高中数学《直线与方程》练习题(含答案)

合集下载

必修二《直线与方程》单元测试题(含详细答案)

必修二《直线与方程》单元测试题(含详细答案)

第三章《直线与方程》单元检测试题 时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°[答案] C2.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0 D .x -y +3=0[答案] D3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6 C .32 D .23[答案] B4.直线x a 2-y b2=1在y 轴上的截距为( ) A .|b | B .-b 2C .b 2D .±b[答案] B5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0 B .-4 C .-8 D .4[答案] C6.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] D7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1[答案] C8.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( )A .19x -9y =0B .9x +19y =0C .3x +19y =0D .19x -3y =0[答案] C9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27)C .(27,17)D .(17,114)[答案] C10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2[答案] B12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)[答案] A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.[答案] -23[解析] 设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x-y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-142=-23.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________. [答案] x +6y -16=0[解析] 直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6,所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.[答案] 3 2[解析] 依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)[答案] ①⑤[解析] 两平行线间的距离为d =|3-1|1+1=2, 由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2015·河南省郑州市高一上学期期末试题)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程. [解析] (1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0,d =|324×5+n |32+42=3, 解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.18.(本小题满分12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线x +3y +4=0的直线方程.[解析] 解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0,即(3+λ)x +(3λ-2)y +(1+4λ)=0.由所求直线垂直于直线x +3y +4=0,得 -13·(-3+λ3λ-2)=-1. 解得λ=310.故所求直线方程是3x -y +2=0. 解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1), 故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.(本小题满分12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使|PA |=|PB |,且点P 到直线l 的距离等于2.[分析] 解决此题可有两种思路,一是代数法,由“|PA |=|PB |”和“到直线的距离为2”列方程求解;二是几何法,利用点P 在AB 的垂直平分线上及距离为2求解.[解析] 解法1:设点P (x ,y ).因为|PA |=|PB |, 所以x -42y +32=x -22y +12. ①又点P 到直线l 的距离等于2, 所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|PA |=|PB |, 所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5.所以设点P (x ,x -5).因为点P 到直线l 的距离等于2,所以|4x +3x -52|5=2.解得x =1或x =277.所以P (1,-4)或P (277,-87).[点评] 解决解析几何问题的主要方法就是利用点的坐标反映图形的位置,所以只要将题目中的几何条件用坐标表示出来,即可转化为方程的问题.其中解法2是利用了点P 的几何特征产生的结果,所以解题时注意多发现,多思考.20.(本小题满分12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.[解析] (1)由已知得直线AB 的斜率为2, ∴AB 边所在的直线方程为y -1=2(x -0), 即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1). ∴|BE |=12-122-12=52, 由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎪⎨⎪⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255, ∴S △BDE =12·d ·|BE |=110.21.(本小题满分12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由. [解析] 设直线方程为x a +yb=1(a >0,b >0), 若满足条件(1),则a +b +a 2+b 2=12,① 又∵直线过点P (43,2),∵43a +2b =1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0. 若满足条件(2),则ab =12,③由题意得,43a +2b =1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1, 即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.[解析] (1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。

直线与方程练习题及答案详解

直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a1.D ∵sin cos 0αα+=∴sin α=-cos αtan 1,1,1,,0a k a b a b bα=-=--=-=-= 2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .102.B 42,82m k m m -==-=-+ 3.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 3.C ,0,0a c a c y x k b b b b=-+=->< 4.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在 D .0180,不存在 4.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在5.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 5.C 2223,m m m m +--不能同时为06.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x6.B 线段AB 的中点为3(2,),2垂直平分线的2k =,32(2),42502y x x y -=---= 7.直线x a y b 221-=在y 轴上的截距是( ) A .b B .2b - C .b 2 D .±b7.B 令0,x =则2y b =-8.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)8.C 由13kx y k -+=得(3)1k x y -=-对于任何k R ∈都成立,则3010x y -=⎧⎨-=⎩ 9.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD9.D 把330x y +-=变化为6260x y +-=,则20d = 10.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤ 10.C 32,,4PA PB l PA l PB k k k k k k ==≥≤,或 11.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=11.B 点(1,1)F 在直线340x y +-=上,则过点(1,1)F 且垂直于已知直线的直线为所求12.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.2 12.A 2321,,132232AB BC m k k m --+===+- 二、填空题13.点(1,1)P - 到直线10x y -+=的距离是________________.13.2 2200BA C By Ax d +++==12d == 14.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 14. 234:23,:23,:23,l y x l y x l x y =-+=--=+15.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

高二数学直线与方程试题

高二数学直线与方程试题

高二数学直线与方程试题1.点P是曲线上任意一点,则点P到直线的距离的最小值是【答案】【解析】先求与直线平行的曲线的切线,设切点为,则由,所以切点为,因此点P到直线y=x﹣2的最小距离为2.点P(m-n,-m)到直线的距离等于( )A.B.C.D.【答案】A【解析】点P(m-n,-m)到直线的距离。

因此选A。

3.直线的倾斜角为A.30°B.45°C.60°D.90°【答案】B【解析】由直线方程可知斜率【考点】直线倾斜角和斜率4.已知平面内两点到直线的距离分别,则满足条件的直线的条数为()A.B.C.D.【答案】A【解析】A(1,2)到直线l的距离是,直线是以A为圆心,为半径的圆的切线,同理B(3,1)到直线l的距离,直线是以B为圆心,为半径的圆的切线,∴满足条件的直线l为以A为圆心,为半径的圆和以B为圆心,为半径的圆的公切线,∵|AB|==,两个半径分别为和,∴两圆内切,∴两圆公切线有1条故满足条件的直线l有1条.故选:A.5.已知平面内两点到直线的距离分别,则满足条件的直线的条数为()A.B.C.D.【答案】A【解析】A(1,2)到直线l的距离是,直线是以A为圆心,为半径的圆的切线,同理B(3,1)到直线l的距离,直线是以B为圆心,为半径的圆的切线,∴满足条件的直线l为以A为圆心,为半径的圆和以B为圆心,为半径的圆的公切线,∵|AB|==,两个半径分别为和,∴两圆内切,∴两圆公切线有1条故满足条件的直线l有1条.故选:A.6.过点M(-2,m),N(m,4)的直线的斜率等于1,则m=________.【答案】1【解析】由1=,得m+2=4-m,m=1.7.已知抛物线方程为,在轴上截距为的直线与抛物线交于两点,为坐标原点.若,求直线的方程.【答案】【解析】略8.经过点且在两坐标轴上截距相等的直线是().A.B.C.或D.或【答案】D【解析】若直线过原点,则直线为符合题意,若直线不过原点设直线为,代入点解得,直线方程整理得,故选.9.求过点,且在两轴上的截距相等的直线方程_________________________。

直线与方程例题与练习(含答案)

直线与方程例题与练习(含答案)

级 名倾斜角α的取值范围: . 角α与斜率 pp 平行的直线方程可设为 , ⇔PP的距离为 “直线定界,特殊点定域=-a b x +z b ,距z b距zb取距z b取距zb 取距z b取22()()x a y b -+-表示表示22x y +示 示示 示 的倾斜角的取值范围是的倾斜角的取值范围是 [[3π,)a -2a +1=a +,-2≤0,-a +=-2≤0,≤-≤-1. 1.103)线所在的直线方程为0104=+-y x ,求BC 边所在的直线方程。

边所在的直线方程。

答案:得B (10,5),A 的对称点(1,7),故BC 方程为06592=-+y x例6 6 .设.设x 、y 满足24,1,22,x y x y x y +³ìï-³-íï-£î则则z x y =+( )A .有最小值2,2,最大值最大值3 3B B .有最小值2,无最大值C .有最大值3,3,无最大值无最大值无最大值D D D.既无最小值.既无最小值.既无最小值,,也无最大值也无最大值 此题中,y x 的最大值是的最大值是2 最小值是最小值是 0 22x y +的最小值是的最小值是 165例7. 若x ,y 满足约束条件1122x y x y x y +³ìï-³-íï-£î,目标函数2z ax y =+仅在点(仅在点(11,0)处取得最小值,则a 的取值范围是( )(A) (A) ((1-,2 2 )) (B) (B) (4-,2 ) (C) (4,0]- (D) (2,4)-作业:作业:1.已知点A (1(1,-,-,-2)2)2),,B (m,2)2),且线段,且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是的值是( ( )A .-.-2B 2 B 2 B.-.-.-7 7 7C C .3D D..12.直线kx -y +1-3k =0当k 变化时,所有的直线恒过定点变化时,所有的直线恒过定点 ( ( )A .(1,3)B (1,3) B..(-1,-,-3) 3) 3)C C .(3,1)D D..(-3,-,-1) 1) 3、直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是所得的直线方程是( ( ) A .x -2y +4=0 B B..x +2y -4=0 C 0 C..x -2y -4=0 0 D D .x +2y +4=04、在圆x 2+y 2+2x -4y =0内,过点内,过点(0,1)(0,1)(0,1)的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是( ( )A.π6B.B.π4C.π3 D.3π45、已知变量,x y 满足约束条件2823y xx y x y £ìï-£íï+³î,则目标函数62z x y =-的最小值为的最小值为( )A .32B .4C .8D .26、若实数x ,y 满足不等式组330,230,10,x y x y x my +-³ìï--£íï-+³î且x y +的最大值为9,则实数m =( )(A )2- ((B )1- ((C )1 ((D )27.直线l 过点P (-2,3)2,3),且与,且与x 轴、y 轴分别交于A 、B 两点,若点P 恰为AB 的中点,则直线l 的方程为________________..3x -2y +1212==08.在直角坐标系中,若不等式组ïîïíì++££-³1)1(00x k y y x x 表示一个三角形区域,则实数k 的取值范围是___(-1,1)__ 9、 给出平面区域如图所示给出平面区域如图所示..若当且仅当x =23,y =45时,目标函数z =ax -y 取最小值,则实数a 的取值范围是围是 (-(-(- 125,-,- 310). .1010.已知直线.已知直线l 1:(k -3)x +(4(4--k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,平行,则k= 3或5 l 1与l 2的距离为的距离为________________________..55210或1111.已知两条直线.已知两条直线l 1:(3(3++m )x +4y =5-3m ,l 2:2x +(5(5++m )y =8.8.当当m 分别为何值时,l 1与l 2:(1)(1)相交?相交?相交? (2) (2) (2)平行?平行?平行? (3) (3) (3)垂直?垂直?垂直?[解析] (1)(1)当当m =-=-55时,显然l 1与l 2相交;当m ≠-≠-55时,两直线l 1和l 2的斜率分别为k 1=-3+m4,k 2=-25+m, 它们在y 轴上的截距分别为轴上的截距分别为 b 1=5-3m 4,b 2=85+m . 由k 1≠k 2,得-3+m 4≠-25+m,即m ≠-≠-77,且m ≠-≠-1. 1.∴当m ≠-≠-77,且m ≠-≠-11时,l 1与l 2相交.相交.(2)(2)由由îïíïìk 1=k 2,b 1≠b 2,得îïíïì-3+m 4=-25+m,5-3m 4≠85+m ,得m =-=-7. 7.∴当m =-=-77时,l 1与l 2平行.平行.(3)(3)由由k 1k 2=-=-11,得-3+m 4·(-25+m)=-=-11,m =-133.=-时,11,使得y O A xBP(3, 1)【答案】【答案】AB=AB=22(16)(42)29-+-=,直线AB 的方程为264216y x --=--,即25220x y +-=,假设在直线x-3y+3=0上是否存在点C ,使得三角形ABC 的面积等于1414,,设C 的坐标为(,)m n ,则一方面有m-3n+3=0①,另一方面点C 到直线AB 的距离为|2522|29m n d +-=,由于三角形ABC 的面积等于1414,则,则11|2522|29142229m n AB d +-××=××=,|2522|28m n +-=,即2550m n +=②或256m n +=-③.联立①②解得13511m =,5611n=;联立①③解得3m =-,0n =.综上,在直线x-3y+3=0上存在点C 13556(,)1111或(3,0)-,使得三角形ABC 的面积等于14.。

高一数学直线与方程相关习题及答案

高一数学直线与方程相关习题及答案

直线与方程一、选择题1.若A -2,3,B 3,-2,C ),21(m 三点共线,则m 的值为A.B .-C .-2D .22.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是3.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是A.B.C. D. 4.直线l 1:3-ax +2a -1y +7=0与直线l 2:2a +1x +a +5y -6=0互相垂直,则a 的值是A .-B.C. D.5.直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点A .0,0B .0,1C .3,1D .2,16.已知A 2,4与B 3,3直线l 对称,则直线l 的方程为A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=07.已知直线l 过点1,2,且在x 轴上的截距是在y 轴上的截距的2倍,则直线l 的方程为A .x +2y -5=0B .x +2y +5=0C .2x -y =0或x +2y -5=0D .2x -y =0或x -2y +3=08.直线y =x +3k -2与直线y =-x +1的交点在第一象限,则k 的取值范围是 A.)1,32(- B.)0,32(-C .)1,0( D.⎥⎦⎤⎢⎣⎡-1,32 9.经过点2,1的直线l 到A 1,1、B 3,5两点的距离相等,则直线l 的方程A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对10.直线l 过点P 1,3,且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0二、填空题11.直线l 方程为y -a =a -1x +2,且l 在y 轴上的截距为6,则a =________.12.已知点m,3到直线x +y -4=0的距离等于,则m 的值为________.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.14.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为)10,0(aP ,则线段AB 的长为________. 三、解答题15.已知两条直线l 1:x +m 2y +6=0,l 2:m -2x +3my +2m =0,当m 为何值时,l 1与l 2 1相交;2平行;3重合.16.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线为l ,求l 的方程.17.在平面直角坐标系xOy 中,已知直线l 的方程为2x +k -3y -2k +6=0,k ∈R . 1若直线l 在x 轴、y 轴上的截距之和为1,求坐标原点O 到直线l 的距离; 2若直线l 与直线l 1:2x -y -2=0和l 2:x +y +3=0分别相交于A ,B 两点,点P 0,2到A 、B 两点的距离相等,求k 的值.18.已知△ABC 的顶点B -1,-3,AB 边上高线CE 所在直线的方程为x -3y -1=0,BC 边上中线AD 所在的直线方程为8x +9y -3=0.1求点A 的坐标;2求直线AC 的方程.直线与方程答案1—5:ACCBC6-10:DCACA11:12:-1或313:2x+3y-2=014:1015:解当m=0时,l1:x+6=0,l2:x=0,∴l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,∴l1与l2相交.当m≠0且m≠2时,由=,得m=-1或m=3,由=,得m=3.故1当m≠-1且m≠3且m≠0时,l1与l2相交.2当m=-1或m=0时,l1∥l2.3当m=3时,l1与l2重合.16:解直线x-2y+5=0与x轴交点为P-5,0,反射光线经过点P.又入射角等于反射角,可知两直线倾斜角互补.∵k1=,∴所求直线斜率k2=-,故所求方程为y-0=-x+5,即x+2y+5=0.17:解1令x=0时,纵截距y0=2;令y=0时,横截距x0=k-3;则有k-3+2=1k=2,所以直线方程为2x-y+2=0,所以原点O到直线l的距离d==.2由于点P0,2在直线l上,点P到A、B的距离相等,所以点P为线段AB的中点.设直线l与2x-y-2=0的交点为Ax,y,则直线l与x+y+3=0的交点B-x,4-y,由方程组解得即A3,4,又点A在直线l上,所以有2×3+k-3×4-2×k+6=0,即k=0.18:解1设点Ax,y,则解得故点A的坐标为-3,3.2设点Cm,n,则解得m=4,n=1,故C4,1,又因为A-3,3,所以直线AC的方程为=,即2x+7y-15=0.。

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。

等于0B。

等于π/2C。

等于πD。

不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。

k1<k2<k3B。

k3<k1<k2C。

k3<k2<k1D。

k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。

2B。

-2C。

4D。

14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。

π/3B。

2π/3C。

π/4D。

3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。

第一象限B。

第二象限C。

第三象限D。

第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。

x+y-5=0B。

2x-y-1=0C。

2y-x-4=0D。

2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。

19x-9y=0,19y=0B。

9x+19y=0C。

19x-3y=0D。

3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。

3B。

-3C。

1D。

-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。

a/(a+1)B。

-a/(a+1)C。

(a+1)/aD。

-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。

(-6,8)B。

(6,-8)C。

(-6,-8)D。

(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。

直线与方程测试题(含答案)汇编

直线与方程测试题(含答案)汇编

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分)1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( )A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13,则c +2a的值是( )A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 2 2,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《直线与方程》同步练习(含答案)1. 经过点P(−1, 2)并且在两坐标轴上的截距的绝对值相等的直线有( )A.0条B.1条C.2条D.3条2. 已知直线l:y=3x−2的纵截距是()A.−3B.−2C.3D.23. 动点P(cosθ, sinθ)(θ∈R)关于直线y=x−2的对称点是P′,则|PP′|的最大值()A.2√2−2B.√2+1C.2√2D.2√2+24. 若直线y=0的倾斜角为α,则α的值是()A.0B.π4C.π2D.不存在5. 下列命题中真命题为()A.过点P(x0, y0)的直线都可表示为y−y0=k(x−x0)B.过两点(x1, y1),(x2, y2)的直线都可表示为(x−x1)(y2−y1)=(y−y1)(x2−x1)C.过点(0, b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为xa +yb=16. 过点(2, 4)可作在x轴,y轴上的截距相等的直线共()A.1条B.2条C.3条D.4条7. 直线3x−√3y+1=0的倾斜角是( )A.30∘B.60∘C.45∘D.150∘8. 经过两点M(6, 8),N(9, 4)的直线的斜率为()A.4 3B.−43C.34D.−349. 过两直线l1:2x−y+1=0,l2:x+3y−2=0的交点,且在两坐标轴上截距相等的直线方程可以为()A.7x+7y+4=0B.7x+7y−4=0C.7x−7y+6=0D.7x−7y−6=010. 若不论m取何实数,直线l:mx+y−1+2m=0恒过一定点,则该定点的坐标为()A.(−2, 1)B.(2, −1)C.(−2, −1)D.(2, 1)11. 设直线y=2x−1交曲线C于A(x1, y1),B(x2, y2)两点,(1)若|x1−x2|=√2,则|AB|=________;(2)|y1−y2|=√2,则|AB|=________.12. 已知点M(1, 1)平分线段AB,且A(x, 3),B(3, y),则x=________,y=________.13. 设复数z=x+yi(x, y∈R)且|z+i|+|z−i|=4,则点(x, y)的轨迹方程是________.14. 直线2x−3y−12=0与坐标轴围成的三角形的面积为________.15. 已知ab<0,bc<0,则直线ax+by=c的图象一定不过第________象限.16. 直线y=−x+b与5x+3y−31=0的交点在第一象限,则b的取值范围是________.17. 若三点A(−2, 3),B(3, −2),C(12, a)共线,则a的值为________.18. 过点A(2, −1)和B(4, 5)的直线方程是________.19. 已知直线l1:ax+2y+6=0,直线l2:x+(a−1)y+a2−1=0.当a________时,l1与l2相交;当a________时,l1⊥l2;当a________时,l1与l2重合;当a________时,l1 // l2.20. 已知θ∈R,则直线x|sinθ|−√3y+1=0的倾斜角的取值范围是________.21. 求m为何值时,这三条直线l1:4x+y=4,l2:mx+y=0,l3:2x−3my=4,不能构成三角形.22. 已知直线l经过两条直线l1:3x+y−5=0和l2:x+y−3=0的交点M.(1)若直线l与直线2x+y+2=0垂直,求直线l的方程;(2)求经过点M并且在两个坐标轴上的截距的绝对值相等的直线方程.23. 已知点A(−1, 2),B(2, 1)在y轴上,求点Q,使|QA|=|QB|,并且求|QA|值.24. 已知:A(2, 5),B(6, −1),C(9, 1),求证:AB⊥BC.25. 直线l经过两直线2x−y+4=0与x−y+5=0的交点,且与直线l1:x+y−6=0平行.(1)求直线l的方程;(2)若点P(a, 1)到直线l的距离与直线l1到直线l的距离相等,求实数a的值.26. 求经过点(5, 10)且与原点的距离为5的直线方程.27. 根据条件写出直线的方程(1)经过点A(8, −2),斜率是−12.(2)经过点P1(3, −2),P2(5, −4).28. 求过点P(0, 1)的直线l,使它包含在两已知直线l1:2x+y−8=0和l2:x−3y+10=0间的线段被点P平分.29. 已知直线l1:ax+3y+1=0,l2:x+(a−2)y+a=0.(1)若l1⊥l2,求实数a的值;(2)当l1 // l2时,求直线l1与l2之间的距离.30. 已知直线l1:x+my+1=0和l2:(m−3)x−2y+(13−7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1 // l2,求l1与l2之间的距离d.参考答案一、 选择题1.D2.B3.D4.A5.B6.B7.B8.B9.B 10.A 二、 填空题11.解:(1)K AB =y 1−y2x 1−x 2=2,即(y 1−y 2)=2(x 1−x 2),|AB|=√(x 1−x 2)2+(y 1−y 2)2=√5|x 1−x 2|=√5×√2=√10, (2)由(1)可得,(y 1−y 2)=2(x 1−x 2), |AB|=√(x 1−x 2)2+(y 1−y 2)2=√55|x 1−x 2|=√2×√55=√105. 12. 1,1 13.y 24+x 23=114. 12 15. 二 16. 315<b <31317. 1218. 3x −y −7=019. a ≠−1且a ≠2,=23,a =2,a =−1 20. [0∘, 30∘] 三、 解答题21.解:①当直线l 1:4x +y −4=0平行于l 2:mx +y =0时,m =4. ②当直线l 1:4x +y −4=0平行于l 3:2x −3my −4=0时,m =−16, ③当l 2:mx +y =0平行于l 3:2x −3my −4=0时,−m =23m ,m 无解.④当三条直线经过同一个点时,把直线l 1与l 2的交点(44−m , −4m4−m )代入l 3:2x −3my −4=0得 84−m −3m ×−4m4−m −4=0,解得m =−1或23, 综上,满足条件的m 为4、或−16、或−1、或23. 22.解:(1)解方程组{3x +y −5=0,x +y −3=0,得x =1,y =2,M(1,2).与2x +y +2=0垂直的直线为x −2y +c =0, M(1,2)点代入得c =3.直线l 的方程为x −2y +3=0. (2)当截距为0时,设y =kx ,过点M(1,2), 则得k =2,即y =2x ;当截距不为0时,设x a +y a =1,或x a +y−a =1,过点M(1,2),则得a =3或a =−1,即x +y −3=0,或x −y +1=0,这样的直线有3条:y =2x, x +y −3=0,或x −y +1=0. 23.解:设Q(0, y),∵ |QA|=|QB|, ∴ √1+(y −2)2=√22+(y −1)2, 化为y =0. ∴ Q(0, 0), |QA|=√5.24.证明:∵ A(2, 5),B(6, −1),C(9, 1), ∴ AB →=(4, −6),BC →=(3, 2), ∴ AB →⋅BC →=4×3+(−6)×2=0,∴ AB →⊥BC →, ∴ AB ⊥BC .25.解:(1)由{2x −y +4=0x −y +5=0,解得{x =1y =6.即两直线的交点为(1, 6),∵ 直线l 1:x +y −6=0的斜率为−1, ∴ 直线l 的斜率为−1,∴ 直线l 的方程为y −6=−(x −1),即x +y −7=0; (2)由题意知,√2=√2整理得:|a −6|=1.解得:a =7或a =5.26.解:当直线无斜率时,方程为x −5=0,满足到原点的距离为5;当直线有斜率时,设方程为y −10=k(x −5),即kx −y +10−5k =0, 由点到直线的距离公式可得√k 2+(−1)2=5,解得k =34, ∴ 直线的方程为:3x −4y +25=0综合可得所求直线的方程为:x −5=0或3x −4y +25=0 27.解:(1)由题意得:直线方程为y +2=−12(x −8), 整理得:x +2y −4=0;(2)由题意得:直线方程为y +2=−2−(−4)3−5(x −3),整理得:x +y −1=0.28.解:根据题意,直线l 1:2x +y −8=0可化为 y =−2x +8;设直线l 1上的一点P 1(x 1, −2x 1+8),则P 1关于点P 的对称点是P 2(−x 1, 2−(−2x 1+8)); P 2在直线l 2:x −3y +10=0上,即−x 1−3(2x 1−6)+10=0, 解得x 1=4, ∴ y 1=0;∴ 所求的直线方程是x4+y =1,即x +4y −4=0. 29. 解:(1)由l 1⊥l 2可得:a +3(a −2)=0,…4分 解得a =32;…6分(2)当l 1 // l 2时,有{a(a −2)−3=03a −(a −2)≠0,…8分解得a =3,…9分此时,l 1,l 2的方程分别为:3x +3y +1=0,x +y +3=0即3x +3y +9=0, 故它们之间的距离为d =√32+32=4√23.…12分.30.解:(1)∵ 直线l 1:x +my +1=0和l 2:(m −3)x −2y +(13−7m)=0, ∴ 当l 1⊥l 2时,1⋅(m −3)−2m =0,解得m =−3;(2)由l 1 // l 2可得m(m −3)+2=0,解得m =1或m =−2, 当m =2时,l 1与l 2重合,应舍去,当m =1时,可得l 1:x +y +1=0,l 2:−2x −2y +6=0,即x +y −3=0, 由平行线间的距离公式可得d =√12+12=2√2。

相关文档
最新文档