(完整版)北师大版反比例函数重点知识点总结及例题
北师大初三反比例函数知识点归纳和典型例题

新人教版八年级数学下册反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO 和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B. C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B. C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B. C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个 B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数 B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC 面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数 B.符号相同 C.绝对值相等 D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.。
九年级数学北师大版(上册)6.3 反比例函数的应用

(2)当S=2时,y=100 =50, 2
所以当面条粗2 mm2时,面条的总长度为50 m.
4.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细 (横截面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y(m)与S(mm2)的函数关系式; (2)求当面条粗2 mm2时,面条的总长度是多少米?
∴y= 240 x
(2)
根据题意,若x=10,则y=
240 10
=24,
∴长为24 m
(3) 根据题意可得 240 ≤20,解得x≥12, x
∴宽至少为12 m
2.打字员要完成一篇4 200字的文章录入工作.
(1)若平均每分钟录入60个字,则完成工作需要多少分钟?
(2)写出录入时间y(分)与录入速度x(字/分)之间的函数关系式;
油0.1升的耗油速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析
式,(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
解:(1)把 a=0.1,S=700 代入
S= k 中,得 k=70,∴S= 70
a
a
(2) 把a=0.08代入 S= 70 得
(2) 不能
理由:晚上20:00到第二天早上
7:00共有11小时,
把x=11 代入 y= 225 , 得 y= 225 >20
x
11
∴不能
二、过关检测
第1关
7.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与
平均耗油量a(单位:升/千米)之间是反比例函数关系S=k (k是常
a
数,k≠0).若某轿车油箱注满油后,以平均耗 油量为每千米耗
北师大版九年级上册第六章《反比例函数》复习资料:知识点+例题

反比例函数一、知识要点反比例函数 一般形式:)0(≠=k xky 或1-=kx y k 的符号k>0 k<0图象yO xyO x性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图象的两个分支分别在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图象的两个分支分别在第二、四象限。
在每个象限内,y 随x 的增大而增大。
2、反比例函数解析式的确定3、反比例函数中反比例系数的几何意义过反比例函数)0(≠=k xky 图像上任一点P (x,y )作x 轴、y 轴的垂线PM ,PN ,垂足分别是M 、N ,则所得的矩形PMON 的面积S=PM •PN=_______;△POM 或△PON 的面积S=______.二、典型例题例1. 已知y 与x 成反比例关系,x=1时y=2,求该反比例函数解析式。
已知与成反比例,与成正比例,并且当=3时,=5,当=1时,=-1;求与之间的函数关系式.121,y y y y -=x 2y )2(-x x y x y y x例2.如图已知一次函数8+-=xy和反比例函数xky=图象在第一象限内有两个不同的公共点A、B.(1)求实数的取值范围;(2)若ΔAOB的面积S=24,求k的值.如图,Rt△ABO的顶点A是双曲线xky=与直线)1(+--=kxy在第二象限的交点,AB⊥x轴于B且S△ABO=23(1)求这两个函数的解析式(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。
例3.反比例函数与一次函数的图象有一个交点是(-2,1),求它们的另一个交点的坐标。
xky=mkxy+=。
反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
北师大版九年级数学上册第六章 反比例函数(复习小结)

x
a
1 b
的值为______.
【答案】
6 5
【分析】把图象的交点(a,b)分别代入反比例函数 y 5 与一次函数 y x 6,得到a 和b 的两个关 x
系式,就可以求出答案.
【详解】解:把(a,b)分别代入反比例函数 y 5 与一次函数 y x 6,得 x
, ,Байду номын сангаасab 5 a b 6
∵四边形 ABCD, ∴ , DAB 90 ∵ , , DAF FDA 90 DAF OAB 90 ∴ , FDA OAB 又∵ DFA BOA 90 ∴△ABO∽△DAF, ∴ , AO AB OB
DF AD AF
设 D(x,y),
即45 3 x y y4
解得:x=8,y=10,
将点 Am,n 代入反比例函数 y a 得: a mn 2, x
故选:C.
6.如图,A
是反比例函数 y
4 x>0的图像上任意一点,AB∥x 轴交反比例函数 y 6 的图像于点
x
x
B,以 AB 为边作平行四边形 ABCD,其中点 C,D 在 x 轴上,则平行四边形 ABCD 的面
积为( )
y
BD A
C
Ox
(2) 求一次函数解析式及 m 的值;
解:把A(-4,1 ),B(-1,2)代入 y = kx + b中
2
,得 -4k + b = 1 ,
k= 1 ,
2 -k + b =2,
解得
2
b= 5,
2
所以一次函数的解析式为 y = 1 x + 5 . 22
把 B (-1,2)代入y m x
原点
【答案】B
2020北师大版九年级数学上册 反比例函数知识点总结

【文库独家】北师大版九年级上册第六章 反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
反比例函数知识点归纳(重点)

反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)2在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.图1图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第4_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内”y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P(x0,3).①求x0的值;②求一次函数和反比例函数的解析式.6(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1B.1<S<2C.S=2D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2Q2,P2R2,垂足分别为Q2,R2,求矩形OQ1P1R1和OQ2P2R2的周长,并比较它们的大小.8(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P(m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形OQ1P1R1的周长为8,OQ2P2R2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;10②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.12。
最新北师版初中数学九年级下册第11讲反比例函数重点知识

2反比例函数的图象和性质的符号图象来自经过象限y随变化的情况
(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于
失分点警示
(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断
>0
图象经过第一、三象限
(、y同号)
每个象限内,函数y的值随的增大而减小
<0
图象经过第二、四象限
(、y异号)
每个象限内,函数y的值随的增大而增大
3反比例函数的图象特征
(1)由两条曲线组成,叫做双曲线;
(2)图象的两个分支都无限接近轴和y轴,但都不会与轴和y轴相交;
(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.
知识点三:反比例函数的实际应用
7一般步骤
(1题意找出自变量与因变量之间的乘积关系;
(2设出函数表达式;
(3)依题意求解函数表达式;
(4)根据反比例函数的表达式或性质解决相关问题
6与一次函数的综合
(1)确定交点坐标:【方法一】已知一个交点坐标为(ab),则根据中心对称性,可得另一个交点坐标为(-a-b)【方法二】联立两个函数解析式,利用方程思想求解
(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解
(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分>0和<0两种情况讨论,看哪个选项符合要求即可也可逐一选项判断、排除
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
知识点及考点:
(一)反比例函数的概念:
知识要点:
1、一般地,形如y = ( k是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A)y = (k ≠0),(B)xy = k(k ≠0)(C)y=kx-1(k≠0)
例题讲解:有关反比例函数的解析式
(1)下列函数,①②. ③④.⑤⑥;其中是y关于x的反比例函数的有:_________________。
(2)下列函数表达式中,y是关于x的反比例函数的有()
①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧-2xy=1
A.2个B.3个C.4个D.5个
(3)关于函数y=,以下说法正确的是()
A.y是x的反比例函数B.y是x的正比例函数C.y是x-2的反比例函数D.以上都不对(4)函数是反比例函数,则的值是()
A.-1B.-2C.2D.2或-2
(5)如果是的反比例函数,是的反比例函数,那么是的()
A.反比例函数B.正比例函数C.一次函数D.反比例或正比例函数
(6)若函数(m是常数)是反比例函数,则m=________,解析式为________.
(7)(2013安顺)若y=(a+1)是反比例函数,则a的值是,该反比例函数为
(二)反比例函数的图象和性质:
知识要点:
1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。
例题讲解:
(1)(2013邵阳)下列四个点中,在反比例函数y=的图象上的是()
A.(3,-2)B.(3,2)C.(2,3)D.(-2,-3)
(2)反比例函数y=的图象经过点(﹣2,3),则该图象经过象限
(3)已知函数是反比例函数,且图像在第二、四象限内,则的值是()
A.2B.C.D.
(4)反比例函数y=在第一象限的图象如图所示,则k的值可能是()
A.1 B.2 C.3 D.4
(5)写出一个反比例函数,使它的图象经过第二、四象限.
(6)若反比例函数的图象在第二、四象限,则的值是()
A、-1或1;
B、小于的任意实数;
C、-1; D、不能确定
3、增减性:(1)当k>0时,_________________,y随x的增大而________;
(2)当k<0时,_________________,y随x的增大而______。
例题讲解:
(1)已知点(-1,y1),(2,y2),(3,y3)在反比例函数的图像上,下列结论中正确的是( )
A. B. C. D.
(2)在反比例函数的图像上有三点,,,,,。
若则下列各式正确的是()
A. B. C. D.
(3)已知(x1, y1),(x2, y2),(x3, y3)是反比例函数的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是( )
A. y3<y1<y2
B. y2<y1<y3
C. y1<y2<y3
D. y3<y2<y1
(4)下列函数中,当时,随的增大而增大的是()
A.B.C.D..
(5)已知反比例函数的图象上有两点A(,),B(,),且,
则的值是()
A.正数B.负数C.非正数D.不能确定
(6)若点(,)、(,)和(,)分别在反比例函数的图象上,且
,则下列判断中正确的是()
A.B.C.D.
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交
(1)下列函数的图象中,与坐标轴没有公共点的是()
A.B.y=2x+1 C.y=﹣x D.y=﹣x2+1
5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k取互为相反数的两个反比例函数(如:y = 和y = )来说,它们是关于x轴,y轴___________。
知识要点:
1、反比例函数与矩形面积:
若P(x,y)为反比例函数(k≠0)图像上的任意一点如图1所示,过P作PM⊥x轴于M,作PN⊥y轴于N,求矩形
PMON的面积.
例4
分析:S 矩形PMON = ∵, ∴ xy=k, ∴ S =.
(1)如图,点B 在反比例函数图象上,矩形ABCO 面积为8,则反比例函数的 表达式为( ).
(A ) (B ) (C ) (D )
(2)如图,点A 在双曲线y=上,点B 在双曲线y=上,且AB ∥x 轴,C 、D 在x 轴上,若矩形ABCD 的面积为
2、反比例函数与三角形面积:
(1)、如图,反比例函数在第一象限内的图象如图,点M 是图像上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 .
(2)、在的图象中,阴影部分面积
不为的是( ).
(3)在反比例函数(x <0)的图象上任取一点,过点分别作轴、轴的垂线,垂足分别为M 、N ,那么四边形的面积为 .
第(4)题 第(5)题 第(6)题
(4) 反比例函数的图象如图所示,点M 是该函数图象上一点,MN ⊥x 轴,垂足为N.如果S △MON =2,这个反比例函数的解析式为______________
(5)如图,正比例函数与反比例函数的图象相交于A 、C 两点, 过点A 作AB ⊥轴于点B ,连结BC .则ΔABC 的面积等于( )
x
A.1B.2C.4D.随的取值改变而改变.
(6)如图,A、B是函数的图象上关于原点对称的任意两点,BC∥轴,AC∥轴,△ABC的面积记为,则()A.B.C.D.
(四)一次函数与反比例函数
例题讲解:
(1)一次函数y=﹣2x+1和反比例函数y=的大致图象是()
A、B、 C、D、
(2)一次函数和反比例函数在同一直角坐标系中的图象大致是( )
(3)一次函数y1=k1x+b和反比例函数y2=(k1∙k2≠0)的图象如图所示,
若y1>y2,则x的取值范围是()
A、﹣2<x<0或x>1
B、﹣2<x<1
C、x<﹣2或x>1
D、x<﹣2或0<x<1
(4)正比例函数和反比例函数的图象有个交点.
(5)正比例函数y=k1x(k1≠0)和反比例函数y= (k2≠0)的一个交点为(m,n),则另一个交点为_________.
(6)平面直角坐标系中,直线AB交x轴于点A,交y轴于点B 且与反比例函数图象分别交于C、D两点,过点C作CM⊥x轴于M,AO=6,BO=3,CM=5.求直线
AB的解析式和反比例函数解析式.
(五)反比例函数的应用:
例题讲解:
1.一个水池装水12立方米,如果从水管中每小时流出x立方米的水,经过y小时可以把水放完,那么y与x的函数关系式是________,自变量x的取值范围是________.
2.三角形的面积为6cm2,如果它的一边为y cm,这边上的高为x cm,那么y与x之间是________函数关系,以x为自变量的函数解析式为________.
3.长方体的体积为40cm3,此长方体的底面积y(cm2)与其对应高x(cm)之间的函数关系用图象大致可以表示为下面的( ).
4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).
(A)小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系
(B)长方形的面积为24,它的长y与宽x之间的关系
(C)压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系
(D)一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系
5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:
则可以反映y与x之间的关系的式子是( ).
(A)y=3000x(B)y=6000x(C) (D)
6.甲、乙两地间的公路长为300km,一辆汽车从甲地去乙地,
汽车在途中的平均速度为V(km/h),到达时所用的时间为t(h),
那么t是V________的函数,
V关于t的函数关系式为________.
7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房
(如图所示),则需要塑料布y(m2)与半径R(m)的函数
关系式是(不考虑塑料埋在土里的部分)________.
8.有一面积为60的梯形,其上底是下底长的三分之一,若下底长为x,高为y,则y关于x的函数关系式是( ).(A) (B) (C) (D)
9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).
(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;
(2)画出(1)中函数的图象;
(3)当高是3cm时,求长.
10.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的解析式;
(2)当气体体积为1m3时,气压是多少?
(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?。