5 +31g 21g5=1(3) (1 )原式=log 22 _(3)原式二21g5 21g2 1g5 1 1g2 1g 2=2 1g5 1g2 1g5 1g2(1g2 1g5)=2+ 1g5 +1g 2 =3;1 1g07(4)令x = 71g20J1 I ,两边取常用对数得21 lg0.71gx=1g 71g20|=(1+1g2 )1g7 十(1g7 -1)(-1g2)「⑶」= 1g7 1g 21g7 — 1g 21g7 1g 2=1g141g0.7, x =14,即71g201- i =14.2【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧. 举一反三:【变式1】210g 510+1og5 0.25 =( )A. 0B. 1C. 2D. 4【答案】C2 一一一一______________________ ___ ___ 一一一【解析】210g 5 10 + 1og5 0.25 = 1og510 + 1og5 0.25 = 1og 5(100 父0,25) = 1og5 25 =2 .【变式2】(1) (1g2)2+1g2 Jg50+1g25; (2) (1og3 2 + 1og9 2) <1og 4 3+ 1og g3).5【答案】(1) 2; (2)-.4【解析】(1)原式=(1g 2)2+(1+1g5)1g 2 + 1g5 2 =(1g 2 + 1g5+1)1g 2 + 21g5=(1+1)1g 2+21g5 =2(1g2+1g5) =2;1g 2 1g 2、,1g3 1g3、,1g 2 1g 2、, 1g3 1g3、(2)原式=(-^—) (-^―) =(-^— +-^-) (-^—十—^—)1g3 1g9 1g 4 1g8 1g3 21g3 21g 2 31g 231g 2 51g 3 521g 3 61g 2 4类型二:指数函数、对数函数、哥函数的图象与性质 例 2.设偶函数 f (x)满足 f (x) =x3—8(x 至 0),则{x| f (x —2) >0}=()A. {x|x <—2或 x >4}B. {x|x <0M £X >4}C. {x|x<0或x >6}D. {x|x 〈-减x >4}【答案】B【解析】';f (x) =x 3 —8(x2 0)且f (x)是偶函数.3x 3 -8,x ,0, f(x) = 3 -x -8,x :: 0,x -2 _0,x -2 <0,3 或W3x -2 -8 0- x -2 -8 0x -2 x :二2,\ i 或《x 4, x 二 0.解得x A 4或x < 0,故选B .【总结升华】考查解不等式组及函数解析式,考查函数性质的综合运用. 举一反三:3x1,x < 0, _【变式1】已知函数f(x)=4, ,若f (x 0) >3,则x 0的取值范围是().log 2x,x 0,B. x0<0 或 x 0>8C. 0 <x 0 <8D. x 0<0 或 0<x 0<8J_x 0 _ 0, _L x 0 0,W 或W ,所以x 0 >8,故选A.x 0 1 1 log 2 x 10g 2 8log 2 x, x 0,例3.设函数f(x)=$1ogi (_x )x <0若f (a) > f(—a),则实数a 的取值范围是(),A.(-1,0 )1J (0,1)B. L ,-1)U(1*)C. (-1,0 )U(1, y )D, (-°0,T)U(0,1)【答案】C【解析】解法一:①若 a >0,则—a <0 ,1 ,, 1一 10g 2 a > log 1 a ,得 10g 2aA log 2—,得 a > 一,解得 a >1.A. x 0 >8【解析】依题意[%;0,或[% >0,3x0 1 3log 2 x 0②若a <0,则-a > 0 ,,log i (―a) >log2(—a),,log2(——)>log2(-a)2 a解得a三"1,1由①②可知a e ।1,0 (J 1, •二解法二:特殊值验证令a =2, f(2) -log2 2 =1,f(—2) = —1 ,满足f (a) > f (-a),故排除A、D.令a = -2, f(—2) = —1 , f(2)=1不满足f (a)> f(-a),故排除B.【总结升华】本题考查了分段函数的性质、分类思想的应用.【哥指对函数综合377495例1]2例4.函数y=log1(x —6x+8)的单倜递增区间是( )3A . (3, +00)B .(_ oo, 3) C. (4, +8) D. (―00, 2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即同增异减”.【答案】D【解析】函数y =log1 (x2 -6x+8)是由y = l0g l u,u =x2 -6x+8复合而成的,y=log1u是减函 3 3 3 数,u=x2-6x+8在(-g,3)上单调递增,在(3,+s)上单调递减,由对数函数的真数必须大于零,即x2 -6x+8>0,解得乂>4或乂<2,所以原函数的单调递增区间是(-°0,2),故选D.例5. (2016上海模拟)已知函数f(x)=a x (a>0, aw1)在区间[—1, 2]上的最大值为8,最小值为m.若函数g(x) =(3 -10m) J x是单调增函数,则a=.【思路点拨】根据题意求出m的取值范围,再讨论a的值,求出f (x)的单调性,从而求出a的值.【答案】18【解析】根据题意,得3- 10m> 0,- 3解得m <—;10当a>1时,函数f(x)=a x 在区间[―1, 2]上单调递增,最大值为 a 2=8,解得a = 242,最小值为 、2 3— > —,不合题息,舍去;4 1011 当1>a>0时,函数f(x)=a 在区间[—1, 2]上单调递减,最大值为 a =8,解得a =—,最小值8一 213为m = a =— <—,满足题息;64 10… 1 综上,a = 一.8故答案为:1.8【总结升华】本题主要考查指数函数的图象与性质的应用问题,通过讨论对数函数的底数确定函数的 单调性是解决本题的关键.举一反三:【变式1】已知f(x)=2|x二|,该函数在区间[a, b ]上的值域为[1,足该条件的实数 a 、b 所形成的实数对为点 P (a, b),则由点P 构成 fA 组成的图形为( )A .线段AD B,线段AB口C.线段AD 与线段CDD.线段AB 与BC丁'''(【思路点拨】由指数函数的图象和性质,我们易构造出满足条件~天•]f(x)=2|x 口在闭区间[a, b ]上的值域为[1, 2]的不等式组,画出函数的与答案进行比照,即可得到答案.【解析】•.・函数f (x) =2|xj 的图象为开口方向朝上,以 x=1为对称轴的曲线,如图. 当x=1时,函数取最小值1, 若 y =2|xm = 2 ,贝U x=0,或 x=1而函数y=2|x=在闭区间[a, b ]上的值域为a = 0则a 或2.2 2],记满的点集图象后1MbM 20 :二a< 1b =2则有序实数对(a, b)在坐标平面内所对应点【解析】由a,b,c 互不相等,结合图象可知:这三个数分别在区间(设 aw(0,1),bw(1,10),cw(10,12),由 f(a)= f(b)得 lga+lgb=0,即 lgab = 0,所以 ab=1 ,所以 abcw(10,12),故选 C.【总结升华】考查利用图象求解的能力和对数的运算,考查数形结合的思想方法. 类型三:综合问题(I)求a, b 的值;(n)若对任意的t 三R,不等式f (2t 2—t) + f (t 2—t —k) < 0恒成立,求k 的取值范围【思路点拨】(i)利用奇函数的定义去解。
人教版高中数学必修第一册知识点及题型总结---不等关系与不等式

目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。
人教版高中数学必修1知识点归纳及知识点剖析【精】

fo 4 egaP
69
fo 5 egaP
69
�骤步式格的性偶奇数函断判义定用利�结总 �称对点原于关象图的数函奇�称对轴 y 于关象图的数函偶 征特的象图的数函的性偶奇有具�3� � �称对 点原于关域义定即� 量变自个一的内域义定是定一也 x�则�x 个一意任的内 域义定于对�是件条要必个一的性偶奇有具数函�知可义定性偶奇的数函由 ○ 2 。数函偶是又数函奇是既能可也,性偶奇有没能可数函�质性 体整的数函是性偶奇的数函�性偶奇的数函为称数函偶是或数函奇是数函 ○ 1 �意注 �数函 奇做叫就)x(f 么那 �)x(f—=)x�(f 有都 �x 个一意任的内域义定的)x(f 数函于对 �地般一 数函奇�2� �数 函偶做叫就)x(f 么那 �)x(f=)x�(f 有都 �x 个一意任的内域义定的)x(f 数函于对 �地般一 数函偶�1� 性偶奇的数函�6 �吗性调单定判法数导的行易单简习学里修选在们我得记还、2 .集并其成写起一在 和间区的同相性调单把能不, 间区子的域义定其是能只间区调单的数函 、1 �意注 增 减 减 增 ])x(g[f=y 减 增 减 增 )u(f=y 减 减 增 增 )x(g=u 性调单 数函 �下如律 规其 �关相切密性调单的)u(f=y�)x(g=u 数函的它成构与性调单的])x(g[f 数函合复 性调单的数函合复)C( _)降升看上象图从(法象图)B( � �性调单的上 D 间区的定给在)x(f 数函出指�论结下 ○ 5 � �负正的)2x(f�)1x(f 差断判即�号定 ○ 4 � �方配和解分式因是常通�形变 ○ 3 �)2x(f�)1x(f 差作 ○ 2 �2x<1x 且�D∈2x�1x 取任 ○ 1 �法义定 )A( 法方定判的性调单与间区调单数函�3� .的降下是右到 左从象图的数函减�的升上是右到左从象图的数函增上间区调单在�性调单)的格严( 有具上间区一这在)x(f=y 数函说么那�数函减或数函增是间区个某在)x(f=y 数函果如 点特的象图�2�
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修1知识点总结及典型例题解析第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).记作A C S,即C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值二、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.SA(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
记作“f (对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g 的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 例题:1.求下列函数的定义域:⑴y =⑵y =2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =5.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式 7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。