平抛运动专题复习与解题技巧
考点16 平抛运动——2021年高考物理专题复习附真题及解析

考点16 平抛运动考点解读一、平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关。
2.水平射程:x =v 0t =vgh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关。
4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量为Δv =g Δt ,相同,方向恒为竖直向下,如图所示。
5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示。
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ。
二、常见平抛运动模型的运动时间的计算方法(1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定。
(2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t 。
(3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t ,221gt y =,x y =θtan 可求得gv t θtan 20=。
②对着斜面平抛(如图)方法:分解速度 v x =v 0,v y =gt ,0tan v gt v v xy ==θ 可求得gv t θtan 0=。
(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同,vd t =。
三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直。
高中物理:平抛运动知识点总结与解题技巧

一. 主要知识点:知识点1 平抛运动的特点1. 平抛运动的概念水平抛出的物体只在重力(不考虑空气阻力)作用下所做的运动。
2. 平抛运动的特点由于做平抛运动的物体只受重力的作用,由牛顿第二定律可知,其加速度恒为g,所以平抛运动是匀变速运动;又因为重力与速度不在一条直线上,故物体做曲线运动。
所以,平抛运动是匀变速曲线运动,其轨迹是抛物线。
3. 平抛运动的研究方法(1)运动的独立性原理:物体的各个分运动都是相互独立、互不干扰的。
(2)研究的方法:利用运动的合成与分解。
做平抛运动的物体在水平方向上不受力的作用,做匀速直线运动,在竖直方向上初速为零,只受重力,做自由落体运动。
所以平抛运动是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动。
知识点2 平抛运动的规律以抛出点为坐标原点,水平抛出的方向为x轴的正方向,竖直向下的方向为y轴正方向,建立一个直角坐标系xOy。
1. 平抛运动物体的运动轨迹如图所示。
①水平方向上:物体不受力,所以水平方向上做匀速直线运动,有;②竖直方向上:物体只受重力作用,加速度恒为g,而初速度为零,所以做自由落体运动,有;③运动轨迹:。
所以平抛运动的轨迹为抛物线(一半)2. 平抛运动物体的位移如图所示。
①位移的大小:l=;②位移的方向:。
思考:能否用l求P点的位移?3. 平抛运动物体的速度如图所示速度的方向和大小:思考:①能否用求P点的速度?②由以上分析得:,是否有?二. 重难点分析:1、平抛运动的速度变化水平方向分速度保持,竖直方向,加速度恒为g,速度,从抛出点起,每隔△t时间的速度的矢量关系如图所示,这一矢量关系有两个特点:(1)任意时刻的速度水平分量均等于初速度;(2)任意相等时间间隔△t内的速度改变量均竖直向下,且△v=△=。
做平抛运动的物体,在任一时刻的速度都可以分解为一个大小和方向不变的水平速度分量和一个竖直方向随时间正比例变化的分量和构成速度直角三角形如图所示,通过几何知识容易建立起以及之间的关系,许多问题可以从这里入手解决。
2020年高考物理专题复习:类平抛运动模型透析

2020年高考物理专题复习:类平抛运动模型透析考点精析1. 类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直。
2. 类平抛运动的运动特点在初速度v 0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =mF 合。
3. 类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动。
两分运动彼此独立,互不影响,且与合运动具有等时性。
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解。
典例精讲例题1 如图所示的光滑斜面长为l ,宽为b ,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,试求:(1)物块由P 运动到Q 所用的时间t ; (2)物块由P 点水平射入时的初速度v 0; (3)物块离开Q 点时速度的大小v 。
【考点】类平抛运动【思路分析】(1)沿斜面向下的方向有mg sin θ=ma ,l =21at 2联立解得t =θsin 2g l。
(2)沿水平方向有b =v 0t v 0=tb =b lg 2sin θ。
(3)物块离开Q 点时的速度大小v =lg l b t a v 2sin 422222θ+=+。
【答案】(1) θsin 2g l(2)bl g 2sin θ(3) lg l b 2sin 422θ+【规律总结】1. 类平抛运动与平抛运动的处理方法相同,但要搞清楚其加速度的大小和方向;2. 需注意的是,类平抛运动的初速度的方向不一定是水平方向,合力的方向不一定是竖直方向,一般情况下加速度a≠g 。
如图所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等,有三个完全相同的小球a 、b 、c ,开始均静止于斜面同一高度处,其中b 小球在两斜面之间。
3.4专题:平抛运动的五种解法

3.3:专题:平抛运动问题的五种解法|以分解速度为突破口求解平抛运动问题题型简述对于一个做平抛运动的物体来说,如果已知某一时刻的速度方向,从“分解速度”的角度来研究问题一般较为便捷。
方法突破以初速度v0做平抛运动的物体,经历时间t速度和水平方向的夹角为θ,由平抛运动的规律得:tan θ=v yv x=gtv0,从而得到初速度v0、时间t、偏转角θ之间的关系,进而求解。
[例1](2017·重庆江北中学模拟)如图所示,倾角为37°的斜面长l=1.9 m,在斜面底端正上方的O点将一小球以v0=3 m/s 的速度水平抛出,与此同时静止释放顶端的滑块,经过一段时间后,小球恰好能够以垂直斜面的方向在斜面P点处击中滑块。
(小球和滑块均可视为质点,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数μ。
[答案](1)1.7 m(2)0.125[跟进训练]1.(2017·吉林实验中学模拟)如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切点于B点。
O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()A. 3gR2 B.3gR2 C.33gR2 D.3gR2解析:选C|以分解位移为突破口求解平抛运动问题题型对于做平抛运动的物体,如果知道它某一时刻的位移方向(如物体从简述 已知倾角的斜面上水平抛出后再落回斜面,斜面倾角就是它的位移与水平方向之间的夹角),则可以把位移沿水平方向和竖直方向进行分解,然后运用平抛运动的规律来研究问题。
方法突破以初速度v 0做平抛运动的物体,经历时间t 位移和水平方向的夹角为θ,由平抛运动的规律得:水平方向做匀速直线运动x =v 0t ,竖直方向做自由落体运动y =12gt 2,tan θ=yx,结合以上三个关系式求解。
高考专题复习之斜面上的平抛运动

平抛专题练习一、物体的起点在斜面外,落点在斜面上1.求平抛时间1.以Vo=9.8m/s 的初速水平抛出一小球,小球垂直撞击倾角为30°的斜面,问小球在空中飞行了多少时间。
解:t=3s 2.求平抛初速度2.如图3,在倾角为37°的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。
解:3.质量为m 的小球以v 0的水平初速度从O 点抛出后,恰好击中斜角为θ的斜面上的A 点.如果A 点距斜面底边(即水平地面)的高度为h ,小球到达A 点时的速度方向恰好与斜面方向垂直,如图5-2-20,则以下正确的叙述为( )ABDA .可以确定小球到达A 点时,重力的功率;B .可以确定小球由O 到A 过程中,动能的改变C .可以确定小球从A 点反弹后落地至水平面的时间D .可以确定小球起抛点O 距斜面端点B 的水平距离 3.求平抛物体的落点4.如图5-14所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 点正上方O 点以速度v 水平抛出一个小球,它落在斜面上b 点,若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( A)A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点二、物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角。
一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解。
1.求平抛初速度及时间5.如图,倾角为θ的斜面顶端,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L ,求抛出的初速度及时间?解:钢球下落高度:,∴飞行时间t =,水平飞行距离 ,初速度v 0==θθsin 2cos gl6.如图所示,从倾角为θ的斜面上的A 点以速度V 0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 。
(gv θtan 20) 2.求平抛末速度及位移大小7.如图,从倾角为θ的斜面上的A 点,以初速度v 0,沿水平方向抛出一个小球,落在斜面上B 点。
考点08平抛运动的临界和极值问题

[考点08] 平抛运动的临界和极值问题1.平抛运动的临界问题有两种常见情形(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好为某一方向.2.解题技巧在题中找出有关临界问题的关键字,如“恰好不出界”“刚好飞过壕沟”“速度方向恰好与斜面平行”“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题.1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.典例如图所示,排球场的长为18 m,球网的高度为2 m.运动员站在离网3 m远的线上,正对球网竖直跳起,把球垂直于网水平击出.(取g=10 m/s2,不计空气阻力)(1)设击球点的高度为2.5 m,问球被水平击出时的速度v0在什么范围内才能使球既不触网也不出界?(2)若击球点的高度小于某个值,那么无论球被水平击出时的速度为多大,球不是触网就是出界,试求出此高度.答案 (1)310 m/s<v 0≤12 2 m/s (2)3215m解析 (1)如图甲所示,排球恰不触网时其运动轨迹为Ⅰ,排球恰不出界时其运动轨迹为Ⅱ,根据平抛运动的规律,由x =v 0t 和h =12gt 2可得,当排球恰好触网时有x 1=3 m ,x 1=v 1t 1①h 1=2.5 m -2 m =0.5 m ,h 1=12gt 12②由①②可得v 1=310 m/s. 当排球恰不出界时有x 2=3 m +9 m =12 m ,x 2=v 2t 2③ h 2=2.5 m ,h 2=12gt 22④由③④可得v 2=12 2 m/s.所以排球既不触网也不出界的速度范围是310 m/s<v 0≤12 2 m/s.(2)如图乙所示为排球恰不触网也恰不出界的临界轨迹.设击球点的高度为h ,根据平抛运动的规律有x 1=3 m ,x 1=v 0t 1′⑤h 1′=h -2 m ,h 1′=12gt 1′2⑥x 2=3 m +9 m =12 m ,x 2=v 0t 2′⑦ h 2′=h =12gt 2′2⑧联式⑤⑥⑦⑧式可得,高度h =3215m.1.(2023·甘肃·期中)如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨过壕沟的初速度至少为(取g =10 m/s 2) ( )A .0.5 m/sB .2 m/sC .10 m/sD .20 m/s答案 D解析 根据x =v 0t 、y =12gt 2,将已知数据代入可得v 0=20 m/s ,故选项D 正确.2.如图所示,一网球运动员将网球(可视为质点)从O 点水平向右击出,网球恰好擦网通过落在对方场地的A 点,A 点到球网的水平距离是击球点到球网的水平距离的2倍.已知球网的高度为h ,重力加速度为g ,不计空气阻力,则网球击出后在空中飞行的时间为( )A.3hg B.32h g C.5h 2gD.322h g答案 B解析 设网球击出后在空中飞行的时间为t ,因为A 点到球网的水平距离是击球点到球网的水平距离的2倍,所以网球从击球点运动到球网的时间为t 3,则H =12gt 2,H -h =12g (t3)2,联立解得t =32hg,故选B. 3.(多选)如图所示,水平面上放置一个直径d =1 m 、高h =1 m 的无盖薄油桶,沿油桶底面直径AB 距左桶壁s =2 m 处的正上方有一点P ,P 点的高度H =3 m ,从P 点沿直径AB 方向水平抛出一小球,不考虑小球的反弹和空气阻力,下列说法正确的是(取g =10 m/s 2,CD 为桶顶平行AB 的直径)( )A .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的内壁B .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的下底C .小球的速度范围为2315 m/s<v <10 m/s 时,小球击中油桶外壁D .若P 点的高度变为1.8 m ,则小球无论初速度多大,均不能直接落在桶底(桶边沿除外) 答案 ACD解析 当小球落在A 点时,有H =12gt 2,s =v 1t ,联立解得v 1=sg 2H =2315 m/s ,同理可知,当小球落在D 点时,v 2=sg2(H -h )=10 m/s ,当小球落在B 点时,v 3=(s +d )g 2H=15 m/s ,当小球落在C 点时,v 4=(s +d )g 2(H -h )=3210 m/s ,选项A 、C 正确,B 错误;若P 点的高度变为H 0,轨迹同时过D 点和B 点,则此时初速度v ′=sg2(H 0-h )=(s +d )g 2H 0,解得H 0=1.8 m ,在此高度上,小球无论初速度多大,都不能直接落在桶底(桶边沿除外),选项D 正确.4.利用 可以玩一种叫“扔纸团”的小游戏.如图所示,游戏时,游戏者滑动屏幕将纸团从P 点以速度v 水平抛向固定在水平地面上的圆柱形废纸篓,纸团恰好从纸篓的上边沿入篓并直接打在纸篓的底角.若要让纸团进入纸篓中并直接击中篓底正中间,下列做法可行的是( )A .在P 点将纸团以小于v 的速度水平抛出B .在P 点将纸团以大于v 的速度水平抛出C .在P 点正上方某位置将纸团以小于v 的速度水平抛出D .在P 点正下方某位置将纸团以大于v 的速度水平抛出 答案 C解析 在P 点将纸团以小于v 的速度水平抛出,纸团下降到纸篓上边沿这段时间内,水平位移变小,纸团不能进入纸篓中,故A 错误;在P 点将纸团以大于v 的速度水平抛出,则纸团下降到篓底的时间内,水平位移增大,不能直接击中篓底的正中间,故B 错误;要使纸团进入纸篓且直接击中篓底正中间,分析临界状态可知,最可能的入篓点为左侧纸篓上边沿.若在P 点正上方某位置将纸团以小于v 的速度水平抛出,根据x =v2hg知,纸团水平位移可以减小且不会与纸篓的左边沿相撞,纸团有可能击中篓底正中间,故C 正确;同理可得D 错误.5.某科技比赛中,参赛者设计了一个轨道模型,如图所示.模型放到0.8 m 高的水平桌子上,最高点距离水平地面2 m ,右端出口水平.现让小球在最高点由静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为( )A .0B .0.1 mC .0.2 mD .0.3 m答案 C解析 小球从最高点到右端出口,机械能守恒,有mg (H -h )=12m v 2,从右端出口飞出后,小球做平抛运动,有x =v t ,h =12gt 2,联立解得x =2(H -h )h ,根据数学知识可知,当H-h =h 时,x 最大,即h =1 m 时,小球飞得最远,此时右端出口距离桌面高度为Δh =1 m -0.8 m =0.2 m ,故C 正确.6.如图所示,M 、N 是两块挡板,挡板M 高h ′=10 m ,其上边缘与挡板N 的下边缘在同一水平面.从高h =15 m 的A 点以速度v 0水平抛出一小球(可视为质点),A 点与两挡板的水平距离分别为d 1=10 m ,d 2=20 m .N 板的上边缘高于A 点,若能使小球直接进入挡板M 的右边区域,则小球水平抛出的初速度v 0的大小可能是下列给出数据中的哪个(g 取10 m/s 2,空气阻力不计)( )A .8 m/sB .4 m/sC .15 m/sD .21 m/s答案 C解析 要让小球落到挡板M 的右边区域,下落的高度为Δh =h -h ′=5 m ,由t =2Δhg得t =1 s ,由d 1=v 01t ,d 2=v 02t ,得v 0的范围为10 m/s <v 0<20 m/s ,故C 正确,A 、B 、D 错误.7.套圈游戏是一项趣味活动,如图,某次游戏中,一小孩从距地面高0.45 m 处水平抛出半径为0.1 m 的圆环(圆环面始终水平),套住了距圆环前端水平距离为1.0 m 、高度为0.25 m 的竖直细圆筒.若重力加速度大小取g =10 m/s 2,忽略空气阻力,则小孩抛出圆环的初速度可能是( )A .4.3 m/sB .5.6 m/sC .6.5 m/sD .7.5 m/s答案 B解析 根据h 1-h 2=12gt 2得t =2(h 1-h 2)g=2(0.45-0.25)10s =0.2 s ,则平抛运动的最大速度v 1=x +2R t =1.0+2×0.10.2 m/s =6.0 m/s ,最小速度v 2=x t =1.00.2 m/s =5.0 m/s ,则5.0 m/s<v <6.0 m/s ,故选B.8.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m ,一小球(可视为质点)以水平速度v 从图示位置飞出,不计空气阻力,g 取10 m/s 2,欲打在第4级台阶上,则v 的取值范围是( )A. 6 m/s<v ≤2 2 m/s B .2 2 m/s<v ≤3.5 m/s C. 2 m/s<v < 6 m/s D .2 m/s<v < 6 m/s 答案 A解析 若恰好打在第3级台阶的边缘,则有:3h =12gt 32,3l =v 3t 3,解得v 3= 6 m/s ,若恰好打在第4级台阶的边缘,则有4h =12gt 42,4l =v 4t 4,解得v 4=2 2 m/s ,所以打在第4级台阶上应满足的条件: 6 m/s<v ≤2 2 m/s ,A 正确.9.如图所示,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁距离L =1.4 m 、距窗子上沿h =0.2 m 处的P 点,将可视为质点的小物件以速度v 水平抛出,小物件直接穿过窗口并落在水平地面上,取g =10 m/s 2,不计空气阻力.则v 的取值范围是( )A .v >7 m/sB .v <2.3 m/sC .3 m/s <v <7 m/sD .2.3 m/s <v <3 m/s 答案 C解析 若小物件恰好经过窗口上沿,则有h =12gt 12,L =v 1t 1,解得v 1=7 m/s ;若小物件恰好经过窗口下沿,则有h +H =12gt 22,L +d =v 2t 2,解得v 2=3 m/s ,所以v 的取值范围是3 m/s<v <7 m/s ,故C 正确.10.(2023·湖北·期中)如图所示,边长为a 的正方体无盖盒子放置在水平地面上,O 为直线B ′A ′延长线上的一点,且与A ′的距离为a ,将小球(可视为质点)从O 点正上方距离2a 处以某一速度水平抛出,不计空气阻力,重力加速度为g 。
物理解题技巧之平抛运动题

物理解题技巧之平抛运动题物理学中的平抛运动题是我们在高中物理学习中经常遇到的一类问题。
平抛运动是指物体在斜向抛出或投掷时,仅受重力作用下的运动。
解决平抛运动题需要灵活运用运动学的知识和解题技巧。
下面,我们将介绍几种常见的解题方法和技巧,并通过实际例子进行说明。
首先,我们需要了解平抛运动的基本特点。
在平抛运动中,物体的水平速度恒定不变,而竖直方向上的速度会受到重力的影响而逐渐增加或减小。
由于水平方向上的速度恒定,所以水平方向上的位移也是恒定的。
这一点可以帮助我们简化问题,从而更容易解决平抛运动题。
其次,我们可以利用平抛运动的公式来解题。
平抛运动的位移公式是:S = V0 * t + 1/2 * g * t^2,其中S是物体在水平方向上的位移,V0是物体的水平速度,g是重力加速度,t是时间。
这个公式可以根据题目给出的条件,求解出所需的物理量。
例如,有这样一个问题:某人以10m/s的速度把一个小球以角度30°的角度抛出,求小球在水平方向上飞行的时间。
我们可以根据角度来分解速度,得到垂直方向上的初始速度V0y和水平方向上的初始速度V0x。
其中V0y = V * sinθ,V0x =V * cosθ。
然后,我们可以利用V0y的值来求解小球从抛出到落地的时间,然后就可以得到小球在水平方向上飞行的时间。
除了利用公式解题外,还可以运用图像法来解决平抛运动题。
我们可以画出平抛运动的位移-时间图像,从而更直观地分析问题。
在图像上,水平方向上的位移是直线,而垂直方向上的位移是抛物线。
通过观察图像的形状和特点,我们可以得到很多有用的信息。
例如,如果水平方向上的位移等于零,那么物体就是从最高点回到地面。
如果垂直方向上的位移等于零,那么物体就是从最高点落地。
通过观察图像,我们可以更好地理解平抛运动的规律,从而更容易解决问题。
下面,我们通过一个实际例子来演示解决平抛运动题的过程。
假设一个人以50m/s的速度将一个物体以角度60°抛出,求物体离开地面的高度。
平抛运动知识点总结及解题方法归类总结

三.平抛运动及其推论一、知识点巩固:1•定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加 速度宙 这样的运动叫做平抛运动。
2•特点:①受力特点:只受到重力作用。
② 运动特点:初速度沿水平方向,加速度方向竖直向下,大小为宙 轨迹为抛物线。
③ 运动性质:是加速度为g 的匀变速曲线运动。
注:(1) 平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自山落体运动的合运动。
2(2) 平抛运动的轨迹是一条抛物线,其一般表达式为V 二銘+&+Q 。
(3) 平抛运动在竖直方向上是自由落体运动,加速度a = ^恒定,所以竖直方向上在相 等的时间内相邻的位移的高度之比为可:旳:53 = 1:3:5… 竖直方向上在相等的时间内相邻 的位移之差是一个恒量畅二畝'仃表示相等的时间间隔)。
(4) 在同一时刻,平抛运动的速度(与水平方向之间的夹角为a )方向和位移方向(与水平方向之间的夹角是0)是不相同的,其关系式taneQ2taii& (即任意一点的速度延长线必 交于此时物体位移的水平分量的中点)。
3•平抛运动的规律:①速度公式:v v =v 0 v v = gt合速度:v z = J"; +彳=尿+(g/),顶点在原点(0、0),开口向下的抛物线方程。
②位移公式:竽③轨迹方程:③任何相等的时间速度改变量AP=gAr 相等,且S =方向竖直向下。
④ 以不同的初速度,从倾角为0的斜面上沿水平方向抛出的物体,再次落到斜面上时速 度与斜面的夹角a 相同,与初速度无关。
(飞行的时间与速度有关,速度越大时间越长。
)如上图:所以心如⑶怡 g所以tan (d + &) = 2tan&, 0为定值故a 也是定值,与速度无关。
⑤ 速度V 的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,⑹“ 变大,&T,速度V 与重力 的方向越来越鼎近,但永远不能到达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动专题复习与解题技巧
二、平抛运动解题的常见技巧
1.巧用分运动方法求水平速度
求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。
例1.如图所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A
处低,摩托车的速度至少要有多大?
解析:在竖直方向上,摩托车越过壕沟经历的时间:,在水平方向上,摩托车能越过壕沟的速度至少为:。
2.巧用分解合速度方法求时间
对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
例2.如图甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为
的斜面上。
可知物体完成这段飞行的时间是()
A. B. C. D.
解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。
根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。
再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。
则:,所以
,根据平抛运动竖直方向是自由落体运动可以写出:,所以,所以答案为C。
3.巧用分解位移方法求时间比
对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)
例3.如图所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?
解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到:,所以有,同理,则。
4.巧用竖直方向运动性质方法求解
在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
为此,我们可以运用竖直方向是自由落体的规律来进行分析。
例4.某一平抛的部分轨迹如图所示,已知,,,求。
解析:A与B、B与C的水平距离相等,且平抛运动的水平方向是匀速直线运动,可设A到B、B 到C的时间为T,则:,又竖直方向是自由落体运动,则:,代入
已知量,联立可得:,。
5.巧用平抛运动最值方法求距离
例5.如图所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。
取沿斜面向下为轴的正方向,垂直斜面向上为
轴的正方向,如图所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有:
①
②
当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离:。
当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。
由②式可得小球运动的时间为。
6.巧用正切角两倍关系
平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有。
例6.(08年全国I卷)如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足()
A.tanφ=sinθ B.tanφ=cosθ C.tanφ=tanθ D.tanφ=2tanθ
解析:竖直速度与水平速度之比,竖直位移与水平位移之比为,故,D正确。
点评:若应用解决本题,直接可以选出答案。
结语:平抛运动是较为复杂的匀变速曲线运动,在高考中经常考,有关平抛运动的命题也层出不穷。
若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。
因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。