反比例函数的知识点的总结

合集下载

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。

1.y随着x的增加而减小,或随着x的减小而增加。

2.当x=0时,函数y无定义。

3.曲线y=k/x在第一象限中,以坐标轴为渐近线。

二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。

第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。

三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。

2.反比例函数的图像关于y轴对称。

3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。

4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。

六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。

2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。

3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。

4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。

总结:反比例函数是一类常见的函数关系,具有重要的应用价值。

对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。

同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。

在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k ≠ 0)的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是函数。

需要注意的是,反比例函数中自变量 x 的取值范围是x ≠ 0,因为在分式中,分母不能为 0。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k ≠ 0)2、 xy = k(k 为常数,k ≠ 0)3、 y = kx^(-1)(k 为常数,k ≠ 0)这三种形式在本质上是相同的,只是表现形式有所不同,可以根据具体问题的情境选择合适的形式。

三、反比例函数的图象反比例函数的图象是双曲线。

当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内y 随 x 的增大而减小;当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内y 随 x 的增大而增大。

反比例函数的图象是以原点为对称中心的中心对称的两条曲线。

四、反比例函数图象的性质1、对称性关于原点对称:若点(a,b)在反比例函数图象上,则点(a,b)也在图象上。

关于直线 y = ±x 对称:若点(a,b)在反比例函数图象上,则点(b,a)和(b,a)也在图象上。

2、渐近线当x → 0 或x → ±∞ 时,曲线无限接近 x 轴和 y 轴,但永远不会与坐标轴相交。

3、增减性在每个象限内,函数值 y 随自变量 x 的变化而变化。

当 k > 0 时,在同一象限内,y 随 x 的增大而减小;当 k < 0 时,在同一象限内,y 随 x 的增大而增大。

五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k ≠ 0)图象上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足为 M、N,则矩形 PMON 的面积 S = PM × PN =|y| ×|x| =|xy| =|k|。

反比例函数知识点集锦

反比例函数知识点集锦

反比例函数知识点集锦一、反比例函数的概念1.反比例函数的概念 一般地,函数k y x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数k y x=(k 是常数,k ≠0)中x ,y 的取值范围 反比例函数k y x =(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴. (2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数k y x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数k y x =的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于。

反比例函数知识点总结

反比例函数知识点总结

反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。

通常我们把它写成y = k/x+b,其中 b 为常数。

2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。

当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。

例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。

当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。

反比例函数也不具有最大值或最小值。

4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。

例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。

5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。

这可以通过已知的点对、图像或其他信息来确定。

以上是反比例函数的知识点梳理,希望对您有所帮助。

反比例知识点总结

反比例知识点总结

反比例是数学中一种重要的函数关系,主要出现在初中数学的学习内容中。

以下是反比例函数的相关知识点总结:1. 定义:两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么我们就称这两种量成反比例关系。

表达式为:y = k/x (k ≠0),其中,k 是常数,x 是自变量,y 是因变量。

2. 图像特征:反比例函数的图像是一条双曲线,分布在第一、三象限或第二、四象限,具体分布取决于k的正负。

函数图像关于原点成中心对称。

3. 性质:在每个象限内,从左到右,y随x的增大而减小;反之,y随x 的减小而增大。

图像永远不会与坐标轴相交。

如果点(x1, y1)在反比例函数图像上,那么点(-x1, -y1)、(y1, x1)也在该图像上。

4. 应用:反比例关系广泛存在于现实生活中的各种问题,如物理学中的功率与时间的关系,化学中的反应速率与反应物浓度的关系,经济学中的价格与需求量的关系等。

5. 解题方法:遇到求反比例函数解析式的问题,通常可以通过找出满足函数关系的两个对应值,代入公式求解k值。

对于图像和性质的分析,可以根据上述性质进行判断和解答。

反比例函数在数学中的意义主要体现在它描述了一种特殊的变量关系,这种关系是两个变量之间乘积恒定的规律。

具体来说:1. 定义与形式:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是不为零的常数),那么我们称y是x的反比例函数。

这里的k是比例系数,决定了曲线的形状和位置。

2. 关系特征:反比例函数反映的是两个变量成反向变化的关系,即一个变量增大时,另一个变量会按相同的比例减小,以保持它们乘积的不变性。

3. 几何意义:反比例函数在坐标平面上的图像是一条双曲线,分布在第一、三象限或第二、四象限,取决于系数k的正负。

双曲线具有对称性,并且永远不会与坐标轴相交。

4. 实际应用:反比例函数关系广泛存在于现实生活中的多个领域,如物理学中的力矩和力臂的关系、电流强度与电阻的关系(欧姆定律)、经济学中的价格和需求量的关系等。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

反比例函数知识点汇总

反比例函数知识点汇总

反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。

反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。

2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。

(b)值域:排除0,即y不能为0。

当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

(c)对称中心:该函数关于原点(0,0)对称。

(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。

(e)单调性:反比例函数在定义域内是单调递减的。

(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。

(g)零点:当x与y相等时,即x=y≠0。

3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。

4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。

例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。

(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。

当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。

(c)投资与收益率:投资的利润与投资金额成反比例关系。

当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。

(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。

总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。

反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。

确定反比例函数的常数k可以通过已知点进行求解。

反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数知识点总结 李苗
知识点1 反比例函数的定义 一般地,形如x
k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:
⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x
≠的一切实数,函数值的取值范围是0y ≠;
⑶比例系数0k
≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠),
②1kx y -=(0k ≠),
③k y x =⋅(定值)(0k ≠); ⑸函数x
k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,
x k y =,就不是反比例函数了,由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k
的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式
由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比
例函数的表达式。

知识点3反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分
别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用
光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐
标轴相交。

知识点4反比例函数的性质
☆关于反比例函数的性质,主要研究它的图像的位置及函数
值的增减情况,如下表:
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

反比例函数图像的位置和函数的增减性,是有反比例函数系数k 反比例 函数
x k y =(0k ≠) k 的
符号 0k >
0k < 图像
性质 ①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k >时,函数图像的两个分支分别在第一、
第三象限,在每
个象限内,y 随x
的增大而减小。

①x 的取值范围是0x ≠,
y 的取值范围是0y ≠
②当0k
<时,函数图像的两个分支分别在第二、
第四象限,在每个象限内,
y 随x 的增大而增大。

的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。

如x k y =在第一、第三象限,则可知0k >。

☆反比例函数x k y =(0k ≠)中比例系数k 的绝对值k 的几何
意义。

如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足,

OEPF S PE PF y x xy 矩形=⋅=⋅==k
☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x
k y =越远离坐标原点;k 越小,双曲线x k y =越靠近坐标原点。

☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是
轴对称图形,对称轴是直线y=x 和直线y=-x 。

☆ 经典例题透析
类型一 反比例函数的概念
☆ 1.判断下列各式是否表示y 是x 的反比例函数,若
是,指出比例系数k 的值;若不是,指出是什么函数.
(1)8;y x =- (2)1;9xy = (3)43;y x =- (4)1;7y x =-
(5)2=x y ; (6) x y 76-=;(7)x k y =(k 为常数,k 0≠)
☆ 2. 根据题意列出函数关系式,并判断是什么函数.
☆ (1)面积为常数m 的长方形的长y 与宽x 之间的关系; ☆
☆ (2)一本500页的书,每天看15页,x 天后尚未看完
的页数y 与天数x 之间的关系.

专题2 反比例函数图象的位置与系数的关系
☆ 【专题解读】 反比例函数k y x =的图象是由两个分支组
成的双曲线,图象的位置与比例系数k 的关系有如下两种情况:
☆ (1)0k >⇔双曲线的两个分支在第一、三象限⇔
在第一象限内,y 随x 的增大而减小. ☆ (2)0k
<⇔双曲线的两个分支在第二、四象限⇔在第一象限内,y 随x 的增大而增大.
☆ 3. 函数y ax a =-+与(0)a y a x -=≠在同一坐标系中
的图象可能是( )
专题3 反函数的图象
☆ 【专题解读】 如左下图所示,若点A (x ,y )为反比
例函数k y x =图象上的任意一点,过A 作AB ⊥x 轴于B ,
作AC ⊥y 轴于C ,则S △AOB =S △AOC =12
S 矩形ABOC =1||2k . ☆
☆ 4. 如右上图所示,点P 是x 轴正半轴上的一个动点,
过P 作x 轴的垂线交双曲线1y x =于点Q ,连接OQ ,当
点P 沿x 轴正方向运动时,Rt △QOP 的面积( )
A .逐渐增大
B .逐渐减小
C .保持不变
D .无法确定 ☆ 5.在反比例函数x y 1-=的图像上有三点(1x ,)1y ,
(2x ,)2y ,(3x ,)3y 。

若3210x x x >>>则下列各式正确的是( )
A .
213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> ☆
6. 如果函数222-+=k k kx y 的图像是双曲线,且在第二,
四象限内,那么k 的值是多少?
☆ 7.如果一次函数
()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为
( )
☆ 8. 已知一次函数y kx b =+的图象与反比例函数
6y x =的图象相交于A ,B 两点,点A 的横坐标是3,点B
的纵坐标是-3.
☆ (1)求一次函数的表达式;
☆ (2)当一次函数值小于0时,求x 的取值范围.
9. 已知反比例函数k y x =的图象经过点A (-2,3).
☆ (1)求这个反比例函数的表达式;
☆ (2)经过点A 的正比例函数
y k x '=的图象与反比例函数k y x =的图象还有其他交点吗?若有,
求出交点坐标;若没有,说明理由.
☆ 10.如图,在AOB Rt ∆中,点A 是直线m x y +=与
双曲线x m y =在第一象限的交点,且2=∆AOB S ,则m 的值
是_____.

☆ 11.如右上图所示,在反比例函数2(0)y x x =>的图象上
有点1234,,,P P P P ,它们的横坐标依次为1,2,3,4,分别过些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1234,,,S S S S ,则123S S S ++= ________ .
☆ 求n S S ++++......S S 321的值(用含n 的代数式来表示)
_________________
☆ 中考真题精选:
☆ 1.(江苏扬州)某反比例函数的图象经过点(-1,6),则
下列各点中,此函数图象也经过的点是( )
☆ A. (-3,2) B. (3,2) C.(2,3) D.
(6,1)
☆ 2.(重庆江津区)已知如图,A 是反比例函数k y x =的
图象上的一点,AB 丄x 轴于点B ,且△ABC 的面积是3,
则k的值是()
☆A、3 B、﹣3 C、6 D、﹣6
☆ 3.(吉林)反比例函数的图象如图所示,则k的值可能是()

☆A、﹣1 B、 C、1 D、2
☆ 4.(辽宁阜新)反比例函数
6
y
x
=与3
y
x
=在第一象限的
图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()

☆ A.3
2
B.2
C.3
D.1
☆ 5.(玉林)如图是反比例函数y=x k 1和y=x k 2(k 1<k 2)
在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于
A 、
B 两点,若S △AOB =2,则k 2﹣k 1的值是( ) ☆ A 、1 B 、2
C 、4
D 、8。

相关文档
最新文档