说《排列组合应用题》.
排列组合综合问题.[五篇范例]
![排列组合综合问题.[五篇范例]](https://img.taocdn.com/s3/m/4feb9e31a66e58fafab069dc5022aaea998f4113.png)
排列组合综合问题.[五篇范例]第一篇:排列组合综合问题.[文件] sxgdja0017.doc [科目] 数学 [年级] 高中 [章节][关键词] 排列/组合/综合 [标题] 排列组合综合问题 [内容]北京市东直门中学吴卫教学目标通过教学,学生在进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想.教学重点与难点重点:排列、组合综合题的解法.难点:正确的分类、分步.教学用具投影仪.教学过程设计(一)引入师:现在我们大家已经学习和掌握了一些排列问题和组合问题的求解方法.今天我们要在复习、巩固已掌握的方法的基础上,来学习和讨论排列、组合综合题的一般解法.先请一位同学帮我们把解排列问题和组合问题的一般方法及注意事项说一下吧!生:解排列问题和组合问题的一般方法直接法、间接法、捆绑法、插空法等.求解过程中要注意做到“不重”与“不漏”.师:回答的不错!解排列问题和组合问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.(教师边讲,边板书)互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法(二)举例师:我下面我们来分析和解决一些例题.(打出片子——例1)例1 有12个人,按照下列要求分配,求不同的分法种数.(1)分为两组,一组7人,一组5人;(2)分为甲、乙两组,甲组7人,乙组5人;(3)分为甲、乙两组,一组7人,一组5人;(4)分为甲、乙两组,每组6人;(5)分为两组,每组6人;52(6)分为三组,一组5人,一组4人,一组3人;(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人;(8)分为甲、乙、丙三组,一组5人,一组4人,一组3人;(9)分为甲、乙、丙三组,每组4人;(10)分为三组,每组4人.(教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解.这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之间有区别、有联系,便于学生分析、比较、归纳,有利于学生加深理解,提高能力)师:请一位同学说一下各题的答案(只需要列式).7566生:(1),(2),(3)都是C12;(4),(5)都是C12;(6),(7),(8)C5C654344都是C12(9),(10)都是C12 C7C3;C84C4师:从这个同学的解答中,我们可以看出他对问题的考虑分先后次序,用位置法求解是掌握了的.但是还请大家审清题意,看(3)与(1),(2);(5)与(4);(8)与(6),(7);(10)与(9)是否分别相同,有没有出现“重复”和“遗漏”的问题.(找班里水平较高的一位学生回答)生:(3)和(1),(2);(5)和(4);(8)和(6),(7);(10)和(9)并不相同.(3),(5),(8),(10)的答案都错了,既出现了“重复”也出现了“遗漏”的问题.(3)的答案是CCP312552(5)是2;6644C12C6C12C84C45433;(8)是C12C7C3P 3(10)是P22P33(教师在学生回答时板书各题答案)师:回答的正确,请说出具体的分析.生:(3)把12人分成甲、乙两组,一组7人,一组5人,但并没有指明甲、乙谁是7人,谁是5人,所以要考虑甲、乙的顺序,再乘以P2;(8)也是同一道理.(5)把12人分成两组,66每组6人,如果是分成甲组、乙组,那么共有C12种不同分法,但是(5)只要求平均分C62成两组,这样甲、乙组两元素的所有不同排列顺序,甲乙、乙甲共P22个就是同一种分组了,66C12C6所以(5)的答案是;(10)的道理相同. 2P2师:分析的很好!我们大家必须认识到,题目中具体指明甲、乙与没有具体指明是有区别的.如果在解题过程中不加以区别,就会出现“重复”和“遗漏”的问题,这是解决排列、组合题时要特别注意的.例1中,(1),(2),(6),(7)都是非平均分配问题,虽然(1),(6)都没有指出组名,而(2),(7)给出了组名,但是在非平均分配中是一样的.这是因为(2),(7)不仅给出了组名,而且还指明了谁是几个人,这一点上又与(3),(8)有差异.(3),(8)给了组名却没有指明谁是几个人.题中(4),(5),(9),(10)都属于平均分配问题,在平均分配中,如果没有给出组名,一定要除以组数的阶乘!如果12个人分成三组,其中一组2人,另外两组都是5人,求所有不同的分法种数.这里有不平均(一组2人),又有平均(两组都是是5人).怎么办? 53 生:分两步完成.第一步:12个人中选2人的方法数C212;第二步:剩下的10个人平均分5555C10C5C10C52成两组,每组5人的方法数,根据乘法原理得到,共有C12•种不同的分法. 22P2P2师:很好!大家已经理解了不平均分配的、平均分配,以及部分平均分配的计算,部分平均分配问题先考虑不平均分配,剩下的仍是平均分配,平均分配要商除.这样分配问题已彻底解决了.请看例题2.(打出片子——例2)(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.(教师读题、巡视)师:请一位同学说出(1),(2)的答案.872生甲:N1=P77P22;N2=P8-P7P2师:完全正确!他是用捆绑法解决“相邻”问题的,把2女“捆绑”在一起看成一组,与6男共7组,组外排列为P77,女生组内排列为P2,得2女相邻排法数N1=P77•P22;(2)是用捆绑法结合排除法来解得,从总体排列P88中排除N1得2女不相邻的排法数N2=2P88-P77P22(教师的复述是为了使水平较差学生明白解题思路,了解分析方法,真正理解解法)师:(2)的不相邻的分离排列还有没有其它解法? 生乙:可以用插空法直接求解.6男先排实位,再在7个空位中排2女,共有N2=P66P72种不同排法.(板书(1),(2)算式)师:对于(2)的两种解法思路不同,但殊途同归,结果一样,都是正确的.两种解法解决分离问题是否都很方便呢?试想,如果“5男3女排成一排,3女都不能相邻“P88-P66P33与P55P63一样吗?大家动手计算一下.生:前者是36 000,后者是14 400,不一样,肯定有问题.师:P66P33是什么? 生:3女相邻.师:3女相邻的反面是什么? 生:P8-P6P3是3女不都相邻,其中有2女相邻,不是3女都不相邻.师:这一例题说明什么? 生:不相邻的分离排列还是用插空法要稳妥一些.师:请大家下课后想一想,用捆绑法结合排除法能否解决上述问题,如果能解决,应该怎么做?我们继续分析和解决(3),(4)两小题.863 54 N3=P33P44P44;N4=2P44P44.(板书(3),(4)的算式)834444师:非常正确!(4)吸取了(2)的教训,没有用P8-P3P4P4,并且没有简单的用P4P5插空,而是考虑到了男、女都要排实位,否则会出现.(板书)(女男男女男女男女)两男或两女相邻的问题.这时同性不相邻必须男女都排好,即男奇数位,女偶数位,或者对调.(通过对例2的讨论和分析,能够帮助学生对于分离排列、排除法以及插空法有更清楚的认识,只有这样学生才会找到合理的解法,提高分析和解决问题的能力.)师:我们再来看一个例题.(打出片子——例3)例3 某乒乓球队有8男7女共15名队员,现进行混合双打练习,两边都必须是1男1女,共有多少种不同的搭配方法?(教师朗读一遍例3后巡视)师:请同学说一下答案.224生:N=C8. C7P4(板书此式)师:怎么分析的呢?22生:每一种搭配都需要2男2女,先把4名队员选出来,有C8C7种选法,然后考虑4人的排法,故乘以P44师:选出的4名队员做全排列,那么(板书)男A男B、女A女B行吗? 生:不行,有“重复”了,应该乘以什么呢? 师:这就需要我们再把问题想想清楚了,当选出2男2女队员进行混合双打时,有几种搭配方法呢?(板书)男——男女①Aa Bb ②Ab Ba ③Ba Ab ④Bb Aa 以上四种吗? 生:不是!③与②,④与①属于同一种,只有2种搭配,应该乘以2.22师:这就对了.N=2C8C7,还可以用下面的思路:先在8男中选2男各据一侧,是排列问222题,有P82种方法;再在7女中选2女与之搭配,是组合问题,有C7种方法,一共有N=P8C7种搭配方法.(板书)22解法1:N=2C8C7 22解法2:N=P8C7师:最后看例4(打出片子——例4)例4 高二(1)班要从7名运动员中选出4名组成4×100米接力队,参加校运会,其中甲、乙二人都不跑中间两棒的安排方法有多少种?(教师读题,引导分析)师:从7人中选4人分别安排第一、二、三、四棒这四个不同任务,一定与组合和排列有关,对甲、乙有特殊要求,这就有了不同情况,要分类相加了.先不考虑谁跑哪棒,就说4人的选择有几类情况呢?53生:三类,第一类,没有甲乙,有C4种选法;第二类,有甲没乙或有乙没甲,有2C5种选2法;第三类,既有甲也有乙,有C5种选法.师:如果把上述三类选法数相加再乘以P44行不行? 生:不行,对于上面三类不同选法,并不能都有P44种安排方法.考虑甲、乙二人都不跑中44313222间两棒,应有不同的安排方法数是:N=C5P4+2C5P2P3+C5P2P2.师:第二项中的P21P33是什么意思呢? 生:第二类中甲、乙两人只有1人选中时,甲(乙)的排法数量是P21,其他三人的排法数是P33.师:很好,这个排列组合综合题在求解中的分类十分重要,大家要认真体会,了解其思路和方法.(三)小结我们通过对4个例题的分析和讨论,总结了分配问题,分离排列问题的解法,以及排列、组合综合题的解法.解排列、组合综合题,一般应遵循:先组后排的原则.解题时一定要注意不重复、不遗漏.(四)作业1.四名优秀生保送到三所学样去,每所学样至少得1名,则不同的保送方案总数是种.(23C4P3=36)2.有印着0,1,3,5,7,9的六张卡片,如果允许9当作6用,那么从中任意以组成多少个不同的三位数?(6P或2C4P2P2+2C4P3+C4P2P2+P4=152)5+P4C1C4P2=152课堂教学设计说明关于排列组合的应用题,由于其内容独特,自成体系;种类繁多,题目多变;解法别致,思维抽象;条件隐晦,难以捉摸;得数较大,不易检验.所以这一课历来是学生学习中的难点.为了降低解题的难度,在教会学生基本方法的同时,一定要使学生学会转化,分类的思想方法,将复杂的排列、组合综合题转化为若干个简单的排列、组合问题.基于这一点,在例题的选排上,特别安排了例1,在复习巩固前面所学基本解法的基础上,总结了分配问题的解法,并引出了简单的排列组合综合问题.通过例2来讨论排列中常见的相邻排列和分离排列问题,21112112332122 56 以及排除法、插空法等解法在应用中需注意的事项.例3、例4是典型的排列、组合综合题,分别侧重了分步和分类两个难点.教学方法上,以问答形式,通过讨论分析,引导学生正确思维,培养学生分析问题和解决问题的能力.操作过程中也要根据学生的具体情况,采取多变的方式.学生配合的好,就以学生为主,学生回答问题不尽如人意时,就需要教师在提高语言、方式等方面多做文章,或以教师的讲授为主.第二篇:08届高三数学排列组合综合问题g3.1092 排列与组合的综合问题一、知识梳理1.排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合问题的基本思维是“先组,后排”.2.解排列组合的应用题,要注意四点:(1)仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步.(2)深入分析、严密周详,注意分清是乘还是加,既不少也不多,辩证思..维,多角度分析,全面考虑,这不仅有助于提高逻辑推理能力,也尽可能地避免出错.(3)对于附有条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决.(4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方法求解,看看是否相同.在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复.二、基础训练1.(04福建)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为2A.A6C24B.122A6C242C.A6A24D.2A62.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为A.24B.48C.120D.72 3.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为A.480B.240C.120D.96 4.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字组成没有重复数字的四位数,其中能被5整除的四位数共有_____________个.(用数字作答)5.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式共有_____________种.(用数字作答)例1.从6名短跑运动员中选4人参加4×100 m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法? 例2.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能? 思考讨论用类似的方法,讨论如下问题.某种产品有5件不同的正品,4件不同的次品,现在一件件地进行检测,直到4件次品全部测出为止,则最后一件次品恰好在第6次检测时被测出,这样的检测方案有多少种?提示:问题相当于从10件产品中取出6件的一个排列,第6位为次品,前五位有其余3件次品,可分三步:先从4件产品中留出1件次品排第6位,有42种方法;再从5件正品中取2件,有C5种方法;再把3件次品和取出的2件正2品排在前五位有A5种方法.所以检测方案种数为4×C5·A5=4800.55例3.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B 两种作物的间隔不小于6垄,则不同的种植方法共有多少种?例4.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是A.234B.346C.350D.363 例5.(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法? 例6.已知1(1+n)m.四、同步练习g3.1092 排列与组合的综合问题1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有A.24种B.18种C.12种D.6种2.四个不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的放法种数为A.A13A343B.C24A32C.C34A22D.C14C34C23.(05湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数 A.168 B.96 C.72 D.144 4.(05江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A)96(B)48(C)24(D)0 5.从6名短跑运动员中选出4人参加4 × 100米接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方案有 A.180种B.240种C.300种D.360种6.书架上原有5本书,再放上2本,但要求原有书的相对顺序不变,则不同的放法有_____________种.7.(04浙江)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,..则质点不同的运动方法共有__________种.(用数字作答)8.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?9.18人的旅游团要选一男一女参加生活服务工作,有两位老年男人不在推选之列,共有64种不同选法,问这个团中男女各几人?10.如下图,矩形的对角线把矩形分成A、B、C、D四部分,现用五种不同色彩给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,共有多少种不同的涂色方法?ABCD11.6名运动员分到4所学校去做教练,每校至少1人,有多少种不同的分配方法?参与答案基本训练1.将4名学生均分成两组,方法数为C24,再分配给6个年级中的2个,222分配方法数为A6,∴合要求的安排方法数为C24·A6.112答案:B432.若不含A,则有A4若含有A,则有C3C12·A3C12·A34种;4·3种.∴A4+C4·3=72.答案:D23.先把5本书中的两本捆起来(C5),再分成四份(A4,∴分法种数为4)2C5·A44=240.答案:B 4.①四位数中包含5和0的情况:12C13·C14·(A33+A2·A2)=120.②四位数中包含5,不含0的情况:3C13·C24·A3=108.③四位数中包含0,不含5的情况:2C3C14A3=72.3综上,四位数总数为120+108+72=300.答案:300 5.把四位乘客当作4个元素作全排列有A4种排法,将一个空位和余下的4422个空位作为一个元素插空有A5种排法.∴A4·A5=480.4答案:480 例题分析例1.解法一:问题分成三类:(1)甲、乙两人均不参加,有A4种;(2)甲、4乙两人有且仅有一人参加,有2C3(A4-A3)种;(3)甲、乙两人均参加,有443C2(A4-2A3+A2)种.故共有252种.44324解法二:六人中取四人参加的种数为A6,除去甲、乙两人中至少有一人不排在恰当位置的有C12 A3种,因前后把甲、乙两人都不在恰当位置的种数A2减544去了两次.故共有A6-C12 A3+A2=252种.54评述:对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种方法处理.4例2.解:C14(C16C33)A4=576,第5次必测出一次品,余下3件在前4次被测出,从4件中确定最后一件品有C14种方法,前4次中应有1正品、3次品,4有C16C33种,前4次测试中的顺序有A4种,由分步计数原理即得.评述:本题涉及一类重要问题,即问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列.例3.解:依题意,A、B两种作物的间隔至少6垄,至多8垄.(1)间隔62垄时,有3×A2(2)间隔7垄时,有2×A22种;2种.(3)间隔8垄时,有A2种.22所以共有3A22+2A2+A2=12种种植方法.例4.解法一:分类讨论法.(1)前排一个,后排一个,2C18·C112=192.(2)后排坐两个(不相邻),2(10+9+8+…+1)=110.(3)前排坐两个,2·(6+5+…+1)+2=44个.∴总共有192+110+44=346个.解法二:考虑中间三个位置不坐,4号座位与8号座位不算相邻.2∴总共有A19+2+2=346个.答案:B 评述:本题考查分类讨论在解排列组合应用题中的运用.这是一道难度较大的小综合题.例5.解:(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C2种4插法;二是2张同时插入,有C14种插法,再考虑3人可交换有A3种方法.3所以,共有A3(C2+C14)=60(种).34下面再看另一种构造方法:先将3人与2张空椅子排成一排,从5个位置中选出3个位置排人,另2个位置排空椅子,有A3C2种排法,再将4张空椅子中的每两张插入每两人之间,52只有1种插法,所以所求的坐法数为A3·C2=60.52(2)可先让4人坐在4个位置上,有A4种排法,再让2个“元素”(一个4是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空22当”之间,有A5种插法,所以所求的坐法数为A44·A5=480.01n1n例6.证法一:由二项式定理(1+m)n=C0nm+Cnm+…+Cnm,011mm(1+n)m=C0,mn+Cmn+…+Cmn又因为Cinmi=Anmi!ii,Cimni=Amni!ii,2322333mmm而Ainmi>Aimni,所以C2>Cm.nm>Cmn,Cnm>Cmn,…,Cnmmn0001111又因为C0nm=Cmn,Cnm=Cmn,所以(1+m)n>(1+n)m.证法二:(1+m)n>(1+n)m⇔nln(1+m)>mln(1+n)⇔ln(1+m)mx>ln(1+n)n.令f(x)=ln(1+x),x∈[2,+∞],只要证f(x)在[2,+∞]上单调递减,只要证 f ′(x)<0.f ′(x)=[ln(1+x)]'x-x'⋅ln(1+x)x2=x-ln(1+x)2(1+x)x(1+x).当x≥2时,x-lg(1+x)(1+x)<0,x2(1+x)>0,得f ′(x)<0,即x∈[2,+∞]时,f ′(x)<0.以上各步都可逆推,得(1+m)n>(1+n)m.作业:1—4 BBDBB6.427.5 8.解法一:添加的三个节目有三类办法排进去:①三个节目连排,有C17A33种方法;②三个节目互不相邻,有A3种方法;③有且仅有两个节目连排,有7C13C17C16A2种方法.根据分类计数原理共有C17A3+A3+C13C17C16A2=504种.2372解法二:从结果考虑,排好的节目表中有9个位置,先排入三个添加节目有A3种方法,余下的六个位置上按6个节目的原有顺序排入只有一种方法.故所求9排法为A3=504种.9解法三:A9A669=504.评述:插空法是处理排列、组合问题常用的方法.9.解:设这个团中有男人x人,则有女人18-x人,根据题意得C1x-2· C118-x=64.解得x=10.∴这个团中有男10人,女8人.10.解法一:依题意,给四部分涂色,至少要用两种颜色,故可分成三类涂色:4第一类,用4种颜色涂色,有A5种方法;第二类,用3种颜色涂色,选3种颜色的方法有C35种;在涂的过程中,选对顶的两部分(A、C或B、D)涂同色,另两部分涂异色有C12种选法;3种颜313色涂上去有A33种涂法.共C5·C2·A3种涂法;2第三类,用两种颜色涂色.选颜色有C5种选法;A、C与B、D 各涂一色有22A22种涂法.共C5·A2种涂法.41322所以共有涂色方法A5+C35·C2·A3+C5·A2=260种.解法二:区域A有5种涂色法;区域B有4种涂色法;区域C的涂色法有2类:若C与A涂同色,区域D 有4种涂色法;若C与A涂不同色,此时区域C有3种涂色法,区域D也有3种涂色法.所以共有5×4×4+5×4×3×3=260种涂色法.11.解法一:先取人,后取位子.1,1,1,3:6人中先取3人有C3种取法,与剩余3人分到4所学校去有6A4种不同分法,∴共C3A4种分法;46421,1,2,2:6人中取2人、2人、1人、1人的取法有C6·C2·C12种,4然后分到4所学校去,有A4A2⋅A2224种不同的分法,共C·C·C·262412A4A2⋅A2224种分法.所以符合条件的分配方法有CA+C·C·C·3644262412A4A22422⋅A=1560种.解法二:先取位子,后取人.1,1,1,3:取一个位子放3个人,有C14种取法,6人中分别取3人、1人、1人、1人的取法有C3·C13·C12·C1种,∴共有C14·C3·C13·C12·C1种.61611,1,2,2:先取2个位子放2(其余2个位子放1)有C24种取法,6人中22分别取2人,2人,1人,1人的取法有C6·C2C12·C1共有C2C6·C2C12·C14·1种,4·4·1种.112221所以符合条件的分配方法有C14·C36·C3·C2+C4·C6·C4·C2=1560种.第三篇:排列组合排列组合方法一:相邻元素捆绑法:所谓“捆绑法”就是在解决对于某几个元素要求相邻问题时,可整体考虑将相邻元素视为一个“大”元素例:6名同学排成一排,其中甲,乙两人必须在一起的不同徘法共有(C)A.720种 B.360种 C.240种 D.120种因甲,乙两人排在一起,故甲乙两人捆在一起视作一人,与其余四个全排列A5种排法,但甲乙两人之间有A2种52排法,由分布计数原理可知:共有A5•A2=240种不同排法,故选C 方法二:相离问题插空法:不相邻问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以先将其他元素排好,再将所指定的不相邻的元素插入到它们的空隙及两端位置,故称“插空法”例:要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法?先将6个歌唱节目排好,其不同的排法A6种,这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目有A746种排法,由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为A7.•A6方法三:定序问题缩倍法:在排列问题中限制某几个元素必须保持一定顺序成为定序问题,这类问题用缩小倍数的方法求解比较方便。
排列组合综合应用题

例3. 4名男生5名女生,一共9名实习生分配到 高一的四个班级担任见习班主任,每班至少有 男、女实习生各1名的不同分配方案共有多少 种?
解:由题意可知,有且仅有2名女生要分在同 一个班,
CAA
2 5
4 4
4 4
5760
例4.将五名志愿者分配到三个不同的奥运场馆
参
加接待工作,每个场馆至少一名接待志愿者的方
(2)恰有一个空盒,有几种放法?
(3)恰有两个盒子不放球有几种放法? 变式: 将20个大小相同的小球放入编号为1,2, 3的三个盒子中,要求每个盒子内的球数不小于该 盒子的编号数,求共有多少种不同的放法?
120
例6. 对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能?
案有多少?
变式: 从6个学校中选出30名学生参加数学 竞赛,每校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不 同盒子(盒子不能空的)有几种放法?这类问 可用“隔板法”处理. 5 C 解:采用“隔板法” 得:29 4095
例5、将四个不同的小球投入四个不同的盒子
里,问:
(1)共有多少种放法?
反思:对于排列组合的混合应用题,
一般解法是先取后排。
例9.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数? 解:可以分为两类情况:① 若取出6,则有 2 1 1 1 2( A8 种方法; C2C7C7 ) 2 ②若不取6,则有 C1 A 种方法,
排列与组合综合 应用题
例1 将3名医生和6名护士分配到3所学校 为学生体检,每所学校去1名医生和2名 护士,求共有多少种不同的分配方案? 540 例2 将8名工程技术人员平均分到甲、乙 两个企业作技术指导,其中某2名工程设 计人员不能分到同一个企业,某3名电脑 编程人员也不能分到同一个企业,求共 有多少种不同的分配方案? 36
数学:《排列组合的应用题解法综述》()

; http;// 果博东方注册; http;// 果博东方注册; http;// 果博东方注册; http;// 果博东方注册; http;// 果博东方注册 jch81kcf
以整治四哥壹番,但碍于太子出席了婚宴,太子没有发话,各位兄弟也都不敢造次,即使暗地里磨拳头擦掌,但表面上仍然按部就班地你 来我往喝着喜酒。宴过三巡、菜过五味,太子爷喝完五弟、八弟、九弟的轮番敬酒,好不容易歇了口气,十弟、十二弟又来了。太子实在 是招架不住:“今天是四弟的喜酒,又不是本王的酒,各位弟弟们怎么都搞错了?”说着,他转回身来,意欲让四弟替他代酒,结果壹看, 新郎居然不在座位上,放眼望去,也不在宴客大厅里,这四弟去了哪儿了?“四弟呢?今天他是主角,怎么这么半天不见了人影?”太子 爷诧异而又玩味地问着坐在他右手的三阿哥。“不会是四哥心急,趁着兄弟们喝酒,先会新娘子去了吧?” 十四阿哥壹脸不以为然的神情。 因为与四哥是同父同母的亲兄弟,十四阿哥平日里说起话来从来都是无所顾忌,此时也壹如往常,脱口而出,虽然这个回答不过是他的胡 乱猜疑而已。“就你满嘴胡嘞,四哥是什么人?美色当前,眼都不眨壹下,怎么可能这么点儿时间都等不及?”十三阿哥自幼与四哥交好, 此时四哥不在,遭太子爷的查岗,又逢十四弟不负责任地乱说壹气,自是要挺身而出、尽力维护。“我看十四弟说得也有道理,否则四弟 怎么会这么半天还不见人影?若是更衣,这时间也太长了吧。”三阿哥不露声色地插了壹句,既是回答了前面太子爷的问题,又表明了是 赞同十四弟的猜测。“这向皇阿玛亲请的侧福晋就是不壹样啊!早知如此,赶明儿,我也向皇阿玛去求个小福晋回来。”“九弟,你那壹 堆小福晋哪个不是你自己弄进府里的?难不成还是别人硬塞给你的?”“那也不是皇阿玛亲赐的啊!”……此时的四阿哥,正在离宴席不 远的清晖阁旁,独自失神地面对着壹湖月色涟漪。多少天了,自从接到赐婚圣旨的那壹天起,他那无以倾诉的悲伤就像壹座大山,重重地 压在他的心头,日复壹日,他根本不知道,这么多个日日夜夜,是如何度过来的。今天,那铺天盖地的红锦、红缎、红绸、红幕……,无 时不刻地刺入他的双眼,这漫天的红色,就是他心头滴出的泪血!可是,他还有那么多的宾客要应对,他还要表不改色地做好他的雍亲王 爷。此时此刻,唯有强压下心中的悲愤,向着东南方向,郑重地发下誓言:“盈儿,这壹切本应该都是你的,今日是爷负了你,来日,爷 壹定无数倍地报偿,爷,说话算话……”“爷,太子爷正找您呢,各位爷见不到您,都乱了套啦!”说话的是王爷的贴身奴才――秦顺儿。 壹听此言,他才猛然间发觉,自己出来的时间太长了。刚刚在宴席上,心情压抑得喘不上气来,就借更衣的机会,到这里来排遣,没想到, 心绪飘得这么远,时间过得这么快。“哟,四弟这是去了哪里?”太子爷眼见着四弟重新坐回宴
排列组合应用题—综合[1]
![排列组合应用题—综合[1]](https://img.taocdn.com/s3/m/75b95657a8114431b80dd806.png)
排列组合应用题—综合一.选择题1.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同分配方法共有 ( )(A )90种 (B )180种 (C )270种 (D )540种2.从8盒不同的鲜花中选出4盆摆成一排,其中甲、乙两盆不同时展出的摆法种数为( )A .1320B .960C .600D .3603.20个不加区别的小球放入编号为1号,2号,3号三个盒子中,要求每个盒子内的球数不小于盒子的编号数,则不同的放法总数是 ( )(A )760 (B )764 (C )120 (D )914.从10名女学生中选2名,40名男生中选3名,担任五种不同的职务,规定女生不担任其中某种职务,不同的分配方案有 ( )A .231040A AB .2323104043C C A A C .23510405C C AD .231040C C 5.编号1,2,3,4,5,6的六个球分别放入编号为1,2,3,4,5,6的六个盒子中,其中有且只有三个球的编号与盒子的编号一致的放法种数有 ( )A .20B .40C .120D .4806.如果一个三位正整数形如“123a a a ”满足1232a a a a <<且,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为 ( )A .240B .204C .729D .9207.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是( ) A .234 B .346 C .350D .363 8.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2426C A B .242621C A C .2426A A D .262A 9.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A . 12 种 B . 24 种 C 36 种 D . 48 种10.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有A .210种B .420种C .630种D .840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 ( )A .24种B .18种C .12种D .6种 12.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是A .48B .36C .28D .1213.已知集合A={1,2,3,4},B={5,6},设映射B A f →:,使集合B 中的元素在A 中都有原象,这样的映射个数共有( )A .16B .14C .15D .12 14.ABCD —A 1B 1C 1D 1是单位正方体,黑白两个蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→……,黑蚂蚁爬行的路是AB →BB 1→……,它们都遵循如下规则:所爬行的第i i 与第2+段所在直线必须是异面直线(其中i 是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A .1B .2C .3D .0 15. 5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( ) A.480 B.240 C.120 D.9616.从1,2,3,4,5,6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( ) A 321144432A A C C ++ B.311443A A C + C.3612A +24A D.36A 17.有7名同学站成一排照毕业照,其中甲必须站在中间,并且乙、丙两位同学要站在一起,则不同的站法有 ( )(A )240 (B )192 (C )96 (D )48二.填空题1.五个不同的球放入四个不同的盒子,每盒不空,共有____ 种放法。
排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有个 个 个 个222132258m nm A A +-= 选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为答案:1.242448A A = 2 选B 3253251440A A A = 三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个名男生和4名女生站成一排,若要求男女相间,则不同的排法数有4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是种 种 种 种答案:1.43451440A A = 23434144A A = 3选B 444421152A A = 43424A = 54245480A A =6333424A C = 73334144A A = 8选A 6828C = 四、定序问题:1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法答案:1.7733840AA= 2.9966504AA=五、分组分配问题:1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种4. 6人住ABC三个房间,每间至少住1人,有多少种不同住宿方案5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法6. 把标有a,b,c,d,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;答案:1.222364233390C C C A A = 212336533360C C C A = 33122285422221680C C C C A A = 41142223123336546423653332323540C C C C C C A C C C A A A A ++= 5211134214322144C C C C A A = 6331122632122222240C C C C A A A A ⋅= 六、相同元素问题:1. 不定方程 的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 种 种 种 种3.将7个相同的小球全部放入4个不同盒子中, (1)每盒至少1球的方法有多少种 (2)(3)恰有一个空盒的方法共有多少种4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 种 种 种 种5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种答案:1.3361020 , 120C C == 2.选A 6984C = 3.13620C = 2124660C C = 4选C,2615C =5611462C = 七、直接与间接问题:1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不 同选法12347x x x x +++=人排成一列1甲乙必须站两端,有多少种不同排法2甲必须站两端,乙站最中间,有多少种不同排法3 甲不站排头乙不站排尾, 有多少种不同排法3.由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 种 种 种 种6. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法7.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种答案:1、1221346464100C C C C C ++= 或 33106100C C -= 2.12525240A A = 21525240A A = 3115655563720A A A A +=或76576523720A A A -+= 3、1455600A A =或5465600A A -= 4、643643576A A A -=或32221224234223576A A A A A A A += 5、选C.132231545454120C C C C C C ++=或 444954120C C C --= 6、123222323233223272A A A A A A A A ++=或52452472A A A -= 7、44106463141C C ---=八、分类与分步问题: 1.求下列集合的元素个数. 1{(,)|,,6}M x y x y N x y *=∈+≤;2. 2.一个文艺团队有10名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;4.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 A. 种 B. 种 C. 种 D. 种5. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有A. 种B. 种C. 种D. 种6. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 A. 种 B. 种 C. 种 D. 种7. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是8. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 A. 249.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种10.用0,1,2,3,4,5这六个数字,{(,)|,,14,15}H x y x y N x y *=∈≤≤≤≤372017C A 820A 171817C A 1818A 24108C A 1599C A 1589C A 1598C A 1545A A 245345A A A 145445A A A 245245A A A1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不重复的三位数的奇数4可以组成多少个数字不重复的三位数的偶数5可以组成多少个数字不重复的小于1000的自然数6可以组成多少个大于3000,小于5421的数字不重复的四位数11.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是12. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有种种种种13.从编号为1,2,…,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是种种种种14.从6双不同颜色的手套中任取4只,试求各有多少种情况出现如下结果1 4只手套没有成双;2 4只手套恰好成双;3 4只手套有2只成双,另2只不成双15.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;3.32223153535390C C C C C C ++=4.选C 171817C C 5.选C 1589C A 6.选D 452452A A A 7.选C3321112111(5) 325325551231C C C +⨯+⨯= 13、选B 1432565656236C C C C C ++= 14、14111162222240C C C C C =22615C =312116522240C C C C =15.211434215322180C C C C A A = 16.所有不同的三角形可分为三类: 第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个. 九、元素与位置问题:1.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果2. 25200有多少个正约数有多少个奇约数答案:1.1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.2. 25200的约数就是能整除25200的整数,所以本题就是分别求能整除25200的整数和奇约数的个数. 由于 25200=24×32×52×71 25200的每个约数都可以写成lk j l 7532⋅⋅⋅的形式,其中40≤≤i ,02j ≤≤,20≤≤k ,10≤≤l于是,要确定25200的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有3种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×3×3×2=90个.2奇约数中步不含有2的因数,因此25200的每个奇约数都可以写成lk j 753⋅⋅的形式,同上奇约数的个数为3×3×2=18个. 十、染色问题:1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢2. 某班宣传小组一期国庆专刊,现有红、 黄、白、绿、蓝五种颜色的粉笔供选用, 要求在黑板中A 、B 、C 、D 如图每一图一图二图三部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有种用具体数字作答;答案:1.选A 5433180⨯⨯⨯= 5×4×4×4=320 2.⨯⨯⨯=5434240⨯⨯⨯=5433180。
排列组合应用题基本解法举例

排列组合应用题基本解法举例〔关键词〕排列;组合;间接法;捆绑法;插空法;消序法虽然关于排列、组合的应用题是千变万化的,但其解题思路却离不开“分步相乘,分类相加,有序排列,无序组合”的原则.要熟练掌握解题技巧,我们还必须掌握处理排列、组合问题的一些基本技巧、方法.下面举列说明.1. 特殊位置法例1:从10人中选3人站成一排,其中甲不站首位,共有多少种不同排法?分析:首位是特殊位置,先排首位有A种排法,再排其余两位有A种排法,分步相乘得AA=648.2. 间接法例2:有7人站成一排,其中甲不站首位,且乙不站末位,共有多少种不同排法?分析:可用间接法得A-2A+A.其中甲站首位的方法有A种,乙站末位的方法有A种,包含甲站首位且乙站末位的情况有A种.3. 捆绑法例3:6件不同商品排成一排,其中甲、乙、丙3件商品一定要排在一起,共有多少种不同排法?分析:先把甲、乙、丙捆绑起来当一个元素参加排列有A种排法,然后这3件商品内部再排列有A种排法.分步相乘得AA=144.对于有相邻要求的排列组合题,可用此法.4. 插空法例4:有5个男生和4个女生排成一排,其中女生不能相邻,有多少种不同排法?分析:第一步,先排5个男生有A种排法;第二步,5个男生之间(包括两端)的6个空位中插入4个女生有A种排法.由分步相乘法得AA=43200.5. 先选后排法例5:从8个男生和4个女生中选3个男生2个女生,担任5种不同的工作,有多少种方法?分析:AA为错解,因为漏掉了男、女生的混合排列.正确解法用先选后排法,即先按要求选出5人有CC种方法,后进行排列有A种方法,由分步相乘法得CCA=40320.6. 消序法例6:有身高各不相同的10个人站成一排,要求甲、乙、丙3人从左边顺次一个比一个低(可以不相邻),共有多少种不同排法?分析:首先不考虑限制条件,共有A种不同排法;其次对甲、乙、丙3人的排列消序得:=604800,即共有604800种排法.7. 平均分组法例7:A、B、C、D、E、F 6人平均分成三组下棋,有多少种不同分法?分析:CCC为错解,其中有重复.如:6人中先选A、B为一组,再在剩余4人中选C、E为一组,最后剩余2人D、F为一组;6人中先选C、E为一组,再在剩余4人中选A、B为一组,最后剩余2人D、F为一组.以上两种不同分法得到的结果是完全相同的,即A、B为一组,C、E为一组,D、F为一组.不难发现,错解对这一种分法算了6次.故易得,正确解法为=15.8. 查字典法例8:由0、1、2、3、4、5六个数字,可以组成多少个没有重复数字且比324105大的六位数?分析:从高位排查如下:(1)查首位有4×××××、5×××××,故有2A个数;(2)查前两位有34××××、35××××,故有2A个数;(3)查前三位有325×××,故有A个数;(4)查前四位有3245××,故有A个数;(5)查前五位有324150,故有1个数.故共有:2A+2A+A+A+1=297个数.。
排列组合典型应用题例题分析

组合应用题例题分析⒈ 100件产品中,有98件合格品,2件次品。
从这100件产品中任意抽出3件. (1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种? (4)抽出的3件中至少有1件是次品的取法有多少种?解:(1)3100161700C =;(2)398152096C =;(3)12298247539506C C =⨯=;(4)解法一:(直接法)12212982989506989604C C C C +=+=; 解法二:(间接法)33100981617001520969604C C -=-=.⒉ 从8男4女中选出5名学生代表,按下列条件各有多少种选法: ⑴至少有一名女同学;⑵至少有两名女同学,但女甲和女乙有且只有一人当选; ⑶至多有两名女同学; ⑷女生甲、乙不都当选;⑸必须有女同学当选,但不得超过女同学的半数。
解: (1)736C C 58512=-; (2)280C C C C C C 282212381212=+;(3)672C C C C C C 382448145804=++; (4)672C C C 31022512=-;(5)616C C C C 38244814=+.注:至多(至少)问题的解法:①恰当分类;②排除法。
⒊ 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C .解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C ,∴一共有2414C C +2324C C =42种方法.4. 六本不同的书,按下列要求各有多少种不同的方法? (1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本; (5)分为三份,一份四本,另两份各一本; (6)分给甲、乙、丙三人,每人至少1本。
排列组合应用题

18.高二某班要从7名运动员中选出4名组成 4×100米接力队,参加校运会,其中甲、乙 二人都不跑中间两棒的安排方法有多少种?
26.某小组共有10名学生,其中女生3名,现选举2 名代表,至少 有1名女生当选的不同选法有( ) A.27种 B.48种 C.21种 D.24种
27.从5男4女中选4位代表,其中至少有2位男同志,且至少有 1位女同志,分别到4个不同的工厂调查,不同的分派方法有 多少种? 28.四名优等生保送到三所大学去,每所大学至少得一名,则不 同的保送方案的总数是_ _.
21.从0、1、3、5、7中取出不同的三个数作系数; (1)可组成多少个不同的一元二次方程 ? (2)其中有实数根的有几个?
22.有划船运动员10人, 其中5人只会划右舷, 2人只会划左舷, 其 余3人会划左、右舷, 现从10人中选出6人, 平均分配到船两舷, 有多少种选法? 23.有6本不同的书 (1)甲、乙、丙3人每人2本,有多少种不同的分法? (2)分成3堆,每堆2本,有多少种不同的分堆方法? (3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分 堆方法? (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少 不同的分配方法? (5)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆 方法? (6)摆在3层书架上,每层2本,有多少种不同的摆法?
29.六个球,投入四个盒子,各有多少种不同方法? (1)球不同,盒不同; (2)球不同,盒不同,每盒不空; (3)球相同,盒不同; (4)球相同,盒不同,每盒不空; (5)球不同,盒相同,每盒不空; (6)球相同,盒相同,每盒不空;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说《邮政业务收入分析》
一、教材分析
(一)教材所处的地位及作用
经营活动分析能够帮助企业找出生产经营活动中存在的一些规律性的问题,预测经济发展趋势,为经营决策提供可靠的经济信息,通过预测分析和决策分析,指导企业制定正确的经营目标,选择最优方案。
而邮政业务收入分析是经营活动分析中比较重要的一块内容,通过对邮政业务收入的分析可以全面了解邮政企业业务收入的状况。
(二)教学目标
1、知识目标:理解邮政业务收入的含义,了解影响邮政业务收入的因素,理解并掌握邮政
业务收入分析的内容,进一步提升学生分析与解决问题的能力,培养学生的探
索创新意识。
2、能力目标:充分发挥教师的引导和学生的主体作用,使学生的自主意识、自学能力、探
索创新意识得到发展,实践操作能力有所提高。
3、情感目标:通过对邮政业务收入分析的内容的学习,培养学生学习兴趣和良好的学习态
度。
(三)教学重点、难点
如何进行邮政业务收入分析
二、教法分析
(一)教学方法
在教学中,教学体现以教师为引导,学生为主体的指导思想,遵循学生的认识规律,面向全体学生,充分调动学生的学习积极性,强调学生的主体作用,采用举例结合理论等手段完成教学。
(二)教学手段
为了增加教学信息容量,增强教学直观感,节约时间,以及更好的调动学生学习的积极性和兴趣性,提高教学效率,可采用电脑多媒体、投影仪等辅助教学。
三、教学过程设计
(一)复习回顾
复习邮政经营活动分析的基本方法;
(二)新课讲授
[导入环节]
导入:(问)一般的企业生存和发展下去要依靠什么?
(答)利润
(问)利润等于什么减去成本?
(答)销售收入
一般的企业称为销售收入,而邮政企业称为业务收入,它是邮政企业利润的源泉,
是邮政企业生存和发展下去的关键。
那么我们这节课就来学习有关邮政业务收入分析的内容,学习如何进行邮政业务收入分析,从而找到实现邮政业务收入持续稳定增长的办法。
首先我们来了解一下邮政业务收入的含义。
一.邮政业务收入的含义
是邮政企业为用户提供通信服务,按规定的资费标准向用户收取的资费,包括主营业务收入和其它业务收入。
理解要点:
①通信服务:结合邮政通信的“服务性”特征来理解;
“邮政通过传递附有信息的实物产生效益”。
②资费:资费就是价格(邮政通信行业通常称价格为资费)。
③业务收入:一般的工业企业称为销售收入,邮政通信行业称为业务收入,但其“价
值量”这个实质是相同的。
(注意学生的理解能力,要举例,通俗易懂。
注意引导学生理解销售收入与业务收入的区别和联系。
)
注:整个概念的讲解用时6~8分钟,将概念分拆剖析,抓理解的重难点,结合生活化的例子让其容易理解,比如说“信函”,那么邮政业务收入的概念就演讲为“…是邮政企业为用户提供信函通信服务……”等等。
举例:问(学生)以特快专递为例,如何定义特快专递业务收入的概念。
(邮政业务收入有多少,要对其收入多少等情况进行分析,必须了解它的影响因素。
引出第二部分的内容。
)
二.邮政业务收入的影响因素
1.寻找影响邮政业务收入的因素意义
①邮政业务收入反映了邮政提供通信服务,也反映了邮政企业的生产规模、创收能力;
②有利于正确决策、确定合理业务结构,并组织生产;
③有利于实现邮政业务收入持续稳定增长。
2.邮政业务收入的影响因素
①业务量。
业务量大,业务收入也就越大;
业务量小,业务收入也就越小。
②资费水平(板书)
A.资费水平增加,一般情况下业务收入增加;反之,则相反;
B.费率结构某一业务中资费水平高的业务量大,则该业务的平均单价就高,业务
收入相应也高一些;
反之,则相反;
注:用时10~12分钟,重点讲解邮政业务收入的影响因素这一部分的内容。
(简要解释“费率结构”。
围绕着业务量、资费水平如何进行邮政业务收入分析,引出第三部分的内容。
)
三.邮政业务收入分析
㈠.业务收入计划完成情况分析
①采用方法:对比分析法
②计算公式:
计划完成相对数=本期实际完成数/本期计划数×100%
比较相对数=本期实际完成数/上期实际完成数(或某历史水平)×100%
③分析业务收入计划完成情况的意义
A.反映了计划的执行结果,反映了发展越势。
B.有利于搞好经营,采取增产增收措施。
④练习
(简要解释“对比分析法”)
例1 (教师讲解)(放幻灯片)
某邮政局今年全年的实际业务收入总额是663万元人民币,全年计划完成600万业务收入,其历史最高水平是680万元人民币。
请问该邮政局的计划完成相对数及比较相对数是多少?
答:计划完成数=663/600=110.5%
比较相对数=663/680=97.5%
(结合公式讲解)
例2.(学生讲台板演)(放幻灯片)
某邮政局今年全年的实际业务收入总额为4000万,全年计划额是4200万,其历史最高水平是4500万。
请问该邮政局的计划完成数及比较相对数。
分析作答:计划完成数=4000/4200×100%=95.2%
比较相对数=4000/4500×100%=88.9%
(点评、讲解)
㈡.邮政业务收入因素分析
①采用方法:因素分析法(简要解释“因素分析法”)
②影响业务收入的因素:(简要回忆第二部分影响因素的内容。
)
A.邮政业务量升降因素
B.平均单价(资费水平)升降因素
③分析业务收入增减的原因的途径:从业务量和平均单价的变化入手。
④练习
例3 (教师讲解) (放幻灯片)
分析:业务收入=业务量×平均单价
业务量的增加对收入的影响程度:(510000-500000)×12=120000元(12万元)
平均单价的提高对收入的影响程度:510000×(13-12) =510000(51万元)
∴总的影响程度=12万元+51万元=63万元
例4 (学生板演,教师点评讲解) (放幻灯片)
分析:业务量的减少对收入的影响程度:(580000-600000)×10=-200000(-20万元)平均单价的提高对收入的影响程度:580000×(16-10)=3480000(348万元)
∴总的影响程度=(-20)+348=328万元
㈢.邮政业务收入结构分析
①采用结构比率分析法
②计算公式
邮政某专业业务收入的比重=邮政某专业的业务收入/邮政业务总收入×100%
③练习
例5(教师讲解) (放幻灯片)
某邮政局全年业务收入总额是663万元人民币,其中普通信函收入20万元,特快专递收入200万元,物流业务收入240万元,包裹业务收入120万元,其它收入83万元。
请分析该邮政局业务结构。
分析:
普通信函业务收入比重=20/663×100%=3.1%
特快专递业务收入比重=200/663×100%=30.3%
物流业务收入比重=240/663×100%=36.2%
包裹业务收入比重=120/663×100%=18.2%
其它业务收入比重=80/663×100%=12.2%
例6 (学生练习掌握,教师点评、讲解)(放幻灯片)
某邮政局全年业务收入总额是800万元人民币,其中普通信函收入20万元,特快专递收入200万元,物流业务收入300万元,包裹业务收入200万元,其它收入80万元。
请分析该邮政局业务结构。
分析:
普通信函业务收入比重=20/800×100%=2.5%
特快专递业务收入比重=200/800×100%=25%
包裹业务收入比重=200/800×100%=25%
物流业务收入比重=300/800×100%=37.5%
其它业务收入比重=80/800×100%=10%
例7.假设某邮政局指标完成情况如以下简表:(放幻灯片)
请分析该邮政局的计划完成情况,并进行收入因素分析和业务结构分析。
(最后这一道题目将前面的三个知识点都揉了进来,学生通过对它的练习和教师的进一步讲解,起到了回顾已学知识及加深理解和掌握的作用)。