高三数学上学期期中试题文无答案2
2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
山西省运城市2023-2024学年高三上学期11月期中调研数学试题含解析

运城市2023–2024学年高三第一学期期中调研测试数学试题(答案在最后)2023.11本试题满分150分,考试时间120分钟.答案一律写在答题卡上.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.答题时使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部为()A. B. C. D.【答案】C【解析】【分析】根据的性质、复数的除法运算可得答案.【详解】,所以的虚部为.故选:C.2.若集合,,则()A. B. C. D.【答案】C【解析】【分析】先求出集合,进而根据交集的定义求解即可.【详解】因为,,所以.故选:C.3.已知平面向量,满足,,则在方向上的投影向量为()A. B. C. D.【答案】A【解析】【分析】根据投影向量的定义,结合向量夹角的运算,求解即可.【详解】依题意,在方向上的投影向量为:,又因为,,代入上式,所以在方向上的投影向量为:.故选:A.4.已知一个正四棱台的上下底面边长为、,侧棱长为,则棱台的体积为()A. B. C. D.【答案】D【解析】【分析】根据正四棱台的概念可知四边形为等腰梯形,进而可得四棱台的高,即可求得体积.【详解】如图所示,由正四棱台可知,四边形为等腰梯形,且,,,所以,所以,故选:D.5.已知,若,则()A. B. C. D.【答案】B【解析】【分析】利用诱导公式和二倍角公式即可解题.【详解】,若,则,所以,又因为,则,所以.故选:B.6.若函数在处取得极小值,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】依题意,求出导函数,可求得极值点分别为或,再分类讨论,确定原函数的单调区间,结合极小值的定义,从而可得实数的取值范围.【详解】因为,则函数的定义域为,则,令,解得:或,当时,即,令,解得:,令,解得:,此时函数在处取得极大值,不符合题意,舍去;当时,即,则恒成立,此时函数单调递增,没有极值,不符合题意,舍去;当时,即,令,解得:,令,解得:,此时函数在处取得极小值,符合题意.故选:C.7.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月天计算,记此人第日布施了子安贝(其中,),数列的前项和为.若关于的不等式恒成立,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】由等比数列的定义写出通项公式和前n项和,将问题化为恒成立,应用基本不等式求右侧最小值,注意取值条件,即可得参数范围.【详解】由题设,是首项、公比都为2的等比数列,故,,所以,即,,,所以恒成立,而,当且仅当时等号成立,又,当,时;当,时;综上,即实数的取值范围为.故选:D8.定义在上的函数满足,,若,则()A. B. C. D.【答案】D【解析】【分析】由已知可得函数为奇函数、周期函数,计算出、、,再利用周期性可得答案.【详解】因为,,所以,即,所以的周期为,且,可得,再由可得,,,,又,所以,所以为奇函数,所以,因为,所以,,,所以.故选:D.【点睛】关键点点睛:解题的关键点是由已知得出函数为奇函数、周期函数.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知向量,,则()A.若,则B.若,则C.若与夹角为锐角,则且D.【答案】ACD【解析】【分析】对于A,根据两向量垂直时,数量积为零判断即可;对于B,根据两向量平行时,由判断即可;对于C,根据两向量夹角为锐角时,其数量积大于零判断即可;对于D,根据向量模的坐标运算求解即可.【详解】对于A,若,则,解得,故A正确;对于B,若,则,解得或,故B错误;对于C,若与夹角为锐角,则,即,且,解得且,故C正确;对于D,因为,故D正确.故选:ACD10.已知,,且,则()A B.C. D.【答案】BC【解析】【分析】由可得,进而利用消元法结合不等式的性质判断A;根据基本不等式中“1”的整体代换即可判断B;利用基本不等式结合对数运算、对数函数的性质即可判断C;利用消元法结合二次函数的性质即可判断D.【详解】对于A,由,得,即,则,故A错误;对于B,,当且仅当,即,时,等号成立,故B正确;对于C,由,即,当且仅当,即,时等号成立,所以,故C正确;对于D,,由A知,,所以当时,取得最小值,即,故D错误.故选:BC.11.已知数列满足,,则下列结论正确的是()A. B.为等比数列C. D.【答案】AD【解析】【分析】利用递推公式求出可判断A;由可判断B;由,利用等比数列的求和公式可判断C;由递推公式可得,再由由累加法可判断D.【详解】对于A,因为,,则,,则,,则,故A正确;对于B,,所以,,所以,,故不是等比数列,故B错误;对于C,,故C错误;对于D,由可得,由,两式相减可得:,所以,,,……,,上式相加可得:,,又因为,所以,故D正确.故选:AD.12.如图,棱长为的正方体中,点,分别是棱,的中点,则()A.直线平面B.C.过,,三点的平面截正方体的截面面积为D.三棱锥的外接球半径为【答案】ABD【解析】【分析】对于A,根据,利用线面平行的判定定理即可证明;对于B,通过平面,得到,同理得到,进而可得平面,再根据锥体得体积公式即可判断;对于C,首先得到截面图象,求出面积即可;对于D,由B选项可知,平面,且过外接圆的圆心,则三棱锥的外接球的球心在上,设球心为点,以点为原点建立空间直角坐标系,求出圆心坐标,即可得出半径.【详解】对于A,如下图,连接,因为点,分别是棱,的中点,则,又,所以,又平面,平面,所以平面,故A正确;对于B,如下图:连接交平面于点,连接,正方体中易知,平面,平面,则,又正方形中,平面,所以平面,又平面,所以,同理可证:,又平面,所以平面,易得,故四面体为正四面体,为的重心,又棱长1,所以,则则,故B正确;对于C,如图所示,由A选项可知等腰梯形即为所求截面,又,则高为,所以,故C错误;对于D,由B选项可知,平面,且过外接圆的圆心,则三棱锥的外接球的球心在上,设球心为点,如图,以点为原点建立空间直角坐标系,则,设,则,所以,由,得,解得,所以三棱锥的外接球半径为,故D正确.故选:ABD.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可;④坐标法:建立空间直角坐标系,设出外接球球心的坐标,根据球心到各顶点的距离相等建立方程组,求出球心坐标,利用空间中两点间的距离公式可求得球的半径.三、填空题:本题共4小题,每小题5分,共20分.13.等差数列的前项和为,若,则______.【答案】【解析】【分析】利用等差中项的性质,以及等差数列的前项和公式,计算即可.【详解】由等差中项的性质得:,所以,所以.故答案为:.14.已知复数满足,则的最小值为______.【答案】【解析】【分析】根据题意,由条件可得复数表示以为圆心,1为半径的圆,然后再结合其几何意义即可得到结果.【详解】设,∵,∴,表示以为圆心,1为半径的圆,∴,表示圆上的点到点的距离,∴的最小值为.故答案为:.15.已知函数,若在区间内没有最值,则的取值范围是______.【答案】【解析】【分析】利用辅助角公式化简函数,由函数在上单调列式求解作答.【详解】因为,函数的单调区间为,由,而,得,因此函数在区间上单调,因为函数在区间内没有最值,则函数在区间内单调,于是,则,解得,由,且,解得,又,从而或,当时,得,又,即有,当时,得,所以的取值范围是.故答案为:.16.已知函数有三个不同的零点,则实数的范围为______.【答案】【解析】【分析】利用导数的几何意义、函数零点的定义分析运算即可得解.【详解】解:由题意,,,当时,只有一个零点,不符合题意,故.∵,且当时有且只有一个零点,∴函数有三个不同的零点等价于函数有两个不同的零点,即与有两个不同的交点.如上图,当与相切时,设切点为,则由解得:,则.如上图,由与有两个不同的交点知,解得:,∴实数的范围为.故答案为:.【点睛】方法点睛:利用函数零点求参数范围的方法:1.利用零点的个数结合函数的单调性构建不等式求解.2.转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.3.分离参数()后,将原问题转化为的值域(最值)问题或转化为直线与的交点个数问题(优选分离、次选分类)求解.四、解答题:本题共6小题,共70分,17题10分,18-22各12分.解答应写出文字说明、证明过程或演算步骤.17.已知函数的图象关于直线对称.(1)求证:函数为奇函数.(2)将的图象向左平移个单位,再将横坐标伸长为原来的倍,得到的图象,求的单调递增区间.【答案】(1)证明见解析(2)【解析】【分析】(1)利用函数图象关于对称,求,进而得到函数解析式,从而证明;(2)由函数图象的变换规律,得到的解析式,即可求出单调增区间.【小问1详解】因为的图象关于直线对称,所以,得,,因为,所以当时,,所以,所以,因为,所以为奇函数成立.【小问2详解】由(1)可得:,将的图象向左平移个单位,再将横坐标伸长为原来的倍,则由可得,,故函数的单调递增区间是18.已知递增的等差数列满足,且是与的等比中项.(1)求数列的通项公式;(2)记,证明数列的前项和.【答案】18.19.证明见解析【解析】【分析】(1)利用等差数列的通项公式和等比数列的等比中项求解,得到数列的通项公式.(2)利用错位相减,计算数列的前项和,根据判断大小.小问1详解】设等差数列的公差为,由题可知,因为,所以,又是与的等比中项,所以,即,得或(舍去),所以.【小问2详解】由(1)知:所以数列的前项和①①得:②两式相减得:,化简得:.因为,所以,所以.19.在中,,,分别为角,,所对的边,为的面积,且.(I)求角的大小;(II)若,,为的中点,且,求的值.【答案】(I);(II).【解析】【分析】(I)利用正余弦定理及面积公式,代入对应公式得,解得,(II)为的中点,利用向量,再根据余弦定理得,解得,,最后根据正弦定理可得解.【详解】(I)由已知得,∴.即.∴.又∵,,(II)由得:,又∵为的中点,∴,,∴,即又∵,∴.又∵,∴,,∴.20.如图①,在等腰梯形中,,分别为的中点,,为的中点.现将四边形沿折起,使平面平面,得到如图②所示的多面体.在图②中:(1)证明:;(2)求平面与平面夹角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)根据折叠前后垂直的关系不变可得,由线面垂直的判定定理可得平面,由线面垂直性质可得;(2)根据面面垂直性质可知以为坐标原点,分别以所在直线为轴建立空间直角坐标系,利用二面角的空间向量求法可得平面与平面夹角的余弦值为.【小问1详解】由题意知在等腰梯形中,,又分别为的中点,所以,即折叠后,,所以平面,又平面,所以.【小问2详解】∵平面平面,平面平面,且,所以平面,平面,,两两垂直,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,易知,所以,则设平面的法向量,则,取,则,得;设平面的法向量则,取,则,可得,,由图易知平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.21.已知函数在点处的切线为:,函数在点处的切线为:.(1)若,均过原点,求这两条切线斜率之间的等量关系.(2)当时,若,此时的最大值记为m,证明:.【答案】(1)(2)证明见解析【解析】【分析】(1)求导,利用导数结合点斜式求解切线方程,根据切线经过原点即可求解;(2)构造,求导确定单调性即可求解.【小问1详解】由题可得,,:,:,因为均过原点,所以,因为均过原点,所以,所以.【小问2详解】由题,,记,,记,在单调递减,且,,使得,即,且在上单调递增,在上单调递减.,∵,又∵,故得证.22.已知函数.(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.【答案】(1)答案见解析(2)【解析】【分析】含参数的单调性讨论问题,求导后分情况讨论根的个数与大小即可.指对同构问题,将所求不等式变形,构造新函数,再利用单调性求解.【小问1详解】的定义域是,令当时,∵,∴∴,∴在单调递增当时,,若,即时,,∴,∴在单调递减若,即时,令,解得,,易得在单调递减,在单调递增,在单调递减,综上所述:当时,在单调递增当时,在单调递减,在单调递增,在单调递减,当时,在单调递减【小问2详解】解法一:由题易得令,有在为增函数原式等价于,即即,令由(1)知时,在为减函数,∴,∴解法二:由题易得令,有在为增函数原式等价于,即设对恒成立首先,即,下面证明时,恒成立由(1)知,当时,,,此题的证∴.【点睛】本题第一问属于含参数的单调性讨论问题,先求导,再用参数讨论方程的根个数与大小,得出不等式的解集即为函数的单调区间;第二问属于指对同构类问题,一般指数和对数函数同时出现时考虑指对同构,再构造新函数,利用单调性求参数的范围即可.。
山东省金乡县金育高级中学2020届高三数学上学期期中试题(无答案)

2020学年度第一学期期中试卷高三数学4.设函数 f ' (x )是奇函数 f (x )(x € R 的导函数,f ( — 1) = 0,当 x >0 时,xf ' (x ) — f (x )<0 ,7.函数f (x ) = cos( ®x + 0 )的部分图象如图所示,贝U f (x )的单调递减区间为( )1 3A. k n — :, k n + 匚,k € ZB.4 4 1 3 C. k — 4,k + 4 , k € ZD.A . ( —s, — 1) U (0,1)B . (—1,0) U (1 ,+s C. ( —s, — 1) U ( — 1,0)D . (0,1) U (1 ,+s ) 325 .若 tan a = 4,贝U cos a + 2sin 2 a =()6448A. 25B. 25 C.1D.1625成立的x 的取值范围是( ) )k n nk n nA . x = 2 -?(k €Z) B.x = 2 ■ + ■6(k € Z )k n nk nnC. x= 2 —石(k € Z)D.x = 2 ■ + 匚(k €Z)6.若将函数 y = 2sin 2 n x 的图象向左平移12个单位长度,则平移后图象的对称轴为第I 卷(选择题,共 60分)•选择题(每题 5分,共60分),B = {x |( x + 1)( x — 2)<0 , x € Z},贝U A U B=()A . {1}B . {1,2}C. {0,1,2,3}D. { — 1,0,1,2,3}2.设命题p : A . ? n € N, ? n € N, 2 n n > 2n 2> 2n ,贝U p 为()B . C. ? n € N, n 2w 2n D. ? n € N, n 2w 2n ? n € N, n 2= 2n3.在同一直角坐标系中, 函数f (x ) = x a (x >0),g ( x ) = log a x 的图象可能是( )则使得f (x )>0 1 32k n — :, 2k n+: , k € Z4 4 1 32k — 4, 2k+ 4 , k € Z1.已知集合 A = {1,2,3}8 .设DABC 所在平面内一点, BO 3CD则()C . Sl 5 或 S162020学年度第一学期期中考试试卷高三数学第n 卷(非选择题,共 90分)二 .填空题(每题 5分,共20分)13. 已知向量,的夹角为 60°,= 2,= 1,则= ____________________ .14. 已知函数f (x )是定义在R 上的周期为2的奇函数,当 0<x <1时,f (x ) = 4x ,贝U f () + f (1)115.设曲线y = e x 在点(0,1)处的切线与曲线y = -(x > 0)上点P 处的切线垂直,则P 的坐标为xa — i16. 已知a € R i 为虚数单位,若着T 为实数,则a 的值为.2 + i-------------三.解答题(共70分)17. (10 分)已知向量=(cos x , sin x ) , = (3,— . 3) , x € [0 ,n ].(1)若//,求x 的值;TT T14A.AD=- _AB+ _AC3 3 B.TT T14AD^- AB- & AC33T T T 4 1C.AD= -AB+ -AC3 3 D.TT T41AD= AB-= AC339 .设向量=(2,4)与向量= (x, 6)共线,则实数A . 210.在厶ABC 中,角 A, B, C 的对边分别为 a , b ,c , 若 a = b , A= 2B ,则 cosB.D.f11.已知向量=12.在等差数列 A . Si s=(x ,-3),.3), B. 2{a n }中,a = 29, So = S 20,则数列{a n }的前n 项和S 的最大值为((x , C.D. 2B . $6 D. S 72a 18. (12分)△ ABO的内角A, B, C的对边分别为a, b, c.已知△ ABC的面积为•(1)求sinBsin C ;⑵若6cos Bcos C= 1, a= 3,求厶ABC的周长.19. (12分)设函数,其中0<3 <3.已知(1)求3 ;⑵将函数y= f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的n n 3 n图象向左平移才个单位,得到函数y= g(x)的图象,求g( x)在一-4,—上的最小值.20. (12分)已知数列满足,且(1)求;⑵证明数列是等差数列,并求的通项公式.21. (12分)在等差数列中,为其前n项和。
湖北省黄冈市部分普通高中2023-2024学年高三上学期期中考试 数学答案

2023年秋季黄冈市部分高中阶段性质量检测高三数学试题参考答案一、单项选择题(本题共8小题,每小题5分,共40分).12345678DCABABBD二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分).9101112ABCABDADACD三、填空题.13.74 14. [)ππ2, 15. 716. [)∞+,1部分小题解析:8.对R x ∈∀,都有)(-11-1-1-)-(x f x x x x x f =+-=--+=所以0)()(,=-+∈∀x f x f R x ,)(x f 为奇函数,A 错;>--≤<--=--+=>1,110,111)(,0x x x x x x x f x 时易知)(x f 在(]10,上单调递增,此时(20)(,∈x f 当11211)(,1-++=--+=>x x x x x f x 时∴)(x f 在()∞+,1上单调递减,此时()20)(,∈x f ∴0>x 时,(]20)(,∈x f ∴0<x 时,[)02-)(,∈x f 而0)0(=f ,所以0m =,方程m x f =)(仅有一根,B 错;()1,0∈x 时,()+∞∈,1-2x ,此时()()121211)2(-)(---+----+=-x x x x x f x f=xx x x x x --+=-+----+311311而函数x x x p --+=31)(在()10,上单调递增,得()1,0∈x 时,0)1()(=<p x p ())2()(,10x f x f x -<∈∀∴,对,C 错;综上,0≤a 时,2-2≥a ,此时)2(0)(a f a f -<≤()1,0∈a 时,()+∞∈,1-2a ,此时)2()(a f a f -<1≥a 时,()10-2,∈a ,此时)2()(a f a f -≥,D 对9.提示:因b b a -≥>,所以0>+b a ,A 对因33b a b a b b a >>≥>,,,B 对由上,,02>+>>b a a b a 所以,ab a 211>+C 对由于()4)(2,0,0,10>-+-+=--->-<-=>b aab b b a a b a b a b ab a ,所以,ba b a ->-411D 错10.提示:C 项:6,32ππ==B A 时,sin cos A B =,C 错11.提示:6cos()(πωω-='x x f Z k k x ∈=-,26ππω得)(x f '取得最大值时的Zk k x ∈+=,26ωππ结合)(x f 'ωπ2=Tωπ323=Tωπ36=T ∴Zk k k x c ∈+=++=,22326ωππωπωππ∴)(c x f 'Zk k k ∈==+=-+⋅=,12)23cos(622cos(ωππωπωππωω∴2=ωxy=1ABC12.提示: x x x f x f x x x f 1)()()(2=-'='⎪⎭⎫ ⎝⎛∴可设C x xx f +=ln )((其中C 为常数)又对任意的正数n m ,恒有mnn mf m nf mn f ++=)()()(∴对任意的正数n m ,恒有1)()()(++=nn f m m f mn mn f ∴()1ln ln ln ++++=+C n C m C mn ∴1-=C ,x x x x f x xx f -=-=ln )(,1ln )(其中D 项:22ln )()(x x x x x x f x p +-=+=,xx x p 2ln )(+=' )(x p '在()∞+,0上单调递增,且021)1(<+-='ee p ,02)1(>='p 所以⎪⎭⎫⎝⎛∈∃1,1e x o 使)(x p 在()o x ,0上单调递减,)(x p 在()+∞,o x 上单调递增∴o x x =为函数)(x p 的极小值点且满足02ln 0=+x x o ,⎪⎭⎫⎝⎛∈1,1e x o ∴()0)1(2222ln 3000200000>-=+-=+=+x x x x x x x x x f o 16.提示:由a x eaxln ≥恒成立可得0>a ,此时直线a x y 1+=恒在直线x y =上方∴不等式a x a x e ax ln 1≥+≥恒成立只需不等式ax e ax1+≥恒成立即可⎪⎭⎫ ⎝⎛+-=a x e x p ax 1)(令,1)(-='ax ae x p 则∴)(x p 在⎪⎭⎫ ⎝⎛-∞-a a ln ,上单调递减,在⎪⎭⎫⎝⎛∞+-,a a ln 上单调递增∴0ln )ln ()(min ≥=-=aa a a p x p ∴1≥a 四、解答题.17.(1)βααββα+=∠-=∠=∠=∠BAC B CAD BAD ,,则设,102)sin(102)(os =--=+∴αββα,c 20,0ππ<∠<<∠<B BAC 1027)cos(,1027)sin(=-=+∴αββα2524)sin()cos()cos()sin()]()sin[(2sin =-++-+=-++=∴αββααββααββαβ25242sin C sin ==∴β5224sin sin =⇒=∆AB C AB B AC ABC 中,在(5分)(2))]()cos[(2cos αββαα--+=0)sin()sin()cos()cos(=-++-+=αββααββα42222020ππαπαπα=∠∴=∠=∴<<∴∈=∠BAD BAD BAD ,(而(10分)18.(1零假设为0H :选择新能源汽车与车主性别相互独立,即选择新能源汽车与车主年龄无关.所以,828.1018.18211200901101001004030-607020022>≈=⨯⨯⨯⨯⨯⨯=)(χ所以依据小概率值0.001α=的独立性检验,我们推断0H 不成立.由此推断犯错误的概率不大于0.001α=,故至少有99.9%的把握认为选择新能源汽车与年龄有关.(6分)(2)相关系数为r====所以14.7 4.70.940.95r ==⨯=>,故y 与x 线性相关较强. (12分)1log 12T,21)1(211log 2+=-+=∴n n n T n 2)1(2+=∴n n n T (3分)nnn n n n nn T T a n 2222)1(2)1(1===≥∴--+-时,符合上式又1122==a n n a 2=∴(6分)(2)nn n n b 21(21)1(1--=⋅-=+]21(1[31)21(1])21(1[21n n n S --=----=∴(8分))211(31①n n S n +=为奇数时,当为单调递减数列此时n S 21S 311=≤<∴S n 此时211(31②n n S n -=为偶数时,当为单调递增数列此时n S 31S 412<≤=∴n S 此时综上①②n S 的最小值为41,最大值为21(12分)(2),设α=∠BOMααcos 11os =∴==∆OM OM OM OB c BOM Rt ,中,在62πααπ+=∠-=∠∆ONC NOC NOC ,中,在)6sin(22sin sin πα+=∠=ON ONC OC C ON ,得由)6sin(cos 4321παα+⋅=⋅=∴∆ON OM S OMN (8分)αααπαα2cos 2cos sin 32)6sin(cos 4+=+⋅=t 令162sin(212cos 2sin 3++=++=πααα32ta 20=∠<∠≤≤AOB n AOB ,其中πα33)(,36262min max ====+∴∆OMN S t 时,παππα(12分)22.(1)方程xax e x+=-ln 1xa x e x +=-⇔ln 1ax x xe x +=-⇔ln ax x e x x =+-⇔+)ln (ln 令x x t ln +=,函数x x t ln +=在()+∞∈,0x 单调递增且R t ∈∴方程xax x f +=ln )(在()+∞∈,0x 有两根21,x x 可转化方程a t e t =-在R t ∈有两根21,t t ,其中222111ln ,ln x x t x x t +=+=令t e t p t -=)(,则1)(-='t e t p ∴)(t p 在()0,∞-∈t 为减函数,在()+∞∈,0t 为增函数∴1)0()(min ==p t p 又-∞→x 时,+∞→)(t p ;+∞→x 时,+∞→)(t p ∴),1(+∞∈a (6分)(2)不妨设两根21t t <,则210t t <<,)()(21t p t p =令0,2)()()()()(>--=+--=--=--t t e e t e t e t p t p t q t t t t 则02)(>-+='-t t e e t q ∴)(t q 在()+∞∈,0t 单调递增∴0>t 时,0)0()(=>q t q 由02>t 得0)()()(222>--=t p t p t q ∴)()()(221t p t p t p ->=而)(t p 在()0,∞-∈t 单调递减,且0021<-<t t ,所以02121<+-<t t t t ,所以0ln ln 221121<+++=+x x x x t t 2121212122112ln 2)ln(ln ln x x x x x x x x x x x x +≥++=+++∴0ln 2121<+x x x x 又021111ln>-=+e e e ∴ee x x x x 11lnln 2121+<+而x x y +=ln 在()+∞∈,0x 单调递增∴e x x 121<∴ex x 121<(12分)。
2024届泰安市高三数学上学期期中考试卷附答案解析

2024届泰安市高三数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3A =,{}3,5B =,则{}2,,C x x a b a A b B ==+∈∈中的元素个数为()A .3B .4C .5D .62.设:12,:21xp x q <<>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3tan 42tan162tan 42︒︒︒-+︒的值为()A B .C D .34.函数y =1+x +2sin x x 的部分图象大致为()A .B .C .D .5.有四个关于三角函数的命题:1p :∃x ∈R,2sin 2x +2cos 2x =122p :∃x 、y ∈R,sin(x-y)=sinx-siny3p :∀x ∈[]0,π=sinx 4p :sinx=cosy ⇒x+y=2π其中假命题的是A .1p ,4p B .2p ,4p C .1p ,3p D .2p ,3p6.已知1a =,2e 2b=,1ln 55c =,则()A .a b c <<B .c b a <<C .c a b <<D .b c a <<7.已知函数()1f x -的图象关于()1,1-对称,()1f x +为偶函数,则下列函数是奇函数的是()A .()1y f x =-B .()21y f x =+-C .()41y f x =++D .()31y f x =++8.在下列四组函数中,函数()f x 与()g x 的图象上存在关于x 轴对称的点的是()A .()2f x x =+,()g x =B .()113x f x +⎛⎫= ⎪⎝⎭,()1e xg x =+C .()2f x x =-,()ln g x x =D .()2xf x =,()lg g x x=二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知110a b <<,则下列结论正确的是()A .22a b >B .22ac bc >C .若0d c <<,则ad bc<D .b aa b>10.已知函数()()πsin 0,||2f x A x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()A .()πsin 2cos 23A x x ωϕ⎛⎫+=+ ⎪⎝⎭B .函数()f x 的一个对称中心为29π,06⎛⎫⎪⎝⎭C .2π-是函数()f x 的一个周期D .将函数π2sin 26y x ⎛⎫=- ⎪⎝⎭的图象向左平移π4个单位长度可得函数()f x 的图象11.设数列{}n a 的前n 项和为nS ,若()*4,N n n a S n n =+∈,则下列结论正确的是()A .{}1n a +是等比数列B .{}n a 是单调递减数列C .11143nn S n⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D .221209n n a a -+≥-12.已知)(()e 2x f x x =+,()(2)ln g x x x =+,则下列结论正确的是()A .函数()g x 在(0,)+∞上存在极大值B .()f x '为函数()f x 的导函数,若方程0()f x m -='有两个不同实根,则实数m 的取值范围是2(2e ,2)--C .若对任意e x ≥,不等式2)2)ln ((()f ax f x x x ≤+恒成立,则实数a 的最大值为2e+D .若12))0)(((f x g x n n ==>,则12ln (2)n x x +的最大值为1e三、填空题:本题共4小题,每小题5分,共20分.13.在ABC中,若60,45,A B BC ∠=︒∠=︒=AC =14.已知α是第四象限角,且πsin 45α⎛⎫+=⎪⎝⎭,则πtan 4α⎛⎫-= ⎪⎝⎭.15.已知函数()()4sin 22cos f x x x a x a R =-+∈在(),-∞+∞上单调递增,则a 的取值范围是.16.已知数列{}n a 满足()112n n n a a a n +-=+≥,设数列{}n a 的前n 项和为n S ,若202201S =,201202S =,则203S =.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()3213432f x x x ax =-+,R a ∈,()f x '是()f x 的导函数.(1)已知()0f x '<的解集为A ,集合{}16|B x x =≤<,若{}|15A B x x ⋂=≤<,求a 的值;(2)若()f x 在()2,+∞上存在单调减区间,求a 的取值范围.18.已知函数()π4cos sin 3f x x x ⎛⎫=+- ⎪⎝⎭(1)解不等式()1f x ≥;(2)设()π4cos 112g x f x x ⎛⎫=++- ⎪⎝⎭,求()g x 在π5,π66⎡⎤-⎢⎥⎣⎦上的最值.19.已知数列{}n a 的前n 项和为n S ,11S =且1120n n n a S S +++=,*n ∈N .(1)求n a ;(2)记12=nn S nn S b a =,求数列{}n b 的前n 项和.20.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos 2cos 2C A B =-.(1)若c =,求cos C ;(2)延长BC 至点D ,使得AD BD =,若2a =,求ACD 面积的最大值.21.某公司在年初购买了一批价值1000万元的设备,设备的价值在使用过程中逐年减少,前5年每年年底的价值比年初减少m 万元,从第6年开始,每年年底的价值为年初的80%,已知第7年年底的设备价值为608万元,设备运行一段时间后需要运行养护维修,前3年不需要养护,第4年的养护费为19万元,此后每年在上一年的基础上上升25%.(1)求第n 年年底设备价值的表达式;(2)当设备价值低于当年设备花费的养护费时,公司就于当年年底淘汰该批设备,问公司在第几年年底淘汰该批设备?(参考数据lg 20.301≈,lg 30.477≈).22.已知函数()()ln f x x x t =+的导函数为()f x ',且曲线()y f x =在点()()1,1f --处的切线方程为10x y ++=.(1)证明:当12x >-时,()0f x ¢>;(2)设()()()()321[]ln 4214142g x mx m x x m m x f ⎛⎫>⎪'⎝=+++++⎭-有两个极值点.()1212,x x x x <,过点()()11,x g x -和()()22,x g x 的直线的斜率为k ,证明:0k >.1.B【分析】利用集合中元素的互异性,对a ,b 的取值进行分类讨论即可.【详解】由题意,2x a b =+,当1,57a b x ==⇒=,当1,35a b x ==⇒=,当2,59a b x ==⇒=,当2,37a b x ==⇒=,当3,511a b x ==⇒=,当3,39a b x ==⇒=,由集合中元素满足互异性,所以{}5,7,9,11C =.故选:B 2.A【详解】试题分析:由指数函数的性质可知,当必有,所以的充分条件,而当时,可得,此时不一定有,所以的不必要条件,综上所述,的充分而不必要条件,所以正确选项为A.考点:充分条件与必要条件.【方法点睛】判断p 是不是q 的充分(必要或者充要)条件,遵循充分必要条件的定义,当p 成立时,q也成立,就说p 是q 的充分条件,否则称为不充分条件;而当q 成立时,p 也成立则p 是q的必要条件,否则称为不必要条件;当p 能证明q 的同时q 也能证明p ,则p 是q的充分条件.3.C【分析】根据正切和差角公式即可求解.tan 42tan162tan 42tan 42tan18tan 42︒︒︒︒=︒+︒︒+-+︒()()tan 42tan 18421tan18tan 42︒︒︒︒︒︒++-)tan 421tan18tan 42︒-︒︒︒=,故选:C 4.D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ;当x→+∞时,y→+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.5.A【详解】22,sin cos 1.22x x x R ∀∈+=故1p 是假命题;令5,,sin sin ,63x y x y ππ===但.2x y π+≠故4p是假命题.6.B【分析】根据题意,构造函数()ln 1f x x x =-+,0x >,即可判断,a b 的大小关系,然后,b c 作差,即可得到结果.【详解】因为2e 2b=,则ln 22b =,且ln 55c =,则ln 2ln 55ln 22ln 5ln 32ln 250251010b c ---=-==>,则b c >;构造函数()ln 1f x x x =-+,0x >,则()111xf x x x -'=-=,令()0f x ¢>,则01x <<,令()0f x '<,则1x >,所以当()0,1x ∈,()f x 单调递增,当()1,x ∈+∞,()f x 单调递减,则1x =时,()f x 有极大值,即最大值,所以()()10f x f <=,即0x >时,ln 1x x <-,且1a =-,ln 22b ==,则1<,所以b a <;即c b a <<.故选:B7.C【分析】利用函数的对称性和奇偶性逐项判断即可.【详解】因为函数()1f x -的图象关于()1,1-对称,所以()f x 关于()0,1-对称,即()()2f x f x +-=-①,因为()1f x +为偶函数,所以()()()()112f x f x f x f x +=-+⇒=-,则()()2f x f x -=+②,由①②得()()22f x f x ++=-,()()242f x f x +++=-,所以()()4f x f x =+,,4为()f x 周期,对于C ,令()()()411g x f x f x =++=+,则()()()()11(12)g x f x f x f x g x +=+-=--=-=--,则()g x 为奇函数,C 正确;对于A ,令()()1h x f x =-,则()()()134()()()4h x f x f x h x h x h x -=--=--=--⇒-+=-,所以()()1h x f x =-不为奇函数,A 错误;对于B ,令()()21m x f x =+-,则()()()()2132324()m x f x f x f x m x -=-+-=---=--+=--,即()()4m x m x +-=-,所以()()21m x f x =+-不为奇函数,B 错误;对于D ,令()()31x f x ϕ=++,则()()()()311131()x f x f x f x x ϕϕ-=-++=--+=++=所以()()31x f x ϕ=++不为奇函数,D 错误;故选C.8.D 【分析】函数()y f x =的图象关于x 轴对称的函数为()y f x =-,则函数()f x 与()g x 的图象上存在关于x轴对称,即函数()y f x =-与()y g x =的图象有交点,分别作出函数()y f x =-与()y g x =的图象,由图即可得解.【详解】对于A ,函数()2f x x =+的图象关于x 轴对称的函数为()2y f x x =-=--,如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以A 选项不符题意;对于B ,函数()113x f x +⎛⎫= ⎪⎝⎭的图象关于x 轴对称的函数为()113x y f x +⎛⎫=⎝-⎪⎭=- ,如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以B 选项不符题意;对于C ,函数()2f x x =-的图象关于x 轴对称的函数为()2y f x x =-=,如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象没有交点,所以C 选项不符题意;对于D ,函数()2xf x =的图象关于x 轴对称的函数为()2xf x y -=-=,如图作出函数()y f x =-与()y g x =,由图可知函数()y f x =-与()y g x =的图象有交点,所以D 选项符合题意.故选:D.9.AC【分析】根据不等式的性质即可结合选项逐一求解.【详解】由110a b <<可得0b a <<,对于A,由于0b a <<,所以22a b >,A 正确,对于B ,当0c =时,22ac bc =,故B 错误,对于C ,0d c <<,则0d c ->->,又0b a <<,所以ad bc ->-,故ad bc <,C 正确,对于D ,当4,2a b ==时,16,16b aa b ==,故D 错误,故选:AC10.BCD【分析】根据函数图象可得A 及函数的最小正周期,即可求出ω,再利用待定系数法求出ϕ,再根据正弦函数的性质逐一判断即可.【详解】由图可知,35ππ3π2,46124A T ==-=,所以2ππT ω==,所以2ω=,故()()2sin 2f x x ϕ=+,又ππ2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π62k ϕ+=+,所以ππ,Zk k ϕ=+∈23,又π||2ϕ<,所以π3ϕ=,所以()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,故A 错误;对于B ,因为29ππ2sin 0239π63f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的一个对称中心为29π,06⎛⎫⎪⎝⎭,故B 正确;对于C ,因为函数()f x 的最小正周期为π,所以2π-是函数()f x 的一个周期,故C 正确;对于D ,将函数π2sin 26y x ⎛⎫=- ⎪⎝⎭的图象向左平移π4个单位长度,得()πππ2sin 22sin 2463y x x f x ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确.故选:BCD.11.ACD【分析】构造法得1113a +=-、111()31n n a a -++=-判断A ,并可得1()13n n a =--,应用分组求和、等比数列前n 项和公式求n S ,根据221n n a a -+通项公式判断单调性判断B 、C 、D.【详解】由题设()()1111441413a S a a =+=+⇒=-,则1113a +=-,当2n ≥,则()141n n n a a a -=-+,则111()31n n a a -++=-,所以{}1n a +是首项、公比均为13-的等比数列,则11()3nn a +=-,故1()13n n a =--,则212418()1339a a =-<=--=->33128()1327a =--=-,故{}n a 不递减,211[1(]1111133()(()[()1]1333431()3n n n n S n n n -⋅--=-+-++--=-=⋅----- ,221221111()1(12[()1]339n n n n n a a --=--+-=-++-在*N n ∈上递增,所以221209n n a a -+≥-,综上,A 、C 、D 对,B 错.故选:ACD 12.BCD【分析】利用导数探讨()g x 的单调性判断A ;求出()f x '并利用导数探讨其性质,结合函数零点判断B ;利用函数()f x 的单调性脱去法则“f”,再利用()g x 的单调性求出最小值判断C ;由已知结合同构思想得12e x x =,再利用导数求出ln ()nn n ϕ=的最小值判断D.【详解】对于A ,2()1ln g x x x '=++,令2()1ln u x x x =++,则22212()x u x x x x -'=-+=,当2x >时,()0u x '>,函数()g x '递增,当02x <<时,()0u x '<,函数()g x '递减,于是()(2)2ln 20g x g ''≥=+>,因此()g x 在(0,)+∞上单调递增,在(0,)+∞上无极值点,A 错误;对于B ,()e 2e (1)e 2x x x f x x x '=++=++,令()(1)e 2x t x x =++,则()e (1)e (2)e x x xt x x x '=++=+,当<2x -时,()0t x '<,函数()t x 递减,当2x >-时,()0t x '>,函数()t x 递增,则2min ()(2)2e t x t -=-=-,即2min ()2e f x -'=-,显然当1x <-时,恒有()2f x '<,方程0()f x m -='有两个不同实根,即直线y m =与函数()y f x '=的图象有两个交点,因此22e 2m --<<,B 正确;对于C ,由选项B 知,()0f x '>在(0,)+∞上恒成立,则函数()f x 在(0,)+∞上单调递增,于是e x ∀≥,不等式22(((ln ()l 2))2)n f ax f x x x ax x x x ≤+⇔≤+,则有e x ∀≥,(2)ln a x x ≤+,由选项A 知,函数()(2)ln g x x x =+在[e,)+∞上单调递增,因此()(e)2e g x g ≥=+,即2e a ≤+,所以实数a 的最大值为2e +,C 正确;对于D ,若12))0)(((f x g x n n ==>,则1122(e 2)(2)ln x x x x n +=+=,即1122(e 2)ln e (2)ln x x x x n +=+=,由0n >,得120,1x x >>,由选项A 知,函数()(2)ln g x x x =+在(1,)+∞上单调递增,于是12e x x =,1>0x ,因此1121ln ln ln (2)(e 2)x n n n x x x n ==++,令ln ()n n n ϕ=,则21ln ()n n n ϕ-'=,当0e n <<时,()0n ϕ'>,函数)(n ϕ递增,当e n >时,()0n ϕ'<,函数)(n ϕ递减,从而max 1()(e)e n ϕϕ==,所以12ln (2)n x x +的最大值为1e ,D 正确.故选:BCD【点睛】结论点睛:一般地,已知函数()[],,y f x x a b =∈,(1)若[],x a b ∀∈,总有()f x k <成立,故()max f x k <;(2)若[],x a b ∀∈,总有()f x k >成立,故()min f x k >;(3)若[],x a b ∃∈,使得()f x k <成立,故()min f x k <;(4)若[],x a b ∃∈,使得()f x k >,故()max f x k>.13.【分析】由正弦定理求解.【详解】由sin sin AC BC B A =得sin sin BC B AC A ==故答案为:14.2-【分析】利用诱导公式与同角三角函数的基本关系进行求解即可.【详解】由题意,得ππππsin sin cos 44245ααα⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即πcos 45α⎛⎫-= ⎪⎝⎭因为α是第四象限角,即()3π2π+2π2π,Z 2k k k α<<+Î,所以()5ππ7π2π+2π,Z 444k k k α<-<+Î,则πsin 45α⎛⎫-=- ⎪⎝⎭,所以πsin π4tan 2π4cos 4ααα⎛⎫- ⎪⎛⎫⎝⎭-==- ⎪⎛⎫⎝⎭- ⎪⎝⎭,故答案为:-215.⎡⎣-【分析】求导()42cos 22sin f x x a x '=--,根据()f x 在(),-∞+∞上单调递增,由()0f x '≥在(),-∞+∞上恒成立求解.【详解】解:因为函数()()4sin 22cos f x x x a x a R =-+∈,所以()42cos 22sin f x x a x '=--,因为()f x 在(),-∞+∞上单调递增,所以()42cos 22sin 0f x x a x '=--≥在(),-∞+∞上恒成立,即22sin sin 10x a x -+≥在(),-∞+∞上恒成立,令[]sin 1,1t x =∈-,则()2210g t t at =-+≥在[]1,1-上恒成立,当14a ≤-时,()130g a -=+≥,无解;当14a ≥时,()130g a =-≥,无解;当114a -<<时,21048a a g ⎛⎫=-+≥ ⎪⎝⎭,解得a -≤≤所以a的取值范围是⎡⎣-,故答案为;⎡⎣-16.100【分析】根据已知递推公式得出30n n a a ++=,360n n a a +++=,则6n n a a +=,由此可以求出60S =,根据202201S =,201202S =即可求得.【详解】由()112n n n a a a n +-=+≥,得12n n n a a a ++=+,则120n n a a -++=,所以30n n a a ++=,则360n n a a +++=,所以6n n a a +=,可知1425360,0,0a a a a a a +=+=+=,所以60S =,因为2016333=⨯+,所以2011992002012020S a a a ==+++,2022022011a S S =-=-,则199********a a a +=⇒=,所以200201201a a +=,又2002011992011a a a a =+=+所以2012012011201100a a a ++=⇒=,所以200203101101a a =⇒=-,203202203100S S a =+=.故答案为:10017.(1)52a =-(2)12a <【分析】(1)根据题意,将集合,A B 化简,再由交集的结果,列出方程,即可得到结果;(2)将问题转化为()0f x '<在()2,+∞上有解,结合二次函数的对称轴,即可得到结果.【详解】(1)()234f x x x a '=-+ ,{}2|340A x x x a ∴=-+<.{}|16B x x =≤< ,{}|15A B x x =≤< ,∴5为方程2340x x a -+=的根.410a ∴=-,52a ∴=-.(2)由题知()0f x '<在()2,+∞上有解,()234f x x x a '=-+ 的对称轴为322x =<,()f x '∴在()2,+∞上单调递增,()20f '∴<,12a ∴<.18.(1)()πππ,πZ 124k k k ⎡⎤-++∈⎢⎥⎣⎦(2)最小值为4-,最大值为5【分析】(1)由两角和的正弦公式和倍角公式化简函数解析式,结合正弦函数的性质,解不等式;.(2)化简函数解析式,由定义域结合函数解析式求值域.【详解】(1)()ππ4cos sin cos cos sin 33f x x x x ⎛⎫=+ ⎪⎝⎭ 22cos sin x x x =+sin 22x x=π2sin 23x ⎛⎫=+ ⎪⎝⎭.∴()1f x ≥即π1sin 232x ⎛⎫+≥ ⎪⎝⎭,ππ5π2π22π636k x k ∴+≤+≤+,Z k ∈,ππππ124k x k ∴-+≤≤+,Z k ∈.∴不等式()1f x ≥的解集为()πππ,πZ 124k k k ⎡⎤-++∈⎢⎥⎣⎦(2)()π2sin 24cos 12g x x x ⎛⎫=++- ⎪⎝⎭2cos 24cos 1x x =+-24cos 4cos 3x x =+-.π5,π66x ⎡⎤∈-⎢⎥⎣⎦,cos x ⎡⎤∴∈⎢⎥⎣⎦,设cos x t =,则t ⎡⎤∈⎢⎥⎣⎦.令()y g x =,则221443442y t t t ⎛⎫=+-=+- ⎪⎝⎭,∴当12t =-时,min 4y =-.当1t =时,max 5y =.∴()g x 在π5,π66⎡⎤-⎢⎥⎣⎦上的最小值为4-,最大值为5.19.(1)()()1,12,22123n n a n n n =⎧⎪=-⎨≥⎪--⎩(2)()611429n n -⋅+-【分析】(1)根据,n n a S 的关系可得1n S ⎧⎫⎨⎬⎩⎭是等差数列,即可求解121n S n =-,进而可得n a ,(2)根据错位相减法即可求解.【详解】(1)1120n n n a S S +++= ,1120n n n n S S S S ++∴-+=,又0n S ≠1112n n S S +∴-=.∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2,首项为111S =的等差数列.121n n S ∴=-,即121n S n =-.当2n ≥时,()()122123n n n a S S n n --=-=--,111a S ==故()()1,12,22123n n a n n n =⎧⎪=-⎨≥⎪--⎩.(2)1n =时,1111122S S b a ==2n ≥时,()()()12111222132422123n n S n n n n S n b n a n n ---===----.设{}n b 的前n 项和为n T ,则()1212434324n n T n -=--⨯+- ,()()1214244524324n n n T n n -=⨯-+---⨯+⋅ .()()121322444324n nn T n -∴-=--⋅+++--⋅ ()()14142223414n nn --=--⋅-⋅-2112433nn ⎛⎫=+-⋅ ⎪⎝⎭.()611429n n n T -⋅+=-∴(2n ≥)当1n =时,也符合,所以()611429n n T n -⋅+=-20.(1)20(2)4【分析】(1)利用二倍角公式、正弦定理边角互化、余弦定理分析运算即可得解.(2)利用余弦定理、同角三角函数基本关系式、三角形面积公式、基本不等式分析运算即可得解.【详解】(1)解:由题意,0a >,0b >,0c >,∵()222sin cos 2cos 212sin 12sin C A B A B =-=---222sin 2sin B A =-,∴22222c b a =-,∵=c ,∴2252b a =,2b a=∴222222532cos 220+-+-==a a a a b c C ab .(2)解:如上图,由(1)知22222c b a =-,∵2a =,∴2242=+c b ,∴在ABC 中,222cos 28c a b cB ac +-==,又知0πB <<,∴sin 8B =.∵AD BD =,∴在ABD △中,222cos 222AB BD AD ABc B BD AB BD BD +-===⋅,∴82=c cBD ,∴4=BD .∴11sin sin 22=-=⋅-⋅ ACD ABD ABC S S S BD BA B BC BA B2264642sin 488c c c B +-==≤=,当且仅当c =c =∴ACD 的面积最大值为4.21.(1)5100010,59500.8,6n n n n a n --≤⎧=⎨⋅≥⎩(2)公司应在第14年年底淘汰该批设备【分析】(1)根据等差数列等比数列的定义,即可根据首项和公差公比求解,(2)根据数列的单调性,结合对数运算即可求解.【详解】(1)设第n 年年底设备价值为n a 万元,*n ∈N ,因为前5年每年年底的价值比年初减少m 万元,所以当5n ≤时,{}n a 为等差数列,公差为m -,首项为1000m -,所以()()()1000110005n a m n m mn n =-+--=-≤.又因为从第6年开始每年年底的价值为年初的80%,所以当6n ≥时,{}n a 为等比数列,公比为0.8,首项为10005m -,所以()()5100050.86n n a m n -=-≥.因为7608a =,即()2100050.8608m -⨯=,解得10m =.综上,5100010,59500.8,6n n n n a n --≤⎧=⎨⋅≥⎩.(2)设第n 年养护费为n b 万元,*n ∈N ,由题意,3n ≤时0n b =,419b =,当4n ≥时,{}n b 成等比数列,公比为125% 1.25+=,4191.25n n b -=⨯.由(1)知,5n ≤时,{}n a 递减,55950a b =>,当6n ≥时,令n n a b ≥,即549500.8191.25n n --⨯≥⨯,整理得295504n -⎛⎫≥ ⎪⎝⎭,即54lg 502lg 229log50lg 5lg 413lg 2n --≤==--.解得13.26n ≤.∴公司应在第14年年底淘汰该批设备.22.(1)证明见解析(2)证明见解析【分析】(1)点()()1,1f --在曲线和切线上,所以先求出点,然后代入()()ln f x x x t =+,计算出2t =,再对()()ln 2f x x x =+进行求二阶导数,分析在12x >-时的情况即可.(2)现根据()()ln 2f x x x =+的表达式化简()g x ,在对其求导,当导函数为零时,对应的方程在1,m⎛⎫-+∞ ⎪⎝⎭有两个不同实根1x ,2x ,结合二次方程根的分布化简,得到()()1222ln(21)221g x g x m m +=-+--的表达式,利用换元法,转化为:()()22ln 201p x x x x =+-<≤,分析()p x 的单调性讨论其正负即可.【详解】(1)由题知,()10f -=,()ln 10t ∴--=,2t ∴=.()()ln 2f x x x ∴=+,()()ln 22x f x x x '∴=+++,设()()()ln 222x h x x x x =++>-+,则()()212022h x x x '=+>++.()h x ∴单调递增,∴当12x >-时,()()131ln 0223f x h x h ⎛⎫'=>-=-> ⎪⎝⎭.(2)()()()()22ln 4412ln 22xg x x x mx x x ⎡⎤=+++-+-⎣⎦+()()()222ln 21ln 22x x mx x x ⎤⎡=++-+-⎣⎥⎦+()2ln 12x mx x =+-+,()()2412m g x mx x '∴=-++()()224412mx m mx x +-=++.由题知()0g x '=,即2440mx m +-=在1,m ⎛⎫-+∞ ⎪⎝⎭有两个不同实根12,x x 121212440044m m x x m x x m ⎧>⎪⎪->⎪∴⎨+=⎪⎪-=⎪⎩,即1212112044m x x m x x m ⎧<<⎪⎪+=⎨⎪-⎪=⎩()()()()1212121222ln 1ln 122x x g x g x mx mx x x ∴+=+-++-++()()()121221212121244ln 124x x x x m x x m x x x x x x ++⎡⎤=+++-⎣⎦+++24(1)2ln(21)2ln(21)22121m m m m m -=--=-+---,112m << ,0211m ∴<-<,设()()22ln 201p x x x x =+-<≤,则()2220p x x x '=-≤,()p x ∴单调递减,∴当()0,1x ∈时,()()10p x p >=,()22ln 212021m m ∴-+->-,即()()120g x g x +>,又12x x < ,()()12210g x g x k x x +∴=>-.【点睛】方法点睛:切线问题:可分为在某点的切线和过某点的切线两种;“在某点”时,此点即为切点,直接代入导数求出斜率,然后用点斜式即可书写切线方程;“过某点”时,此点不一定为切点,需要重新假设切点进行切线的计算.。
2021-2022学年高三上学期数学(文)期中试题及答案

2021-2022学年上学期期中考试高三数学(文科)试题考试时间:120分钟 分数:150分本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则U C A =( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2. 131ii +- = ( )A. 1+2iB. -1+2iC. 1-2iD. -1-2i3. 已知实数x , y 满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z=y-x 的最大值为 ( )A. 1B. 0C. -1D. -2 4. “p ⌝为假命题”是“p q ∧为真命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为( ) A. 32π B. 16π C. 12π D. 8π(5题图) (6题图)是否开始k=1,s=1k<5?输出s结束 k=k+1s=2s-k6. 执行如图所示的程序框图,输出的s 值为 ( ) A. -10 B. -3 C. 4 D. 57. 已知x 与y 之间的几组数据如表:x 0 1 2 3 y267则y 与x 的线性回归方程y b x a ∧∧∧=+必过点 ( )A. (1,2)B. (2,6)C. (315,24) D. (3,7)8. 下列函数中,在定义域内与函数3y x =的单调性与奇偶性都相同的是 ( )A. sin y x =B. 3y x x =-C. 2x y =D.2lg(1)y x x =++9. 对于使()f x N ≥成立的所有常数N 中,我们把N 的最大值叫作()f x 的下确界.若,a b ∈(0, +∞),且2a b +=,则133a b +的下确界为 ( ) A. 163 B. 83 C. 43 D. 2310.如图所示的数阵中,每行、每列的三个数均成等差数列.如果数阵中111213212223313233a a a a a a aa a ⎛⎫ ⎪ ⎪ ⎪⎝⎭所有数的和等于36,那么22a = ( )A. 8B. 4C. 2D. 111.三棱锥P-ABC 的侧棱PA 、PB 、PC 两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4B. 6C. 8D.1012.函数()f x 的定义域为R ,f(0)=2,对x R ∀∈,有()()1f x f x '+>,则不等式()1x xe f x e >+ 的解集为 ( ) A. {}|0x x > B. {}|0x x < C. {}|11x x x <->或 D. {}|10x x x <->>或1第Ⅱ卷(非选择题)二.填空题(本大题共4小题,每小题5分,共计20分)13.已知-向量a 与b 的夹角为60°,且a =(-2,-6),10b =,则ab =14.已知数列{}n a 是等比数列,且1344,8a a a ==,则5a 的值为15.抛物线2(0)y ax a =<的焦点坐标为 16.将边长为2的等边∆ABC 沿x 轴正方向滚动,某时刻A 与坐标原点重合(如图),设顶点(,)A x y 的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2]; ②f(x)是周期函数且周期为6 ; ③()(4)(2015)f f f π<<;④滚动后,当顶点A 第一次落在x 轴上时,f(x)的图象与x 轴所围成的面积为833π+.其中正确命题的序号为三.解答题(本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)在∆ABC 中,内角A,B,C 的对边分别为,,a b c .已知3cos 3cos c b C c B =+(I )求sin sin C A 的值 (II)若1cos ,233B b =-=,求∆ABC 的面积。
山东省潍坊市2023届高三上学期期中考试 数学试题(含解析)

试卷类型: A山东省潍坊市2023届高三上学期期中考试高三数学2022. 11本试卷共4页.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}240,{|lg(1)|M x x N x y x =-==-…∣,则M N ⋃= A.(,2]-∞ B.(,2]-∞- C.[2,1)- D.(,2][2,)-∞-⋃+∞ 2.若命题“2[1,2],30x x a ∃∈-<”为假命题,则实数a 的取值范围是 A.(,4]-∞ B.[2,)+∞ C.(,3]-∞ D.(,2)-∞3.设4,0,,sin ,cos()255παβααβ⎛⎫∈=+=- ⎪⎝⎭,则cos β=A. D. 4.为调查推广眼保健操对改善学生视力的效果,学校决定采用随机数表法从高三800名学生中随机抽取80名进行调查,将800名学生进行编号,编号分别为001,002,,799,800.下面提供的是随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从随机数表中第5行第6列开始向右依次读取3个数据作为抽取学生的编号,则抽到的第5名学生的编号是 A.007 B.253 C.328 D.7365.在学习《数学探究活动:得到不可达两点之间的距离》时,小明所在的小组决定测量本校人工湖两侧$C,D$两点间的距离,除了观测点,C D 外,他们又选了两个观测点12,P P ,测得121221,,PPm PP D P PD αβ=∠=∠=,则利用已知观测数据和下面三组新观测角中的一组,就可以求出,C D 间的距离是①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP ∠;③1PDC ∠和1DCP ∠. A.①和② B.①和③ C.②和③ D.①和②和③6.函数(1)y k x =-与ln y x =的图像有且只有一个公共点,则实数k 的取值范围为 A.1k = B.k e … C.1k =或0k … D.0k …或1k =或k e …7.对于函数()()f x x D ∈,若存在常数(0)T T >,使得对任意的x D ∈,都有()()f x T f x +…成立,我们称函数()f x 为“T 同比不增函数”.若函数()cos f x kx x =+是“3π同比不增函数",则实数k 的取值范围是 A.3,π⎡⎫+∞⎪⎢⎣⎭ B.3,π⎛⎤-∞- ⎥⎝⎦ C.3,π⎡⎫-+∞⎪⎢⎣⎭ D.3,π⎛⎤-∞ ⎥⎝⎦8.已知数列{}n a 的前n 项和为n S ,满足()1*132n n n a S n -⎛⎫+=-∈ ⎪⎝⎭N ,则下列结论正确的是A.23a a <B.68742a a a +=C.数列{}2nn a 是等比数列 D.13n S <…二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.某市新冠肺炎疫情工作取得阶段性成效,为加快推进各行各业复工复产,对当地进行连续11天调研,得到复工复产指数折线图(如图所示),下列说法错误..的是A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数的极差大于复工指数的极差C .第3天至第11天复工复产指数均超过80%D .第9天至第11天复工指数的增量大于复产指数的增量 10.已知0,0a b 厖,且1a b +=,则A.22a b +…B.221a b +…C.23log 12a b ⎛⎫-+>- ⎪⎝⎭D.ln(1)a a +…的充要条件是1b = 11.佼波那契数列又称黄金分割数列,因意大利数学家列昂纳多-斐波那契以兔子繁殖为例子而引人,故又称为“兔子数列”,在现代物理、准晶体结构、化学等领域都有直接的应用.在数学上,芠波那契数列被以下递推的方法定义:数列{}n a 满足:121a a ==,()*21n n n a a a n ++=+∈N.则下列结论正确的是A.813a =B.2023a 是奇数C.2222123202*********a a a a a a ++++= D.2022a 被4除的余数为012.定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()()xf x ef x -=,且满足22()()21x f x f x x e '-+=+-,则A.函数2()()F x e f x =为偶函数 B.(0)0f = C.不等式()x xxe f x e e +<的解集为(1,)+∞ D.若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.522x x ⎛⎫+ ⎪⎝⎭展开式中4x 的系数为_______.14.设函数sin ,0,()(1)1,0,x x f x f x x π>⎧=⎨+-⎩…,则53f ⎛⎫-= ⎪⎝⎭________. 15.一个盒子中有4个白球,m 个红球,从中不放回地每次任取1个,连取2次,已知第二次取到红球的条件下,第一次也取到红球的概率为59,则m =________. 16.在ABC 中,点D 是$BC$上的点,$AD$平分,BAC ABD ∠面积是ADC 面积的2倍,且AD AC λ=,则实数λ的取值范围为________;若ABC 的面积为1,当BC 最短时,λ=______.(第一空2分,第二空3分) 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚. 17.(10分)定义在(1,1)-上的函数()f x 和()g x ,满足()()0f x g x +-=,且1()log 2a xg x +=,其中1a >. (1)若122f ⎛⎫=⎪⎝⎭,求()f x 的解析式;(2)若不等式()1f x >的解集为1,3m ⎛⎫- ⎪⎝⎭,求m a -的值. 18.(12分)在(1)(0)1f =,(2)函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,(3)函数()f x 图像上相邻两个对称中心的距离为π,这三个条件中任选两个补充在下面问题中,并给出问题的解答.已知函数()2sin()02,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足 (1)求函数()f x 的解析式及单调递增区间;(2)在锐角ABC 中,()2,f B b ==求ABC 周长的取值范围. 19.(12分)2022年2月22日,中央一号文件发布,提出大力推进数字乡村建设,推进智慧农业发展.某乡村合作社借助互联网直播平台,对本乡村的农产品进行销售,在众多的网红直播中,随机抽取了10名网红直播的观看人次和农产品销售量的数据,如下表所示:参考数据:()()10102211600,768,80i i i i x x y y x==-=-==∑∑.(1)已知观看人次x 与销售量y 线性相关,且计算得相关系数16r =,求回归直线方程ˆˆˆy bx a =+; (2)规定:观看人次大于等于80(万次)为金牌主播,在金牌主播中销售量大于等于90(百件)为优秀,小于90(百件)为不优秀,对优秀赋分2,对不优秀赋分1.从金牌主㨨中随机抽取3名,若用X 表示这3名主播赋分的和,求随机变量X 的分布列和数学期望.(附:()()()121ˆˆˆ,niii nii x x y y bay bx x x ==--==--∑∑,相关系数()()niix x y y r --=∑20.(12分)已知等差数列{}n a 的前n 项和为512,35,8n S S a a =+=,记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T . (1)求数列{}n a 的通项公式及n S ;(2)是否存在实数λ,使得211(1)n n T λ+--…恒成立?若存在,求出实数λ的取值范围;若不存在,请说明理由.21.(12分)为了解新研制的抗病毒药物的疗效,某生物科技有限公司进行动物试验.先对所有白鼠服药,然后对每只白鼠的血液进行抽样化验,若检测样本结果呈阳性,则白鼠感染病毒;若检测样本结果呈阴性,则白鼠末感染病毒.现随机抽取()*,2n n n ∈N …只白鼠的血液样本进行检验,有如下两种方案: 方案一:逐只检验,需要检验n 次;方案二:混合检验,将n 只白鼠的血液样本混合在一起检验,若检验结果为阴性,则n 只白鼣末感染病毒;若检验结果为阳性,则对这n 只白鼠的血液样本逐个检验,此时共需要检验1n +次.(1)若10n =,且只有两只白鼠感染病毒,采用方案一,求恰好检验3次就能确定两只咸染病聿白业的概率; (2)已知每只白鼠咸染病暃的概率为(01)p p <<.①采用方案二,记检验次数为X ,求检验次数X 的数学期望;②若20n =,每次检验的费用相同,判斨哪种方案检验的费用更少?并说明理由. 22.(12分)已知函数1()ln f x x a x x=++,其中a ∈R . (1)求函数()f x 的最小值()h a ,并求()h a 的所有零点之和; (2)当1a =时,设()()g x f x x =-,数列{}()*n x n ∈N 满足1(0,1)x ∈,且()1n n xg x +=,证明:1322n n n x x x ++++>.高三数学试题参考答案及评分标准2022.11一、单项选择题(每小题5分,共40分) 1—5 ACCAD 6—10 CBD二、多项选择题(每小题5分,共20分)9.ABD10.AD11.BCD12.ABD三、填空题(每小题5分,共20分) 13.40142- 15.616.40,3⎛⎫ ⎪⎝⎭四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.解:(1)由题意知,()()2log 1a f x g x x=--=-, 又因为122f ⎛⎫=⎪⎝⎭,所以log 42a =,即2a =. 所以函数()f x 的解析式是()22log 111y x x=-<<-. (2)由()1f x >,得21a x >-,由题意知10x ->,所以211x a-<<, 所以21131a m ⎧-=-⎪⎨⎪=⎩,即321a m ⎧=⎪⎨⎪=⎩,所以12m a -=-. 18.解:(1)若选①②,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或()526k k πϕπ=+∈Z ,又因为02πϕ<<,所以6πϕ=,由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以432362k πππωπ+=+,()k ∈Z , 所以312k ω=+,()k ∈Z ,又因为02ω<<,所以1ω=,所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R ,当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,若选①③,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或526k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,由③得,函数()f x 图像上相邻对称中心的距离为π,所以2T π=,所以1ω=, 所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k Z ∈,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k Z ∈,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z若选②③,由③得,函数()f x 图像上相邻对称中心的距离为π.所以2T π=,所以1ω=, 由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以431232k ππϕπ⨯+=+,()k ∈Z ,即26k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,所以()2sin 6f x x π⎛⎫=+⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,(2)()2sin 26f B B π⎛⎫=+= ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭,又因为锐角三角形,所以3B π=.因为b =2sin bB==,由正弦定理可得22sin 2sin 3a A C π⎛⎫==- ⎪⎝⎭,2sin c C =, 所以ABC △的周长22sin 2sin 2sin 2sin 36ABC L a b c A C C C C ππ⎛⎫⎫=++=++=-+=+ ⎪⎪⎝⎭⎭△因为ABC △是锐角三角形,由022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,得62C ππ<<,所以2,633C πππ⎛⎫+∈ ⎪⎝⎭,所以sin 62C π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以(36ABC L C π⎛⎫=++ ⎪⎝⎭△, 所以ABC △周长的取值范围为(3+.19.解:(1)因为()()niix x y y r --=∑,所以()()1016iix x y y --=∑所以()()101660i i i x xy y =--=∑,所以()()()10110216601160010iii i i x x y y b x x==--===-∑∑, ()18087778310y =+++=118380510a y bx =-=-⨯=-,所以回归直线方程为11510y x =-. (2)金牌主播有5人,2人赋分为2,3人赋分为1, 则随机变量X 的取值范围是{}3,4,5()33351310C P X C ===,()122335345C C P X C ===,()2123353510C C P X C ===, 所以X 的分布列为:所以()345105105E X =⨯+⨯+⨯=.20.解:(1)因为{}n a 为等差数列,设公差为d ,首项为1a ,53535S a ==,解得37a =,12128a a a d +=+=,又因为3127a a d ++=,13a =,2d =所以()32121n a n n =+-=+()21122n n n S na d n n -=+=+. (2)证明:由(1)知22n S n n =+,所以()21111112222n S n n n n n n ⎛⎫===- ⎪+++⎝⎭, 所以11111111111111131121324112212122212n T n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+-=+--=-- ⎪ ⎪ ⎪-++++++⎝⎭⎝⎭⎝⎭,因为n T 为递增数列,所以当1n =时,n T 取得最小值为131112211123⎛⎫--= ⎪++⎝⎭,又因为0n >,所以34n T <,所以1334n T ≤<.当n 为奇数时,21n T λ-≤恒成立,即2113λ-≤,解得λ≤≤, 当n 为偶数时,21n T λ-≤-恒成立,即2314λ-≤-,解得1122λ-≤≤, 综上所述,实数λ的取值范围为11,22⎡⎤-⎢⎥⎣⎦. 21.解:(1)根据题意恰好在第一、三次确定两只感染病毒白鼠的概率12811109845P =⨯⨯=, 恰好在第二、三次确定有两只感染病毒白鼠的概率28211109845P =⨯⨯=, 所以恰好检验3次就能确定有两只白鼠感染病毒的概率28182121098109845P =⨯⨯+⨯⨯=.(2)①设检验次数为X ,可能取得值为1,1n +.则()()11nP X p ==-,()()111nP X n p =+=--,所以()()()()()()111111n n nE X p n p n n p ⎡⎤=-++--=+--⎣⎦.②方案二的检验次数期望为()()()11n E X n n p =+--,所以()()20201201E X p -=-⨯-, 设()()201201g p p =-⨯-,因为011p <-<,所以()g p 单调递增, 由()0g p =得1p =01p <<()0g p <,则()20E X <, 当11p <<时,()0g p >,则()20E X >, 故当01p <<时,选择方案二检验费用少,当11p -<<时,选择方案一检验费用少,当1p = 22.解:(1)函数()f x 的定义域为()0,+∞,且()221x ax f x x+-'=,令()0f x '=,得210x ax +-=,解得1x =2x =(舍去),所以()f x 在()10,x 上单调递减,在()1,x +∞单调递增,所以()()111min 11ln f x f x x a x x ==++,即()ln 2ah a a =,由1x 是方程210x ax +-=的根,则111a x x =-,所以()1111111ln h a x x x x x ⎛⎫=++- ⎪⎝⎭,令()11ln H x x x x x x ⎛⎫=++- ⎪⎝⎭,可知()1H H x x ⎛⎫= ⎪⎝⎭. 又因为()211ln H x x x ⎛⎫'=-+⎪⎝⎭,所以()H x 在()0,1单调递增,在()1,+∞单调递减. 而222130H e e e⎛⎫=-<⎪⎝⎭,()120H =>,所以有且仅有唯一()00,1x ∈,使得()00H x =, 所以()011,x ∈+∞,有010H x ⎛⎫= ⎪⎝⎭.所以方程()0H x =有且仅有两个根0x ,01x , 即1111111ln 0x x x x x ⎛⎫++-= ⎪⎝⎭有且仅有两根0x ,01x , 又因为()11110a x x x =->单调递减,所以()y h a =有两个零点设为1a ,2a (不妨设12a a <),则12000011101a a x x x x ⎛⎫⎪⎛⎫ ⎪+=-+-= ⎪ ⎪⎝⎭ ⎪⎝⎭.(2)由题意知1a =时,()()1ln g x f x x x x =-=+,因为()22111x g x x x x-'=-=, 令()0g x '>,得1x >,()0g x '<,得1x <.所以()g x 在()0,1上递减,在()1,+∞递增,则有()()11g x g ≥=,因为()10,1x ∈,所以()211x g x =>,()321x g x =>,…,()11n n x g x +=>.令()()1ln m x g x x x x x=-=+-,1x ≥,()2222131240x x x m x x x ⎛⎫--- ⎪-+-⎝⎭'==<,所以()m x 在区间[)1,+∞单调递减,所以()()10m x m ≤=. 所以()21110n n n n x x g x x ++++-=-<,即21n n x x ++< 又因为函数()m x 单调递减,所以()()21n n m x m x ++>, 即22112111ln ln n n n n n n x x x x x x +++++++->+-,即3221n n n n x x x x ++++->-,所以1322n n n x x x ++++>.。
福建省师范大学附属中学高三数学上学期期中试卷文(含解析)(最新整理)

12019届福建师范大学附属中学高三上学期期中考试数学(文)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.设集合则=A .B .C .D .2.命题“,”的否定是A .,B .,C ., D .,3.已知是虚数单位,复数在复平面上所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限4.已知双曲线的离心率为,则双曲线的渐近线方程为A .B .C .D .只装订不密封准考证号 考场号 座位号5.已知函数,为图象的对称轴,将图象向左平移个单位长度后得到的图象,则的解析式为A .B .C .D .6.已知抛物线的焦点为,准线与轴的交点为,抛物线上一点,若,则的面积为A .B .C .D .7.函数的部分图象大致为A .B .C .D .8.直线与圆相交于、两点。
若,则的取值范围是A .B .C .D .9.某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的表面积为A .B .C .D .210.若四边形是边长为2的菱形,,分别为的中点,则A .B .C .D .11.在中,,,点在边上,且,则A .B .C .D .12.已知椭圆的左右焦点分别为、,过点的直线与椭圆交于两点,若是以为直角顶点的等腰直角三角形,则椭圆的离心率为A .B .C .D .二、填空题13.已知直线1:260l ax y++=和直线()22:110l x a y a+-+-=垂直,则实数a的值为__________.14.已知向量,,若,则向量与向量的夹角为_____.15.设函数,则函数的零点个数是_______.16.半径为4的球的球面上有四点A,B,C,D,已知为等边三角形且其面积为,则三棱锥体积的最大值为_____________________.三、解答题17.已知等差数列的公差为1,且成等比数列.3(1)求数列的通项公式;(2)设数列,求数列的前项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平山中学2016年秋高三期中考试数学文科试卷
全卷满分150分 考试用时120分钟。
一、 选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求
的.
1. 已知集合{2}A x x =>,{(1)(3)0}B x x x =--<,则A
B =
A.{1}x x >
B.{23}x x <<
C.{13}x x <<
D.{2x x >或1}x < 2.复数i
i
z 2131+-=
,则( ) A .2||=z B .z 的实部为1 C .z 的虚部为i - D .z 的共轭复数为i +-1 3. 已知向量(1,2),(2,4)=-=-a b ,则a 与b A. 垂直
B. 不垂直也不平行
C. 平行且同向
D. 平行且反向
4. 已知命题p :0x ∀>,1
x x
+
≥2;命题q :若a b >,则ac bc >.下列命题为真命题的是 A.q B.p ⌝ C. p q ∨ D.p q ∧ 5. .若角θ的终边过点(3,4)P -,则tan(π)θ+= A.
34 B.34- C.43 D.4
3-
6.已知函数()f x 是奇函数,且当0x >时,()e x
f x =, 则(1)f -=( )
(A )
1
e
(B )1e
-
(C )e (D )e -
7.执行如图的程序框图,输出的S 值是( ) A .23-
B .2
3 C .0 D .3 8.已知向量()2,1=a ,()0,1=b ,()3,4-=c ,若λ为实数,()
c b a ⊥+λ,则λ=
A .14
B .1
2
C.1 D .2
9.在ABC ∆中,若点D 满足2BD DC =,则AD =( ) A .
1233AC AB + B .52
33
AB AC - 是
C
.
2133AC AB - D .21
33
AC AB + 10.函数x x
x x f cos )1
()(-=ππ≤≤-x (且)0≠x 的图象可能为
O
x
π-πy
O π-π
y
x
A .
B .
O
π-π
y
x
π-π
O
y
x
C .
D .
11.函数在区间[0,π]上的一个单调递减区间是( )
A .
B .
C .
D .
12.函数(x)2sin(x )(0,)2
2
f π
π
ωϕωϕ=+>-
<<
的图象如图所示, 则AB BD →
→
⋅=( )
A .8
B .-8
C .2
88
π- D .2
88
π-
+
二、填空题:本题共4小题,每小题5分.
13.求值: 22cos 15sin 15︒︒
-=
14.已知ab c b a c b a ABC =-+∆2
2
2
,,且三边长分别为,则C ∠= .
15.设1,2,,a b a b ==且的夹角为0120;则2a b +等于______________.
16.设函数3
()3f x x x a =-+ (0a >),若()f x 恰有两个零点,则a 的值为__________ . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,sin 3cos 2A A +=. (Ⅰ)求A 的大小;
(Ⅱ)若2a =; 45B =;求△ABC 的面积
18.(本小题满分12分)已知函数22()sin 23sin cos 3cos f x x x x x =++,x R ∈.求:
(I)求函数()f x 的最小正周期; (II)求函数()f x 在区间[,]63
ππ
-
上的值域.
(Ⅲ)描述如何由x y sin =的图象变换得到函数()f x 的图象
19.(本小题满分12分)已知函数2
1()2
x f x e x ax =-
-(R)a ∈. (Ⅰ)若函数()f x 的图象在0x =处的切线方程为2y x b =+,求a ,b 的值; (Ⅱ)若函数在R 上是增函数,求实数a 的取值范围;
20. (本小题满分12分) 已知向量)sin ,)6
2(sin(x x m π
+
=,)sin ,1(x n =,2
1)(-
⋅=n m x f . (Ⅰ)求函数()f x 的单调递减区间;
(Ⅱ)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,23a =,1()22
A f =, 若C C A cos 2)sin(3=+,求b 的大小.
21.(本小题共12分)
已知1x =是函数()2ln b
f x x x x
=++的一个极值点. (Ⅰ)求实数b 的值; (Ⅱ)求()f x 的单调递减区间;
(Ⅲ)设函数3
()()g x f x x
=-
,试问过点2(,5)可作多少条直线与曲线()y g x =相切?请说明理由.
22.(本小题满分10分)选修4—5:不等式选讲
已知函数()2321f x x x =++-. (1)求不等式6)(≤x f 的解集;
(2)若关于x 的不等式()1f x m <-的解集非空,求实数m 的取值范围.。