反比例函数知识点总结
反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。
1.y随着x的增加而减小,或随着x的减小而增加。
2.当x=0时,函数y无定义。
3.曲线y=k/x在第一象限中,以坐标轴为渐近线。
二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。
第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。
三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。
2.反比例函数的图像关于y轴对称。
3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。
4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。
六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。
2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。
3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。
4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。
总结:反比例函数是一类常见的函数关系,具有重要的应用价值。
对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。
同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。
在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。
反比例函数知识点

第二十六章 反比例函数
考点五、反比例函数 (3~10分) 1、反比例函数的概念
一般地,函数x
k
y =
(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1
-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。
由于在反比例函数x
k
y =
中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数)0(≠=
k x
k
y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,
则所得的矩形PMON 的面积k S k xy x
k
y ==∴=,,。
反比例函数知识点总结

反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。
反比例函数知识点总结

反比例函数知识点总结 \2/
反比例函数知识点总结
一、反比例函数的概念: 函数 y=k/x(k 为常数, k≠0 )叫做反比例函数,其中 k 叫做比例系数,x 是自变量,y 是
函数,自变量 x 的取值范围是不等于 0 的一切实数. 二、反比例函数解析式的求法:
反比例函数的解析式 y=kx( k≠0) 中,只有一个系数 k ,确定了 k 的值,也就确定了反比例 函数的解析式.因此,只需给出一组 x、y 的对应值或图象上一点的坐标,利用待定系数法,即可 确定反比例函数的解析式 三、反比例函数的图象与性质
反比例函数知识点归纳

反比例函数知识点归纳定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
函数y=k/x 称为反比例函数,其中k≠0,其中x是自变量,1.当k>0时,图象分别坐落于第一、三象限,同一个象限内,y随x的减小而增大;当k<0时,图象分别坐落于二、四象限,同一个象限内,y随x的减小而减小。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的值域范围就是:x≠0;y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x无法为0,y也无法为0,所以反比例函数的图象不可能将与x轴平行,也不可能将与y轴平行。
但随着x无穷减小或是无穷增加,函数值无穷收敛于0,故图像无穷吻合于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
(k为常数,k≠0)的形式,那么表示y就是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补足表明:1.反比例函数的解析式又可以译成: (k就是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的值域就是一切非零实数。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的值域范围就是不等同于0的一切实数。
反比例函数的图像为双曲线。
由于反比例函数属奇函数,存有f(-x)=-f(x),图像关于原点等距。
初三反比例函数知识点

初三反比例函数知识点初三反比例函数知识点一一、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k1/xxy=ky=kx^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=k\x(k为常数且k0,x0)若y=k/nx此时比例系数为:k/n二、函数式中自变量取值的范围①k0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k1/xxy=ky=kx^(-1)y=k\x(k为常数(k0),x不等于0)三、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K0)。
四、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PMPN=|y||x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
五、反比例函数性质有哪些?1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
反比例函数常用知识点总结

反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
反比例函数知识点总结

反比例函数知识点总结知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠),②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xk y =(0k ≠)与y kx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像与画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置与函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点总结
知识点1 反比例函数的定义 一般地,形如x
k
y =
(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:
⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x
k
y =
(0k ≠), ②1
kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数x
k
y =
(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x
也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x
k
y =,就不是反比例函数了,由于反比例函数x
k
y =
(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式
由于反比例函数x
k
y =
(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值
0y ≠,所以它的图像与x轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永
远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质
☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:
反比例函数
x
k
y =
(0k ≠) k 的
符号
0k > 0k <
图像
性质
①x 的取值范围是0x ≠,y 的取值范围是0y ≠
②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
①
x 的取值范围是0x ≠,y 的取值范围是
0y ≠
②当0k
<时,
函数图像的两个分支分别在第
二、第四象限,在每个象限内,y随x 的增大而增大。
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。
如x
k
y =在第一、第三象限,则可知0k >。
☆反比例函数x
k
y =
(0k ≠)中比例系数k 的绝对值k 的几何意义。
如图所示,过双曲线上任一点P (x,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k ☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x
k
y =越远离坐标原点;k 越小,双曲线x
k
y =
越靠近坐标原点。
☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线
y=x和直线y =-x 。